We report the technical aspects of the optical-to-microwave comparison for our recent measurements of the optical frequency of the mercury single-ion frequency standard in terms of the SI second as realized by the NIST-F1 cesium fountain clock. Over the course of six years, these measurements have resulted in a determination of the mercury single-ion frequency with a fractional uncertainty of less than 7x10(-16), making it the most accurately measured optical frequency to date. In this paper, we focus on the details of the comparison techniques used in the experiment and discuss the uncertainties associated with the optical-to-microwave synthesis based on a femtosecond laser frequency comb. We also present our most recent results in the context of the previous measurements of the mercury single-ion frequency and arrive at a final determination of the mercury single-ion optical frequency: f(Hg+)= 1064721 609 899 145.30(69) Hz.

Optical-to-microwave frequency comparison with fractional uncertainty of 10(-15) / J., Stalnaker; S. A., Diddams; T., Fortier; K., Kim; L., Hollberg; J. C., Bergquist; W. M., Itano; M. J., Delaney; Lorini, Luca; W. H., Oskay; T. P., Heavner; S. R., Jefferts; Levi, Filippo; T. E., Parker; AND J., Shirley. - In: APPLIED PHYSICS. B, LASERS AND OPTICS. - ISSN 0946-2171. - 89:2-3(2007), pp. 167-176. [10.1007/s00340-007-2762-z]

Optical-to-microwave frequency comparison with fractional uncertainty of 10(-15)

LORINI, LUCA;LEVI, FILIPPO;
2007

Abstract

We report the technical aspects of the optical-to-microwave comparison for our recent measurements of the optical frequency of the mercury single-ion frequency standard in terms of the SI second as realized by the NIST-F1 cesium fountain clock. Over the course of six years, these measurements have resulted in a determination of the mercury single-ion frequency with a fractional uncertainty of less than 7x10(-16), making it the most accurately measured optical frequency to date. In this paper, we focus on the details of the comparison techniques used in the experiment and discuss the uncertainties associated with the optical-to-microwave synthesis based on a femtosecond laser frequency comb. We also present our most recent results in the context of the previous measurements of the mercury single-ion frequency and arrive at a final determination of the mercury single-ion optical frequency: f(Hg+)= 1064721 609 899 145.30(69) Hz.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11696/32970
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 49
social impact