Recent demonstrations of optically active telecom emitters show that silicon is a compelling candidate for solid-state quantum photonic platforms. In particular, the fabrication of a defect known as the G center has been shown in carbon-rich silicon upon conventional thermal annealing. However, the high-yield controlled fabrication of these emitters at the wafer scale still requires the identification of a suitable thermodynamic pathway enabling its activation following ion implantation. Here we demonstrate the activation of G centers in high-purity silicon substrates upon nanosecond pulsed laser annealing. The proposed method enables non-invasive, localized activation of G centers by the supply of short non-stationary pulses, thus overcoming the limitations of conventional rapid thermal annealing related to the structural metastability of the emitters. A finite-element analysis highlights the strong non-stationarity of the technique, offering radically different defect-engineering capabilities with respect to conventional longer thermal treatments, paving the way to the direct and controlled fabrication of emitters embedded in integrated photonic circuits and waveguides.

Activation of telecom emitters in silicon upon ion implantation and ns pulsed laser annealing / Andrini, Greta; Zanelli, Gabriele; Ditalia Tchernij, Sviatoslav; Corte, Emilio; Nieto Hernández, Elena; Verna, Alessio; Cocuzza, Matteo; Bernardi, Ettore; Virzì, Salvatore; Traina, Paolo; Degiovanni, Ivo P.; Genovese, Marco; Olivero, Paolo; Forneris, Jacopo. - In: COMMUNICATIONS MATERIALS. - ISSN 2662-4443. - (2024). [10.1038/s43246-024-00486-4]

Activation of telecom emitters in silicon upon ion implantation and ns pulsed laser annealing

Greta Andrini;Gabriele Zanelli;Emilio Corte;Alessio Verna;Matteo Cocuzza;Ettore Bernardi;Paolo Traina;Ivo P. Degiovanni;Marco Genovese;Paolo Olivero;Jacopo Forneris
2024

Abstract

Recent demonstrations of optically active telecom emitters show that silicon is a compelling candidate for solid-state quantum photonic platforms. In particular, the fabrication of a defect known as the G center has been shown in carbon-rich silicon upon conventional thermal annealing. However, the high-yield controlled fabrication of these emitters at the wafer scale still requires the identification of a suitable thermodynamic pathway enabling its activation following ion implantation. Here we demonstrate the activation of G centers in high-purity silicon substrates upon nanosecond pulsed laser annealing. The proposed method enables non-invasive, localized activation of G centers by the supply of short non-stationary pulses, thus overcoming the limitations of conventional rapid thermal annealing related to the structural metastability of the emitters. A finite-element analysis highlights the strong non-stationarity of the technique, offering radically different defect-engineering capabilities with respect to conventional longer thermal treatments, paving the way to the direct and controlled fabrication of emitters embedded in integrated photonic circuits and waveguides.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11696/83262
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact