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Neuromorphic computing aims at the realization of intelligent systems able to process 

information similarly to our brain. Brain-inspired computing paradigms have been 

implemented in crossbar arrays of various type of memristive devices, however this approach 

does not emulate the topology and the emergent behavior of biological neuronal circuits where 

the principle of self-organization regulates both structure and functions. Here, we report on in-

materia reservoir computing in a fully-memristive architecture based on self-organized 

nanowire networks. Thanks to the functional synaptic connectivity with nonlinear dynamics 

and fading memory properties, the designless nanowire complex network acts as a network-

wide physical reservoir able to map spatio-temporal inputs into a feature space that can be 

analyzed by a memristive ReRAM readout layer. Computing capabilities, including recognition 

of spatio-temporal patterns and time series prediction, show that the emergent memristive 

behavior of nanowire networks allows in-materia implementation of brain-inspired computing 

paradigms characterized by a reduced training cost. 
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In parallel with the progress in neuroscience, a growing interest has been devoted to the development 

of electronic neuromorphic systems aimed at emulating the human brain functionality and 

effectiveness.1 To fulfil this goal, memristive devices capable of adaptation in response to electrical 

stimuli have been recently adopted as artificial synapses for hardware implementation of non-von 

Neumann computing.2–5 In this framework, memristive circuits realized with a top-down approach 

and organized into rigid grid-like crossbar arrays have been proposed for the hardware demonstration 

of artificial neural networks (ANN).6,7 A key issue of top-down topologies that emphasize the role of 

individual elements is the lack of similarity with respect to biological neural systems, where the 

principle of self-organization governs both structure and functions and the high synaptic connectivity 

in between neurons provides adaptability, fault tolerance and robustness.8 Indeed, learning, memory 

and intelligence in the human brain arise from the complexity of neuronal systems and the interplay 

between its structure and function.9,10 Inspired by the recurrent connectivity of biological neural 

networks, nanoarchitectures based on many interacting nano-parts have been proposed as alternatives 

for biologically-plausible computing hardware.11–24 By emphasizing the network architecture as a 

whole, these self-organized systems appear as the most promising platform for in-materia 

implementation of brain-inspired reservoir computing (RC) by exploiting the emergent dynamics of 

the whole system with no need for fine tuning of its constituent elements. In this unconventional 

computing framework derived from recurrent neural network models such as echo state networks 

(ESNs)25 and liquid state machines (LSMs)26, the reservoir usually consists of a massive network of 

coupled nonlinear elements that map the input signals into a feature space that is then analyzed by a 

readout function. Since training is limited at the readout, the RC system benefits from low training 

cost, high versatility and fast learning.27,28 Such outstanding features have stimulated several 

hardware implementations of RC by exploiting complex dynamics of spintronic oscillators,29 

magnetic skyrmions,30 photonic systems31,32 and top-down memristive cells.33–37 Although physical 

reservoirs based on self-organized nanonetworks have been proposed,15,16,19,22 in-materia 
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implementation of RC paradigm in fully memristive systems based on self-organized nano-objects 

that emulate the neuromorphic-type of data processing of our brain still represents a challenge. 

Here, we experimentally demonstrate in-materia RC in a fully-memristive architecture based on self-

organized memristive nanowire (NW) networks exploited as a network-type physical reservoirs with 

random connections among multiple nonlinear memristive elements to mimic the core principle of 

RC. The NW network with nonlinear dynamics and fading memory properties allows spatio-temporal 

processing of multi-terminal inputs thanks to the functional synaptic connectivity of the system with 

mutual electrochemical interactions among memristive NW junctions. The emergent dynamics of the 

physical reservoir state, represented by the conductivity map of the NW network, can project a spatio-

temporal input pattern in a feature space that can be analyzed by a memristive readout based on a 

resistive switching memory (ReRAM) devices. We show that such versatile bio-inspired and low 

training cost architecture is able to perform recognition of spatio-temporal patterns and to predict 

chaotic time series. Similar to the human brain, the proposed fully-memristive architecture is capable 

of processing the temporal and spatial nature of the input signal, paving the way for the realization of 

intelligent systems based on the combination of different neuromorphic hardware technologies. 
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A conceptual schematization of the RC paradigm is reported in Figure 1a. Here, the role of the 

reservoir is to nonlinearly map an input u(t) into a feature space represented by the reservoir internal 

state x(t) such that the input features can be recognized by a simple classification algorithm in the 

readout, where output weights are the only ones to be trained by comparing the output y(t) with the 

desired output yd(t).27,28 The hardware implementation of the RC computing paradigm is schematized 

in Figure 1b, where the memristive NW network dynamics are exploited for the realization of a 

physical reservoir able to process time-dependent inputs and reservoir outputs are then analyzed by a 

memristive neural network readout. The physical reservoir consisting of a highly-interconnected and 

designless memristive NW network (Figure 1c) was realized with a low-cost bottom-up approach by 

drop-casting Ag NWs in suspension on a insulating substrate (Supplementary Figure S1 and 

Methods). The emergent NW network dynamics upon electrical stimulation arises from the mutual 

interaction of a multitude of memristive NW cross-point junctions. Indeed, an electrochemical 

potential difference across intersecting NWs induces anodic dissolution of Ag to form Ag+ ions that 

migrate in the polyvinylpyrrolidone (PVP) insulating NW shell layer to form a conductive bridge that 

regulates the junction conductivity (Figure 1d).12 The memristive neural network readout is 

implemented in hardware by mapping synaptic weights associated with each output neurons in the 

analogue conductance levels of an array of TaOx ReRAM cross-point devices (Figure 1e, 

Supplementary Figure S2), where resistive switching rely on the formation/rupture of a sub-

stoichiometric conductive filament (Figure 1f, Supplementary Note 1, Supplementary Figures S3).  
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Figure 1. Physical RC based on memristive NW networks. a. Schematic representation of the RC 
paradigm where the reservoir maps the input into a higher dimensional space that is then analyzed by 
a readout function. The readout weights (Wout) are the only ones to be trained by comparing the output 
y(t) with the desired output yd(t). b. Schematic representation of the implementation of RC in a fully-
memristive nanoarchitecture where an input encoded in pulse streams is processed by the NW 
network physical reservoir. Then, the physical reservoir state is analyzed by the memristive readout 
neural network implemented in hardware with ReRAM devices. c. Representative SEM image of a 
highly interconnected memristive NW network reservoir (scale bar, 2 µm). d. Schematic 
representation of the resistive switching mechanism occurring at the intersection in between 
nanowires, responsible for the emergent memristive behavior of the NW network. In each NW 
junction of the network, the conductivity can be modulated by the formation/rupture of a metallic Ag 
conductive path across the NW shell layer under the action of the applied electric field. e. SEM image 
of a TaOx ReRAM cell at the cross-point intersection between the top electrode and the bottom 
electrode (scale bar, 2 µm). f. Schematic representation of the working principle of the TaOx ReRAM 
cell based on the formation/rupture of a sub stoichiometric conductive filament rich of oxygen 
vacancies. Yellow speres represent the metal oxide in a reduced valence state while red speres 
represent oxygen vacancies. 
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The formation and subsequent spontaneous dissolution of the conductive bridge at NW cross-point 

junctions upon electrical stimulation of any two regions of the memristive NW network is responsible 

for emergent non-linear dynamics and fading memory properties (i.e. short-term memory) of the 

physical reservoir. Indeed, as can be observed in Figure 2a, stimulation of the network in between 

two terminals upon constant voltage bias stimulation leads to the progressive potentiation 

(facilitation) of the effective network conductance (Figure 2a). After stimulation, the network 

spontaneously relaxes back to the ground state, as a consequence of the volatile behavior of 

memristive junctions (Supplementary Note 2).12 These non-linear network dynamics with fading 

memory properties can be modelled by mapping the NW network into a weighted grid graph 

(Supplementary Figure S4, Supplementary Note 3) where the transient behavior of each memristive 

edge is regulated by short-term memory effects described by a potentiation-depression rate balance 

equation (Supplementary Note 4). The here proposed model allows: i) to interpolate the evolution 

over time of the network effective conductance (Figure 2a) and ii) to visualize the resulting spatio-

temporal evolution of the conductive pathway when electrically stimulated in different spatial 

locations (Figure 2b and Supplementary Movie 1). As can be observed, simulations evidence the 

growth of a conductive pathway connecting the two stimulated areas of the network, followed by the 

gradual relaxation to the conductance ground state during relaxation (Figure 2b), in accordance with 

experimental observations of the formation of a localized conductive pathway connecting stimulated 

NW network areas.38,39 Importantly, experimental data show that the change of the effective 

conductance (Δw) after pulse stimulation and the following relaxation behavior can be controlled by 

properly adjusting the pulse width and amplitude. Figure 2c reports the change in the effective 

conductance at the end of a single pulse stimulation with pulses of different lengths and amplitudes 

and after 500 µs from the end of the pulse. Pulses with higher amplitudes and longer duration are 

responsible for stronger potentiation of the effective conductance of the network and slower 

relaxation dynamics as evidenced by the less pronounced relaxation after 500 µs (details in 

Supplementary Note 5, Supplementary Figure S5 and S6).  
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Notably, the NW network can be successfully stimulated by means of low voltage pulse amplitude 

(< 5 V) and down to the µs timescale. Moreover, the effective conductance gradually increases when 

a pulse closely follows a prior pulse emulating paired-pulse facilitation (PPF), a process that regulates 

temporal processing of information in biological neural circuits.3,40 As a consequence, multiple pulses 

applied within short time intervals lead to a frequency-dependent gradual increase of conductivity 

with accumulation effect due to the competition between conductive path formation and spontaneous 

relaxation (Figure 2d, Supplementary Figure S7). Since the influence of distant-past inputs 

asymptotically fades out over time due to short-term memory effect, the NW network reservoir state 

depends mostly on recent-past inputs (echo state property)27. 
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Figure 2. Non-linear dynamics and fading memory properties of the memristive NW network 
reservoir. a. Experimental and simulated potentiation and subsequent spontaneous relaxation of the 
effective conductance upon voltage pulse stimulation (2V, 100 s) in two-terminal configuration, as 
schematized in the inset. b. Spatio-temporal evolution of the conductive path formation and following 
dissolution according to the grid graph network model where short-term conductance dynamics of 
each edge is modelled through a potentiation-depression rate balance equation. Red intensity of edges 
is proportional to the edge conductance, blue intensity of each node is proportional to the node voltage 
while arrows indicate the current direction and black nodes represent input pads. The left electrode 
was biased while the right one was kept as ground. c. Change in the conductance weight of the 
network in two-terminal configuration at the end of a single pulse stimulus and after 500 µs, for 
stimulation pulse length (tp) of 10 µs, 100 µs and 1 ms with different pulse amplitudes (Vp). d. Gradual 
increase of the network effective conductance under stimulation with a train of pulses (1 ms, 5V) 
showing paired-pulse facilitation (PPF). Higher pulse frequencies resulted in a more pronounced 
increase of the network effective conductance.     
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Non-linear dynamics, fading memory and temporal processing of input signals together with the 

possibility of processing multiple spatial inputs with multiterminal configuration provide the basis 

for the implementation as physical reservoir. RC was demonstrated in a fully memristive architecture 

based on a NW physical reservoir by solving a pattern recognition task. For this purpose, 4 × 4 

patterns with white (1) or black (0) pixels were converted into a spatio-temporal input by dividing 

the pattern in 4 spatial input (pattern rows) each containing a 4-timeframe input stream (pattern 

columns), as schematized in Figure 3a. Each timeframe (width of 11 ms) is composed of a 10 ms 

pulse of 5 V if corresponding to a white pixel or 0 V (no pulse) if corresponding to a black pixel, 

followed by a 1 ms biased at 0 V. Each input stream was applied to different pads of the multiterminal 

NW network reservoir. The reservoir state is represented by the collective state of the 3 independent 

output voltages (Vout) measured on terminal B of resistances R in series for each input channel under 

small DC bias stimulation (100 mV) of a selected channel (Figure 3b). During classification, the 

output signals of the final reservoir state (after the termination of the pulse stream) are fed into the 3 

× 4 neural network of ReRAM for readout (Methods). The readout output consists of the input 

voltages multiplied by the conductance weights stored in the cross-point array of ReRAMs obtained 

by matrix-vector multiplication in the analogue domain with physical multiplication by Ohm’s law 

and physical summation by Kirchhoff’s law (Supplementary Figure S8 and S9).41 The output neuron 

with the maximum dot product corresponds to the predicted pattern. Note that the advantage of this 

configuration is that the same network terminals are used both to stimulate and probe the internal 

reservoir state, limiting the number of required electrodes if compared to a reservoir based on crossbar 

architecture (Supplementary Figure S10). Also, the NW-based reservoir allows high scalability, high 

synapse density and minimization of wiring costs (Supplementary Note 6, Supplementary Figure 

S11). Experimental and modeling studies of the time evolution of the reservoir output voltages are 

detailed in Supplementary Figure S12 and S13, Supplementary Table 1 and Supplementary Movie 2. 

Since the multiterminal NW network reservoir behavior is regulated by spatio-temporal dynamics 

with fading memory properties, the reservoir state depends on both spatial location and temporal 
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sequence of input stimuli (Supplementary Figure S14 and S15). This results in temporal information 

processing capability of multiple spatial inputs of the NW network reservoir. 

The experimental evolution of the reservoir outputs during stimulation with the pattern reported in 

Figure 3a is reported in Figure 3c (working principles are detailed in Supplementary Note 6 and 

Supplementary Figure S16, experimental and simulated reservoir outputs and conductance maps are 

detailed in Supplementary Figure S17 and S18).  Figure 3d shows simulation results for the same 

input signal, indicating a good agreement with the experimental results. Depending on the stimulation 

pattern, the effect of each stimulation timeframe is to induce a peculiar modification of the local 

conductivity map that depends also on short-term changes induced by the stimulation during previous 

timeframes (accumulation effect), as can be observed by direct visualization of spatio-temporal 

dynamics of the internal reservoir state (Figure 3e, Supplementary Movie S3). 
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Figure 3. Fully-memristive RC implementation and spatio-temporal evolution of the NW network 
reservoir state. a. Example of a 4 × 4 pattern with white (1) and black (0) pixel converted into a 
spatio-temporal input; the spatio-temporal input is fed to the network reservoir in the form of voltage 
pulses applied to different locations of the network (spatial domain) at different times (temporal 
domain). b. Conceptual schematic representation of the experimental implementation of RC in a fully 
memristive nanoarchitecture where each temporal pattern is applied to different spatial locations of 
the network. The reservoir state after stimulation is represented by the output voltage drop (Vout) on 
a series resistance (R = 82 Ω) that was monitored over time by applying a small DC voltage bias 
(Vread = 100 mV) to an arbitrary pad (pad 4) in addition to the pulse stream. The reservoir output is 
then passed to the input of a one-layer feedforward neural network implemented with a cross-point 
circuit of ReRAM elements (blue cylinders) that are located at the cross-point positions between rows 
(grey bars) and columns (yellow bars). This ReRAM circuit performs matrix-vector multiplication of 
the input to obtain the desired output. c. Experimental and d. simulated evolution of output voltages 
after each stimulation timeframe of pattern reported in panel a. The timeframe 0 represents output 
voltages of the reservoir state before stimulation (ground state). In panels c, experimental data 
represent the mean and standard deviation of output voltages obtained by stimulating the NW network 
30 times with the same pattern. e. Direct visualization by modeling of the evolution of the reservoir 
state represented by the network conductivity map after each stimulation timeframe. Red intensity of 
edges is proportional to the edge conductance, blue intensity of each node is proportional to the node 
voltage while arrows indicate the current direction and black nodes represent input pads. 
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Thanks to the spatio-temporal information processing capabilities, the NW network was employed 

for the classification of patterns reported in Figure 4a. Note that after each pattern stimulation, the 

reservoir spontaneously relaxes back to the ground state due to short-term memory (Supplementary 

Figure S19). The corresponding experimental and simulated reservoir outputs after stimulation with 

each pattern are reported in Figure 4e-h and i-l, respectively. The reproducibility of the network 

response is detailed in Supplementary Figure S20. The results show that the reservoir output voltages 

and corresponding conductance maps reported in Figure 4m-p are significantly different depending 

on the specific stimulation pattern, highlighting the reservoir ability to separate these inputs 

