Coatings for passive radiative cooling applications must be highly reflected in the solar spectrum, and thus can hardly support any coloration without losing their functionality. In this work, a colorful daytime radiative cooling surface based on structural coloration is reported. A designed radiative cooler with a bioinspired array of truncated SiO2 microcones is manufactured via a self-assembly method and reactive ion etching. Complemented with a silver reflector, the radiative cooler exhibits broadband iridescent coloration due to the scattering induced by the truncated microcone array while maintaining an average reflectance of 95% in the solar spectrum and a high thermal emissivity (ε) of 0.95, owing to the reduced impedance mismatch provided by the patterned surface at infrared wavelengths, reaching an estimated cooling power of ≈143 W m-2 at an ambient temperature of 25 °C and a measured average temperature drop of 7.1 °C under direct sunlight. This strong cooling performance is attributed to its bioinspired surface pattern, which promotes both the aesthetics and cooling capacity of the daytime radiative cooler.
Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range / Ding, Zhenmin; Pattelli, Lorenzo; Xu, Hongbo; Sun, Wenhai; Li, Xin; Pan, Lei; Zhao, Jiupeng; Wang, Chengyu; Zhang, Xiang; Song, Ying; Qiu, Jun; Li, Yao; Yang, Ronggui. - In: SMALL. - ISSN 1613-6810. - (2022), pp. e2202400-1-e2202400-9. [10.1002/smll.202202400]
Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range
Pattelli, Lorenzo;
2022
Abstract
Coatings for passive radiative cooling applications must be highly reflected in the solar spectrum, and thus can hardly support any coloration without losing their functionality. In this work, a colorful daytime radiative cooling surface based on structural coloration is reported. A designed radiative cooler with a bioinspired array of truncated SiO2 microcones is manufactured via a self-assembly method and reactive ion etching. Complemented with a silver reflector, the radiative cooler exhibits broadband iridescent coloration due to the scattering induced by the truncated microcone array while maintaining an average reflectance of 95% in the solar spectrum and a high thermal emissivity (ε) of 0.95, owing to the reduced impedance mismatch provided by the patterned surface at infrared wavelengths, reaching an estimated cooling power of ≈143 W m-2 at an ambient temperature of 25 °C and a measured average temperature drop of 7.1 °C under direct sunlight. This strong cooling performance is attributed to its bioinspired surface pattern, which promotes both the aesthetics and cooling capacity of the daytime radiative cooler.File | Dimensione | Formato | |
---|---|---|---|
smll202202400_accepted_version.pdf
accesso aperto
Descrizione: submitted manuscript
Tipologia:
submitted version (author’s pre-print)
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
1.98 MB
Formato
Adobe PDF
|
1.98 MB | Adobe PDF | Visualizza/Apri |
Small - 2022 - Ding - Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range.pdf
non disponibili
Tipologia:
final published article (publisher’s version)
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.78 MB
Formato
Adobe PDF
|
1.78 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.