The resazurin assay, also known as the Alamar Blue assay, stands as a cornerstone technique in cell biology, microbiology, and drug development. It assesses the viability of cells through the conversion of resazurin into highly fluorescent resorufin. The resulting fluorescence intensity provides a reliable estimate of viable cell numbers. Cytotoxicity assays, such as the resazurin-based method, play a crucial role in the screening of potential drug candidates and in the assessment of pharmaceutical and chemical toxicity. In recent years, inconsistencies have arisen in pharmacogenomic studies, often due to poorly optimized laboratory protocols. These inconsistencies hinder progress in understanding how substances affect cell health, leading to unreliable findings. Thus, the need for standardized and rigorously optimized protocols is evident to ensure consistent and accurate results in cytotoxicity studies. This manuscript describes a standardized procedure for optimizing resazurin-based viability assays to improve the reliability of cytotoxicity data. This optimization approach focuses on critical experimental parameters and data quality, aiming to achieve a level of measurement imprecision of less than 20%. In conclusion, to address the critical issues of reproducibility and reliability, protocol standardization, such as the one described in this manuscript, can greatly enhance the credibility of cytotoxicity studies, ultimately advancing drug safety assessments.

Standard Operating Procedure to Optimize Resazurin-Based Viability Assays / Petiti, Jessica; Revel, Laura; Divieto, Carla. - In: BIOSENSORS. - ISSN 2079-6374. - 14:4(2024). [10.3390/bios14040156]

Standard Operating Procedure to Optimize Resazurin-Based Viability Assays

Petiti, Jessica;Revel, Laura;Divieto, Carla
2024

Abstract

The resazurin assay, also known as the Alamar Blue assay, stands as a cornerstone technique in cell biology, microbiology, and drug development. It assesses the viability of cells through the conversion of resazurin into highly fluorescent resorufin. The resulting fluorescence intensity provides a reliable estimate of viable cell numbers. Cytotoxicity assays, such as the resazurin-based method, play a crucial role in the screening of potential drug candidates and in the assessment of pharmaceutical and chemical toxicity. In recent years, inconsistencies have arisen in pharmacogenomic studies, often due to poorly optimized laboratory protocols. These inconsistencies hinder progress in understanding how substances affect cell health, leading to unreliable findings. Thus, the need for standardized and rigorously optimized protocols is evident to ensure consistent and accurate results in cytotoxicity studies. This manuscript describes a standardized procedure for optimizing resazurin-based viability assays to improve the reliability of cytotoxicity data. This optimization approach focuses on critical experimental parameters and data quality, aiming to achieve a level of measurement imprecision of less than 20%. In conclusion, to address the critical issues of reproducibility and reliability, protocol standardization, such as the one described in this manuscript, can greatly enhance the credibility of cytotoxicity studies, ultimately advancing drug safety assessments.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11696/86179
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact