We present a fully detailed and highly performing implementation of the Linear Method (Toulouse and Umrigar, 2007) to optimize Jastrow–Feenberg and Backflow Correlations in many-body wave-functions, which are widely used in condensed matter physics. We show that it is possible to implement such optimization scheme performing analytical derivatives of the wave-function with respect to the variational parameters achieving the best possible complexity O ( N^3 ) in the number of particles N .
Implementation of the linear method for the optimization of Jastrow–Feenberg and backflow correlations / Motta, M.; Bertaina, G.; Galli, D. E.; Vitali, E.. - In: COMPUTER PHYSICS COMMUNICATIONS. - ISSN 0010-4655. - 190:(2015), pp. 62-71. [10.1016/j.cpc.2015.01.013]
Implementation of the linear method for the optimization of Jastrow–Feenberg and backflow correlations
Bertaina, G.;
2015
Abstract
We present a fully detailed and highly performing implementation of the Linear Method (Toulouse and Umrigar, 2007) to optimize Jastrow–Feenberg and Backflow Correlations in many-body wave-functions, which are widely used in condensed matter physics. We show that it is possible to implement such optimization scheme performing analytical derivatives of the wave-function with respect to the variational parameters achieving the best possible complexity O ( N^3 ) in the number of particles N .File | Dimensione | Formato | |
---|---|---|---|
arxiv_Motta et al_2015_Implementation of the linear method for the optimization of Jastrow–Feenberg.pdf
accesso aperto
Tipologia:
submitted version (author’s pre-print)
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
762.19 kB
Formato
Adobe PDF
|
762.19 kB | Adobe PDF | Visualizza/Apri |
Motta et al. - 2015 - Implementation of the linear method for the optimi.pdf
solo utenti autorizzati
Tipologia:
final published article (publisher’s version)
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
633.5 kB
Formato
Adobe PDF
|
633.5 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.