CELES is a freely available MATLAB toolbox to simulate light scattering by many spherical particles. Aiming at high computational performance, CELES leverages block-diagonal preconditioning, a lookup-table approach to evaluate costly functions and massively parallel execution on NVIDIA graphics processing units using the CUDA computing platform. The combination of these techniques allows to efficiently address large electrodynamic problems (> 10(4) scatterers) on inexpensive consumer hardware. In this paper, we validate near- and far-field distributions against the well-established multi-sphere T-matrix (MSTM) code and discuss the convergence behavior for ensembles of different sizes, including an exemplary system comprising 10(5) particles. (C) 2017 Elsevier Ltd. All rights reserved.
CELES: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres / Egel, A; Pattelli, L; Mazzamuto, G; Wiersma, Ds; Lemmer, U. - In: JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER. - ISSN 0022-4073. - 199:(2017), pp. 103-110. [10.1016/j.jqsrt.2017.05.010]
CELES: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres
Pattelli, L;Wiersma, DS;
2017
Abstract
CELES is a freely available MATLAB toolbox to simulate light scattering by many spherical particles. Aiming at high computational performance, CELES leverages block-diagonal preconditioning, a lookup-table approach to evaluate costly functions and massively parallel execution on NVIDIA graphics processing units using the CUDA computing platform. The combination of these techniques allows to efficiently address large electrodynamic problems (> 10(4) scatterers) on inexpensive consumer hardware. In this paper, we validate near- and far-field distributions against the well-established multi-sphere T-matrix (MSTM) code and discuss the convergence behavior for ensembles of different sizes, including an exemplary system comprising 10(5) particles. (C) 2017 Elsevier Ltd. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0022407317301772-main.pdf
non disponibili
Tipologia:
final published article (publisher’s version)
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.05 MB
Formato
Adobe PDF
|
2.05 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1706.02145.pdf
accesso aperto
Tipologia:
accepted manuscript (author’s post-print)
Licenza:
Creative Commons
Dimensione
8.7 MB
Formato
Adobe PDF
|
8.7 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.