Exploiting technologies derived from the optical clocks community, the authors demonstrate a setup for twin-field QKD which extends the coherence times by three orders of magnitude, overcoming the main challenge towards real-world implementation.Quantum mechanics allows distribution of intrinsically secure encryption keys by optical means. Twin-field quantum key distribution is one of the most promising techniques for its implementation on long-distance fiber networks, but requires stabilizing the optical length of the communication channels between parties. In proof-of-principle experiments based on spooled fibers, this was achieved by interleaving the quantum communication with periodical stabilization frames. In this approach, longer duty cycles for the key streaming come at the cost of a looser control of channel length, and a successful key-transfer using this technique in real world remains a significant challenge. Using interferometry techniques derived from frequency metrology, we develop a solution for the simultaneous key streaming and channel length control, and demonstrate it on a 206 km field-deployed fiber with 65 dB loss. Our technique reduces the quantum-bit-error-rate contributed by channel length variations to <1%, representing an effective solution for real-world quantum communications.
Coherent phase transfer for real-world twin-field quantum key distribution / Clivati, Cecilia; Meda, Alice; Donadello, Simone; Virzi', Salvatore; Genovese, Marco; Levi, Filippo; Mura, Alberto; Pittaluga, Mirko; Yuan, Zhiliang; Shields, Andrew J.; Lucamarini, Marco; Degiovanni, IVO PIETRO; Calonico, Davide. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 13:1(2022), p. 157. [10.1038/s41467-021-27808-1]
Coherent phase transfer for real-world twin-field quantum key distribution
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Cecilia Clivati
;Alice Meda;Simone Donadello;Salvatore Virzi';Marco Genovese;Filippo Levi;Alberto Mura;Ivo Pietro Degiovanni;Davide Calonico
	
		
		
	
			2022
Abstract
Exploiting technologies derived from the optical clocks community, the authors demonstrate a setup for twin-field QKD which extends the coherence times by three orders of magnitude, overcoming the main challenge towards real-world implementation.Quantum mechanics allows distribution of intrinsically secure encryption keys by optical means. Twin-field quantum key distribution is one of the most promising techniques for its implementation on long-distance fiber networks, but requires stabilizing the optical length of the communication channels between parties. In proof-of-principle experiments based on spooled fibers, this was achieved by interleaving the quantum communication with periodical stabilization frames. In this approach, longer duty cycles for the key streaming come at the cost of a looser control of channel length, and a successful key-transfer using this technique in real world remains a significant challenge. Using interferometry techniques derived from frequency metrology, we develop a solution for the simultaneous key streaming and channel length control, and demonstrate it on a 206 km field-deployed fiber with 65 dB loss. Our technique reduces the quantum-bit-error-rate contributed by channel length variations to <1%, representing an effective solution for real-world quantum communications.| File | Dimensione | Formato | |
|---|---|---|---|
| Clivati_NatComm22.pdf accesso aperto 
											Tipologia:
											final published article (publisher’s version)
										 
											Licenza:
											
											
												Creative Commons
												
												
													
													
													
												
												
											
										 
										Dimensione
										1.62 MB
									 
										Formato
										Adobe PDF
									 | 1.62 MB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


