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Dynamics and Interaction of Vortex Lines in an Elongated Bose-Einstein Condensate
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We study the real-time dynamics of vortices in a large elongated Bose-Einstein condensate (BEC)
of sodium atoms using a stroboscopic technique. Vortices are produced via the Kibble-Zurek mech-
anism in a quench across the BEC transition and they slowly precess keeping their orientation
perpendicular to the long axis of the trap as expected for solitonic vortices in a highly anisotropic
condensate. Good agreement with theoretical predictions is found for the precession period as a
function of the orbit amplitude and the number of condensed atoms. In configurations with two or
more vortices, we see signatures of vortex-vortex interaction in the shape and visibility of the orbits.
In addition, when more than two vortices are present, their decay is faster than the thermal decay
observed for one or two vortices. The possible role of vortex reconnection processes is discussed.

PACS numbers: 03.75.Lm, 67.85.De, 05.30.Jp

Vortex dynamics is an essential feature of quantum
fluids [1] and plays a key role in superfluid helium [2], su-
perconductors [3], neutron stars [4] and magnetohydro-
dynamics [5]. The interaction between vortices is crucial
for understanding the formation of vortex lattices in ro-
tating superfluids and is the basic mechanism leading to
quantum turbulence via vortex reconnection [6, 7]. Vor-
tices have been extensively investigated in atomic gases
[8], where a variety of techniques permits the observation
of single ones up to a few hundreds, interacting in a clean
environment and on a spatial scale ranging from the heal-
ing length (core size) € to a few tens of {. The fact that
atoms are confined by external fields of tunable geome-
try makes them suitable to explore the physics of recon-
nection and dissipation in inhomogeneous systems and
in the presence of boundaries. Seminal experiments were
performed in rotating Bose-Einstein condensates (BECs),
where the effect of rotation and long-range interaction fa-
vors vortex alignment and the formation of vortex lattices
[9-13] and hence crossing and reconnection mechanisms
are inhibited. Interacting vortices have been observed
in nonrotating oblate BECs, where vortex lines are short
and either parallel or antiparallel, thus behaving as point-
like particles dominated by their long-range interaction
in a quasi-2D background [14-19].

In our experiment we use a cigar-shaped BEC which is
particularly suitable for studying the dynamics of vortex
lines in 3D. Because of the boundary conditions imposed
by the tight radial confinement each vortex line lies in a
plane perpendicular to the long axis z of the trap, such
to minimize its length and therefore its energy, as in the
solitonic vortex configuration predicted in Refs. [20, 21]
and recently observed both in a BEC [22, 23] and in a
superfluid Fermi gas [24]. The line is randomly oriented
in the plane and away from it, at distances of the order
of the system transverse size, the superfluid flow quickly
vanishes and the long-range part of the vortex-vortex in-

teraction is suppressed. Hence, vortices can move almost
independently along elliptic orbits except when they ap-
proach each other and may collide with a random relative
angle. At the scale of the healing length, where recon-
nection can take place, the system is still equivalent to
a uniform superfluid, like liquid He, but with the advan-
tage that vortex filaments collide at measurable relative
velocities.

The experimental apparatus is described in Ref. [25].
We evaporate sodium atoms in a magnetic harmonic trap
with frequencies {w,, = wi,w,}/2r = {131,13} Hz.
Vortices with random position and velocity sponta-
neously originate via the Kibble-Zurek mechanism [14,
26-28] from phase defects in the condensate when cross-
ing the BEC transition and their average number scales
as a power law with the evaporation rate. At the end
of the evaporation we have an almost pure prolate BEC
with about 107 atoms at 200 nK in the state |F,mp) =
|1,—1). In Refs. [22, 28] we counted and characterized
defects using destructive absorption imaging. Here we
apply a stroboscopic technique, similar to that in Refs.
[16, 29], which allows us to observe the real-time dy-
namics. Starting from an initial number of atoms Ny,
we remove a small fraction AN/Ny ~ 4% by outcou-
pling them to the antitrapped state |2, —2) via a mi-
crowave pulse, short enough to provide a resonance con-
dition throughout the whole sample. Outcoupled atoms
are imaged along a radial direction after a 13 ms expan-
sion [30] without affecting the trapped ones. The extrac-
tion mechanism is repeated 20 times with time steps At,
keeping AN fixed. Raw images are fitted to a Thomas-
Fermi (TF) profile [32] and the residuals are calculated.
Because of the peculiar structure of the superfluid flow
of solitonic vortices [22, 23], after expansion the whole
radial plane containing a vortex exhibits a density de-
pletion and vortices are seen as dark stripes indepen-
dently of their in-plane orientation. During the extrac-
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FIG. 1. (a)-(c) Sequences of 20 images of the density distri-
bution of the atoms extracted from three BECs; frames are
taken every At = 84 ms, each after a 13 ms expansion. (a)
Static vortex. (b)-(c) Vortices precessing with different am-
plitudes. Each vortex is randomly oriented in the xy plane
and, after expansion, it forms a planar density depletion [23]
which is visible as a stripe. (d)-(i) Sequences with two and
three vortices, with At = 28 ms; here frames are not to scale
and vertically squeezed to enhance visibility. (j)-(m) Destruc-
tive absorption images of the whole BEC taken along the ax-
ial direction z after 120 ms of expansion, showing (j) a single
vortex filament crossing the condensate from side to side and
(k)-(m) two vortices with different relative orientation and
shape. All images show the residuals after subtracting the
fitting TF profile.

tion sequence the remaining condensate evolves in trap,
only weakly affected by atom number change, provided
AN/N(t) is sufficiently small. We can then identify the
axial position of the vortex in each image of the outcou-
pled atoms and analyze its oscillation as a faithful rep-
resentation of the in-trap dynamics. Typical examples
are shown in Figs. 1(a)-1(i) . Alternatively we image the
full BEC along the axial direction after a long expan-
sion with a destructive technique as in [22] and directly
see the shape and orientation of the vortex lines as in
Figs. 1(j)-1(m).

We first choose an evaporation rate of 525 kHz/s, yield-
ing one vortex in each BEC on average. From the se-

quence of radial images we extract the axial position of
each vortex z(t). Frames are recorded every At = 84 ms.
Figures 2(a) and 2(b) show two examples corresponding
to the raw images of Figs. 1(b) and 1(c), respectively.
The observations are consistent with a vortex precession
around the trap center, as the one observed in oblate
BECs [16, 33]. In a nonrotating elongated condensate,
a straight vortex line, oriented in a radial plane, is ex-
pected to follow an elliptic orbit in a plane orthogonal to
the vortex line, corresponding to a trajectory at constant
density [34]. The observed motion of each dark stripe in
Figs. 1(a)-1(c) is the axial projection of such a precession.
Given 1o = Zmax/R: = Ymax/ R the in-trap amplitude of
the orbit normalized to the TF radii R, = /2u/(mw?)
and R, = \/2u/(mw?) [32], the precession period is pre-
dicted to be

_Aa=rdp
o 371(4}J_1H(Rl/€) =0 (1)

where T, = 27 /w, is the axial trapping period and ¢ is
related to the chemical potential u by & = \/h?/(2mu).
This result, which is valid to logarithmic accuracy, has
been derived for a disk-shaped nonaxisymmetric conden-
sate in Refs. [35, 36] within the Gross-Pitaevskii theory
at T'= 0 and in the TF approximation, corresponding to
Ry /€ > 1 (in our case, R} /¢ ranges from 60 to 20). It
can also be obtained by means of the superfluid hydro-
dynamic approach introduced in Ref. [37] to describe the
motion of vortex rings in elongated condensates, appro-
priately generalized to the case of solitonic vortices as in
Ref. [24]. The quantity u(1 — r2) is the local chemical
potential along the vortex trajectory and we assume r, to
be constant during expansion, as distances are expected
to scale in the same way in the slow axial expansion.

In comparing the observed period with Eq. (1) we must
consider that the number of atoms is decreasing from shot
to shot. Since extraction is spatially homogeneous, the
gradients of the density, and hence the equipotential lines
for the vortex precession and the orbit amplitude remain
almost unchanged. However, N(t) (hence u oc N?/%)
decreases in time and so does the vortex orbital period
T, as is clearly visible in Figs. 2(a) and 2(b). We de-
fine an instantaneous period at time t as the period ob-
tained from a sinusoidal fit to the measured position in a
time interval centered at ¢t and containing about one os-
cillation. Such T'(¢) is plotted in Fig. 2(c) and 2(d) and
compared to Eq. (1), where we include the effect of the
observed ¢ dependence on N, shown in Fig. 2(e), both in
w and &. The agreement is good, the major limitation
being the experimental uncertainty in N. We also show
the period expected for the oscillation of a dark or grey
soliton, which is v/2 T, independently of N [38, 39]. In
Fig. 2(f) we plot the period of vortices orbiting with dif-
ferent amplitude 7,. The agreement with theory is again
good and can be further appreciated by considering the
ratio between each value of T' measured at a given r, and
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FIG. 2. (a),(b) Vortex axial position after expansion for the condensates in Figs. 1(b) and 1(c). (c),(d) Instantaneous period
normalized to the trapping period 7. = 77 ms (points) obtained by fitting the above oscillations; the solid line is the theoretical
prediction (1) for the measured atom number N (t) and its 20% uncertainty (grey region); the dashed line is the prediction for
a dark or grey soliton. (e) BEC atom number, with (green) and without (grey) the extraction sequence. (f) Period T extracted
from the vortex position in the first frames in units of T, as a function of r2; the solid line represents the predicted (1 — r2)
behavior, with no free parameters. (g) Probability density of the measured period To vs. the theoretical one Tin in the same
conditions. Red (blue) bars refer to 30 (27) cases with a single vortex (two vortices), all of them with the same N within a

20% uncertainty.

the theoretical value in Eq. (1) obtained for the same r,
and N. Figure 2(g) shows the histogram of all values
obtained by extracting T and r, from a fit to the first
oscillation, using N = 9 x 10° in Eq. (1). The histogram
gives To/Tyr, = 0.97 &+ 0.04. This remarkable agreement
with theory is nontrivial since Eq. (1) assumes r, < 1
and a rigid straight vortex line, while off-centered vor-
tices actually bend toward the curved BEC surface. For
rotating condensates the bending mechanism has been
discussed in Refs. [40-44] and observed in Ref. [45]. Ex-
amples of straight and bent vortices in our condensate
are given in Figs. 1(j)-1(m). In our elongated BEC, with
strong radial inhomogeneity, this bending mechanism is
expected to be more effective than in oblate BECs. Our
observations seem to indicate that its effect on the period
is small, possibly of the same order of the logarithmic
corrections to Eq. (1) predicted for a straight vortex in a
2D geometry [46, 47]. This may be due to the fact that
the difference in length between a bent and a straight
vortex, at a comparable r,, is relatively small and the
overall structure of the vortical flow is also quite similar,
so that the key quantities entering the hydrodynamic de-
scription (i.e, the force acting on a unit of length of the
vortex and the momentum of the vortex, in the language
of Ref. [37]) are almost the same in the two cases.

Vortex lifetime in nonrotating BECs is limited by scat-
tering of thermal excitations, which causes the dissipa-
tion of the vortex energy into the thermal cloud. Since a
vortex behaves as a particle of negative mass, dissipation
causes an antidamping of the orbital motion and vortices
decay at the edge of the condensate [48, 49]. We can
measure the lifetime 7 by counting the average number
of vortices (Ny); remaining in the condensate at time ¢,
starting with Ny (0). If Ny(0) =1 we find a clear expo-
nential decay with 71 = (910 & 100) ms (Fig. 3), close to

that measured in Refs. [22, 28] and of the same order of
the one observed in a fermionic superfluid [24, 49].
Using a faster evaporation ramp (700 kHz/s), we pro-
duce more vortices and search for signatures of mutual in-
teraction. Examples are shown in Fig. 1(d)-1(i) and typi-
cal trajectories are also reported in Fig. 4. In some cases,
vortices perform unperturbed oscillations [Fig. 4(a)]; in
others, we clearly see a shift in their trajectories at the
crossing point [Fig. 4(b)]. The average relative velocity
at the crossing in the latter case is systematically smaller
(~ 0.5 mm/s) than in the former (~ 1.1 mm/s) [30]. The
shift has a consequence also in the determination of the
orbital period as it causes a broadening of the proba-
bility distribution of the ratio Ty/Ty, which now gives
0.96 +0.14, with a standard deviation three times larger
than for the single vortex [Fig. 2(g)]. In addition, cross-
ings are frequently associated with a sudden change of
visibility of one or both vortices [Figs. 1(e)-1(h)). Fi-
nally, by analyzing the lifetime of vortices for the initial
condition Ny 2 and Ny = 3 we observe a lifetime

Ny(0)=1@ ]
Ny(0)=2 A |
Ny(0)=3 ¢

3.0
2.0

1.0

(Ny)t

0.5

0.3
0.2
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FIG. 3. Average vortex number, (Ny ), remaining in a con-
densate at time t starting from configurations with Ny = 1
(circles), 2 (triangles) and 3 (diamonds) at ¢ = 0. Solid lines
are exponential fits.
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FIG. 4. Vortex axial position in BECs. (a) Two vortices with
no apparent interaction. (b) Two crossing vortices change
their visibility and experience a phase shift in their trajectory.
(¢c) Two vortices becoming hardly visible after crossing. (d)
Two vortices oscillating with unperturbed trajectories while
a third one disappears. (a)-(d) correspond to the data in
Figs. 1(d)-1(g), respectively. Solid and empty symbols are
used to distinguish high and low density contrast, respectively.

T2 = (1050 & 100) ms for the two-vortex configuration,
consistent with the one-vortex configuration. The situ-
ation instead changes in the three-vortex configuration,
where a faster decay is observed, 73 = (490 £ 100) ms
(Fig. 3).

The frequent observation of unperturbed orbits for
multiple vortices is intriguing. Two vortex lines mov-
ing back and forth in the condensate with random radial
orientations should have large probability to cross each
other at some point. If crossings occur, reconnections
are expected to take place [7] with possible drastic (and
almost temperature independent [50, 51]) effects on the
vortical dynamics. The actual dynamics can strongly
depend on the relative angle o between vortex lines as
well as the relative velocity v, between the planes where
they lie. When « is close to 0 (7), the vortex lines tend
to align (antialign), thus reducing the chance of recon-
nection for vortices on different orbits. But when vor-
tices approach with « ~ 7/2 reconnection can be hardly
avoided. The fact that we observe the same vortex life-
time for Ny (0) = 1 and 2 implies that such reconnec-
tions are either suppressed or they induce a negligible
dissipation. A possible explanation is the occurrence of
double reconnection processes [52]. Vortex reconnection
corresponds to the switching of a pair of locally coplanar
vortex lines, accompanied by a change of topology. In
our geometry a finite v, implies that the newly formed
filaments must stretch in the condensate while the two
planes separate again after reconnection. The consequent
energy cost is instead avoided if vortices perform a con-
secutive second reconnection when they are still at close
distance. This would preserve the vortex number, con-
sistent with our observation of an equal vortex lifetime
for Ny(0) = 1 and 2. It is worth mentioning that a

similar scenario has also been recently suggested for the
collision of cosmic strings [53]. The occurrence of a shift
in the trajectories, that apparently depends on v,., could
be associated with the role of the collision time: faster
vortices have less time to interact and their trajectories
are marginally affected, and this scenario may be appli-
cable both to fly-by vortices and double reconnections.
Also Kelvin modes can be excited in the collision [54—
56] but, if present, they seem not to affect the lifetime,
while they are likely responsible for the change of visi-
bility of the vortices, as they can produce out-of-plane
distortions and hence a change of contrast in the density
distribution. Finally, the observation of a shorter lifetime
in configurations with Ny (0) = 3 can be understood by
considering the role of a third vortex in the collision of
two other vortices, whose tendency to rotate in the ra-
dial plane is frustrated by three-body interaction, thus
enhancing the probability of collisions and reconnections.
A similar role of three-body interactions in the dynamics
of vortices was recently investigated in the context of 2D
classical turbulence [57].

Our experimental results demand new theoretical mod-
els. So far, numerical simulations of vortex reconnection
are usually performed with vortex lines initially at rest,
at small distance, which then evolve in time [7, 58-61],
while in our case the role of the relative velocity seems to
be crucial. Shedding light on this, and generally on the
dynamics of few vortices in such a relatively simple con-
figuration, can help to understand the physics of vorticity
in more complex settings, like those of Refs. [62-64], in
the search of a satisfactory comprehension of quantum
turbulence in superfluids with boundaries.
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SUPPLEMENTAL MATERIAL

EXPANSION OF THE OUTCOUPLED ATOMS

During the expansion of the outcoupled atoms, optical levitation is performed with a blue-detuned 532 nm laser
beam to compensate for gravity and a radio frequency dressing [S1] is used to keep the out-coupled fraction confined
and clearly detectable after the 13 ms expansion. In particular, the RF field is such to produce a mexican-hat potential
which limits the radial expansion to about 100 um, whereas the slower axial expansion is barely perturbed.

VORTEX OSCILLATIONS

FIG. S1. Examples of experimental images taken with the stroboscopic outcoupling technique, reported in real scale (top) and
squeezed in order to improve defects visibility (bottom).
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FIG. S2. Occurence of amplitude in the vortex oscillations after expansion, the axial TF radius after expansion is ~ 250 pm.
The in-situ value can be obtained considering a scale factor of ~ 0.6, given by the ratio between the in-situ and expanded TF
radius at ¢ = 0 ms; this because the assumption of a constant ro during the expansion. This gives a mean 7, of 0.27 with a
standard deviation of 0.13. There is no statistical difference between the single-vortex distribution and the double-vortex one.

PHASE SHIFT AND RELATIVE VELOCITY

A precise statistical analysis is not possible here because information on the phase shift can be extracted only in
the data subset where the crossing point occurs at about half of the inspected time evolution (~ 10% of the cases).
Clear phase shifts are present in about half of this subset.
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FIG. S3. Relative velocity between vortices whose crossing trajectories clearly show or not a phase shift. Velocities are
calculated differentiating the function fitting the vortex trajectories at the crossing point and rescaled to take into account
expansion; vertical lines represent the mean velocities in the two cases.
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