This paper deals with the problem of loss evaluation in Soft Magnetic Composites (SMCs), focusing on the classical loss component. It is known that eddy currents can flow in these granular materials at two different scales, that of the single particle (microscopic eddy currents) and that of the specimen cross-section (macroscopic eddy currents), the latter ensuing from imperfect insulation between particles. It is often argued that this macroscopic loss component can be calculated considering an equivalent homogeneous material of same bulk resistivity. This assumption has not found so far clear and general experimental validation. In this paper, we discuss energy loss experiments in two different SMC materials, obtained using different binder types, and we verify that a classical macroscopic loss component, the sole size-dependent term, can be separately identified. It is also put in evidence that, depending on the material, the measured sample resistivity and the equivalent resistivity entering the calculation of the macroscopic eddy currents may not be the same. A corrective coefficient is, therefore, introduced and experimentally identified. This coefficient appears to depend on the material type only. An efficient way to calculate the macroscopic classical loss in these materials is thus provided.
Classical eddy current losses in Soft Magnetic Composites / Appino, Carlo; O., de la Barrière; F., Fiorillo; M., Lo Bue; F., Mazaleyrat; C., Ragusa. - In: JOURNAL OF APPLIED PHYSICS. - ISSN 0021-8979. - 113:(2013), pp. 17A322.17A322-1-17A322.17A322-3. [10.1063/1.4795744]
Classical eddy current losses in Soft Magnetic Composites
APPINO, CARLO;
2013
Abstract
This paper deals with the problem of loss evaluation in Soft Magnetic Composites (SMCs), focusing on the classical loss component. It is known that eddy currents can flow in these granular materials at two different scales, that of the single particle (microscopic eddy currents) and that of the specimen cross-section (macroscopic eddy currents), the latter ensuing from imperfect insulation between particles. It is often argued that this macroscopic loss component can be calculated considering an equivalent homogeneous material of same bulk resistivity. This assumption has not found so far clear and general experimental validation. In this paper, we discuss energy loss experiments in two different SMC materials, obtained using different binder types, and we verify that a classical macroscopic loss component, the sole size-dependent term, can be separately identified. It is also put in evidence that, depending on the material, the measured sample resistivity and the equivalent resistivity entering the calculation of the macroscopic eddy currents may not be the same. A corrective coefficient is, therefore, introduced and experimentally identified. This coefficient appears to depend on the material type only. An efficient way to calculate the macroscopic classical loss in these materials is thus provided.File | Dimensione | Formato | |
---|---|---|---|
2013 50 AppBarFioLobMazRag.pdf
non disponibili
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
561.79 kB
Formato
Adobe PDF
|
561.79 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.