An innovative method is proposed to determine the most important magnetic properties of bioapplication-oriented magnetic nanomaterials exploiting the connection between hysteresis loop and frequency spectrum of magnetization. Owing to conceptual and practical simplicity, the method may result in a substantial advance in the optimization of magnetic nanomaterials for use in precision medicine. The techniques of frequency analysis of the magnetization currently applied to nanomaterials both in vitro and in vivo usually give a limited, qualitative picture of the effects of the active biological environment, and have to be complemented by direct measurement of the hysteresis loop. We show that the very same techniques can be used to convey all the information needed by present-day biomedical applications without the necessity of doing conventional magnetic measurements in the same experimental conditions. The spectral harmonics obtained analysing the response of a magnetic tracer in frequency, as in magnetic particle spectroscopy/imaging, are demonstrated to lead to a precise reconstruction of the hysteresis loop, whose most important parameters (loop's area, magnetic remanence and coercive field) are directly obtained through transformation formulas based on simple manipulation of the harmonics amplitudes and phases. The validity of the method is experimentally verified on various magnetic nanomaterials for bioapplications submitted to ac magnetic fields of different amplitude, frequency and waveform. In all cases, the experimental data taken in the frequency domain exactly reproduce the magnetic properties obtained from conventional magnetic measurements.

From spectral analysis to hysteresis loops: A breakthrough in the optimization of magnetic nanomaterials for bioapplications / Barrera, G.; Allia, P.; Tiberto, P.. - In: JPHYS MATERIALS. - ISSN 2515-7639. - 6:3(2023). [10.1088/2515-7639/acdaf8]

From spectral analysis to hysteresis loops: A breakthrough in the optimization of magnetic nanomaterials for bioapplications

Barrera G.
;
Allia P.;Tiberto P.
2023

Abstract

An innovative method is proposed to determine the most important magnetic properties of bioapplication-oriented magnetic nanomaterials exploiting the connection between hysteresis loop and frequency spectrum of magnetization. Owing to conceptual and practical simplicity, the method may result in a substantial advance in the optimization of magnetic nanomaterials for use in precision medicine. The techniques of frequency analysis of the magnetization currently applied to nanomaterials both in vitro and in vivo usually give a limited, qualitative picture of the effects of the active biological environment, and have to be complemented by direct measurement of the hysteresis loop. We show that the very same techniques can be used to convey all the information needed by present-day biomedical applications without the necessity of doing conventional magnetic measurements in the same experimental conditions. The spectral harmonics obtained analysing the response of a magnetic tracer in frequency, as in magnetic particle spectroscopy/imaging, are demonstrated to lead to a precise reconstruction of the hysteresis loop, whose most important parameters (loop's area, magnetic remanence and coercive field) are directly obtained through transformation formulas based on simple manipulation of the harmonics amplitudes and phases. The validity of the method is experimentally verified on various magnetic nanomaterials for bioapplications submitted to ac magnetic fields of different amplitude, frequency and waveform. In all cases, the experimental data taken in the frequency domain exactly reproduce the magnetic properties obtained from conventional magnetic measurements.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11696/83626
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact