We study the real-time dynamics of vortices in a large elongated Bose-Einstein condensate (BEC) of sodium atoms using a stroboscopic technique. Vortices are produced via the Kibble-Zurek mechanism in a quench across the BEC transition and they slowly precess keeping their orientation perpendicular to the long axis of the trap as expected for solitonic vortices in a highly anisotropic condensate. Good agreement with theoretical predictions is found for the precession period as a function of the orbit amplitude and the number of condensed atoms. In configurations with two or more vortices, we see signatures of vortex-vortex interaction in the shape and visibility of the orbits. In addition, when more than two vortices are present, their decay is faster than the thermal decay observed for one or two vortices. The possible role of vortex reconnection processes is discussed.
Dynamics and Interaction of Vortex Lines in an Elongated Bose-Einstein Condensate / Serafini, Simone; Barbiero, Matteo; Debortoli, Michele; Donadello, Simone; Larcher, Fabrizio; Dalfovo, Franco; Lamporesi, Giacomo; Ferrari, Gabriele. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 115:17(2015), p. 170402. [10.1103/PhysRevLett.115.170402]
Dynamics and Interaction of Vortex Lines in an Elongated Bose-Einstein Condensate
Barbiero, Matteo;Donadello, Simone;
2015
Abstract
We study the real-time dynamics of vortices in a large elongated Bose-Einstein condensate (BEC) of sodium atoms using a stroboscopic technique. Vortices are produced via the Kibble-Zurek mechanism in a quench across the BEC transition and they slowly precess keeping their orientation perpendicular to the long axis of the trap as expected for solitonic vortices in a highly anisotropic condensate. Good agreement with theoretical predictions is found for the precession period as a function of the orbit amplitude and the number of condensed atoms. In configurations with two or more vortices, we see signatures of vortex-vortex interaction in the shape and visibility of the orbits. In addition, when more than two vortices are present, their decay is faster than the thermal decay observed for one or two vortices. The possible role of vortex reconnection processes is discussed.File | Dimensione | Formato | |
---|---|---|---|
1507.01511.pdf
accesso aperto
Tipologia:
accepted manuscript (author’s post-print)
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
7.72 MB
Formato
Adobe PDF
|
7.72 MB | Adobe PDF | Visualizza/Apri |
PhysRevLett.115.170402.pdf
non disponibili
Tipologia:
final published article (publisher’s version)
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.13 MB
Formato
Adobe PDF
|
2.13 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.