A rapid Surface Enhanced Raman Spectroscopy (SERS) method to detect SO2 in wine is presented, exploiting the preferential binding of silver nanoparticles (AgNPs) with sulfur-containing species. This interaction promotes the agglomeration of the AgNPs and inducing the formation of SERS "hot spots" responsible for SO2 signals enhancement. For increasing SO2 concentrations from 0 to100 mg/l in wine simulant, SERS intensity showed an increasing trend, following a Langmuir absorption function (R-2 = 0.94). Due to the wine matrix variability, a standard additions method was then employed for quantitative analysis in red and white wines. This method does not require the SO2 separation but only a matrix pre-cleaning by solid phase extraction. The limit of detection (LOD) was defined for each wine tested, ranging from 0.6 mg/l to 9.6 mg/l. The results obtained were validated by comparison with the International Organization of Vine and Wine method (OIV-MA-AS323-04A).
Direct quantification of sulfur dioxide in wine by Surface Enhanced Raman Spectroscopy / Mandrile, Luisa; Cagnasso, Iris; Berta, Ludovico; Giovannozzi, Andrea M; Petrozziello, Maurizio; Pellegrino, Francesco; Asproudi, Andriani; Durbiano, Francesca; Rossi, Andrea M. - In: FOOD CHEMISTRY. - ISSN 0308-8146. - 326:(2020), p. 127009. [10.1016/j.foodchem.2020.127009]
Direct quantification of sulfur dioxide in wine by Surface Enhanced Raman Spectroscopy
Mandrile, Luisa;Cagnasso, Iris;Giovannozzi, Andrea M;Asproudi, Andriani;Durbiano, Francesca;Rossi, Andrea M
2020
Abstract
A rapid Surface Enhanced Raman Spectroscopy (SERS) method to detect SO2 in wine is presented, exploiting the preferential binding of silver nanoparticles (AgNPs) with sulfur-containing species. This interaction promotes the agglomeration of the AgNPs and inducing the formation of SERS "hot spots" responsible for SO2 signals enhancement. For increasing SO2 concentrations from 0 to100 mg/l in wine simulant, SERS intensity showed an increasing trend, following a Langmuir absorption function (R-2 = 0.94). Due to the wine matrix variability, a standard additions method was then employed for quantitative analysis in red and white wines. This method does not require the SO2 separation but only a matrix pre-cleaning by solid phase extraction. The limit of detection (LOD) was defined for each wine tested, ranging from 0.6 mg/l to 9.6 mg/l. The results obtained were validated by comparison with the International Organization of Vine and Wine method (OIV-MA-AS323-04A).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.