Josephson junctions, in appropriate configurations, can be excellent candidates for detection of single photons in the microwave frequency band. Such possibility has been recently addressed in the framework of galactic axion detection. Here are reported recent developments in the modelling and simulation of dynamic behaviour of a Josephson junction single microwave photon detector. For a Josephson junction to be enough sensitive, small critical currents and operating temperatures of the order of ten of mK are necessary. Thermal and quantum tunnelling out of the zero-voltage state can also mask the detection process. Axion detection would require dark count rates in the order of 0.001 Hz. It is, therefore, is of paramount importance to identify proper device fabrication parameters and junction operation point.

Development of a Josephson junction based single photon microwave detector for axion detection experiments / Alesini, D; Babusci, D; Barone, C; Buonomo, B; Beretta, M M; Bianchini, L; Castellano, G; Chiarello, F; Di Gioacchino, D; Falferi, P; Felici, G; Filatrella, G; Foggetta, L G; Gallo, A; Gatti, C; Giazotto, F; Lamanna, G; Ligabue, F; Ligato, N; Ligi, C; Maccarrone, G; Margesin, B; Mattioli, F; Monticone, E; Oberto, L; Pagano, S; Paolucci, F; Rajteri, M; Rettaroli, A; Rolandi, L; Spagnolo, P; Toncelli, A; Torrioli, G. - In: JOURNAL OF PHYSICS. CONFERENCE SERIES. - ISSN 1742-6588. - 1559:(2020), p. 012020. [10.1088/1742-6596/1559/1/012020]

Development of a Josephson junction based single photon microwave detector for axion detection experiments

Monticone, E;Oberto, L;Rajteri, M;
2020

Abstract

Josephson junctions, in appropriate configurations, can be excellent candidates for detection of single photons in the microwave frequency band. Such possibility has been recently addressed in the framework of galactic axion detection. Here are reported recent developments in the modelling and simulation of dynamic behaviour of a Josephson junction single microwave photon detector. For a Josephson junction to be enough sensitive, small critical currents and operating temperatures of the order of ten of mK are necessary. Thermal and quantum tunnelling out of the zero-voltage state can also mask the detection process. Axion detection would require dark count rates in the order of 0.001 Hz. It is, therefore, is of paramount importance to identify proper device fabrication parameters and junction operation point.
File in questo prodotto:
File Dimensione Formato  
Alesini_2020_J._Phys.__Conf._Ser._1559_012020.pdf

accesso aperto

Descrizione: Articolo in versione pubblicata
Tipologia: final published article (publisher’s version)
Licenza: Creative Commons
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11696/62932
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact