Two natural zeolite-bearing rocks (one containing clinoptilolite and the other chabazite, phillipsite, and analcime) were Fe-exchanged and thermally treated in a reducing atmosphere at 750 degrees C for 2 h. Two nanocomposites, formed by the dispersion of Fe nanoparticles in a ceramic matrix, were obtained. The prepared lunar dust simulants also contain Na+, K+, Ca2+, and Mg2+ and other mineral phases originally present in the starting materials. The samples were fully characterized by different techniques such as atomic absorption spectrometry, X-ray powder diffraction, followed by Rietveld analysis, transmission electron microscopy, N-2 adsorption/desorption analysis at 77 K, measurements of grain size distribution, magnetic property measurements, broad-band dielectric spectroscopy, and DC conductivity measurements. The results of this characterization showed that the obtained metal-ceramic nanocomposites exhibit a chemical and mineralogical composition and electrical and magnetic properties similar to real moon dust and, thus, appear valid moon dust simulants.
New Insights in the Production of Simulated Moon Agglutinates: the Use of Natural Zeolite-Bearing Rocks / Manzoli, M; Tammaro, O; Marocco, A; Bonelli, B; Barrera, G; Tiberto, P; Allia, P; Mateo-Velez, Jc; Roggero, A; Dantras, E; Arletti, R; Pansini, M; Esposito, S. - In: ACS EARTH AND SPACE CHEMISTRY. - ISSN 2472-3452. - 5:6(2021), pp. 1631-1646. [10.1021/acsearthspacechem.1c00118]
New Insights in the Production of Simulated Moon Agglutinates: the Use of Natural Zeolite-Bearing Rocks
Barrera, G;Tiberto, P;Allia, P;
2021
Abstract
Two natural zeolite-bearing rocks (one containing clinoptilolite and the other chabazite, phillipsite, and analcime) were Fe-exchanged and thermally treated in a reducing atmosphere at 750 degrees C for 2 h. Two nanocomposites, formed by the dispersion of Fe nanoparticles in a ceramic matrix, were obtained. The prepared lunar dust simulants also contain Na+, K+, Ca2+, and Mg2+ and other mineral phases originally present in the starting materials. The samples were fully characterized by different techniques such as atomic absorption spectrometry, X-ray powder diffraction, followed by Rietveld analysis, transmission electron microscopy, N-2 adsorption/desorption analysis at 77 K, measurements of grain size distribution, magnetic property measurements, broad-band dielectric spectroscopy, and DC conductivity measurements. The results of this characterization showed that the obtained metal-ceramic nanocomposites exhibit a chemical and mineralogical composition and electrical and magnetic properties similar to real moon dust and, thus, appear valid moon dust simulants.File | Dimensione | Formato | |
---|---|---|---|
Editorial_version 2.pdf
non disponibili
Tipologia:
final published article (publisher’s version)
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
sp-2021-00118t.R1_Proof_hi.pdf
Open Access dal 08/06/2022
Tipologia:
accepted manuscript (author’s post-print)
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
4.53 MB
Formato
Adobe PDF
|
4.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.