(separability property). Details on the time evolution of reservoir output voltages and conductance 

maps are reported in Supplementary Figure S21 and S22, respectively. The experimental reservoir 

states were used as input of the memristive readout function for training and classification, where the 

accuracy of the fully memristive architecture was evaluated by considering 100 patterns for training 

and 20 for testing. The experimental synaptic weights mapped on the TaOx ReRAM cross-point array 

after offline training are reported in Figure 4q. Figure 4r shows the correlation between the 

programmed ReRAM conductance weights and the target weights, supporting the accuracy of the 

readout network. This is further supported by Figure 4s that shows the correlation between the 

measured readout current and the simulated one. The experimental inference result is reported in 

Figure 4t. The results indicate that the fully memristive architecture correctly classifies the vast 

majority of input patterns, with an accuracy of 90.0 % compared with a software readout baseline of 

95.0 % (additional data in Supplementary Figure S23).  



 14 

Figure 4. Pattern classification with a fully-memristive nanoarchitecture based on self-organized 
memristive NW networks. a-d. Patterns considered in this test and corresponding e-h. experimentally 
measured and i-l. simulated reservoir outputs after stimulation. Histograms of experimental data 
represent the mean and standard deviation of output voltages obtained by stimulating the NW network 
30 times with each pattern. m-p Conductance maps representing the final reservoir state after 
stimulation with patterns reported in panel a-d., respectively. q. Experimental synaptic weights 
mapped on a TaOx ReRAM cross-point circuit after offline training. r. Comparison of experimental 
programmed weights of the readout with target weights (negative weights in red, positives in blue), 
showing that analog weights are correctly programmed in the TaOx cross-point circuit. s. Comparison 
between experimentally measured currents and simulated currents of the readout after weight 
programming. t. Confusion matrix of the fully-memristive experimental classification of input 
patterns. The color bar represents the occurrence of a given predicted output.   
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The NW network reservoir represents a generic computational platform for multiple tasks, since a 

readout associated to a new task can be learned independently from the readout that was learned in 

previous tasks. The scalability and versatility of our in-materia RC approach was assessed by 

simulating an extended NW network for the classification of the complete MNIST handwritten digit 

dataset and for time series prediction (Figure 5a). Since training occurs only at the readout, the same 

NW network-based reservoir can be exploited for solving multiple tasks, each associated to different 

parallel readouts (Figure 5b). Also, the same reservoir outputs can be analyzed by multiple readouts, 

in principle allowing the network with multitasking capability.  

For the MNIST task, each handwritten digit with 28 × 28 pixels was first binarized, then chopped 

into 7 columns and merged in a spatio-temporal 196 × 4 pattern (Supplementary Note 7). Then, the 

obtained pattern was transformed in 196 pulse streams with 4 timeframes that were applied to 14 × 

14 NW network pads. Finally, reservoir outputs were exploited as readout input for digit classification 

(Methods, Supplementary Figure S24). The spatio-temporal evolution of the reservoir state upon 

stimulation with digit “6” of Figure 5a is reported in Figure 5c, while final reservoir output voltages 

after stimulation are reported in the histogram of Figure 5d (details in Supplementary Movie 4, 

additional data in Supplementary Figure S25 and S26). After training the readout with the 60000 

handwritten digits from the MNIST training dataset (Supplementary Figure S27), the system can 

correctly classify ≈ 90.4 % of the 10000 MNIST digits from the test set. Note that the memristive 

NW-based reservoir outperforms the static network (Supplementary Note 8, Supplementary Figure 

S28), although its accuracy decreases if the final reservoir state loses information from the initial 

stimulation timeframes (Supplementary Figure S29). The confusion matrix is reported in Figure 5e 

and detailed in Supplementary Table 2. Misclassifications were mainly related to digits that are hardly 

distinguishable due to low pixel resolution and to the partial loss of information during the 

binarization of grayscale images (Supplementary Figure S30). Since the spatial information is 

encoded in the spatio-temporal domain and the physical reservoir does not require training, the main 

advantage of this nanoarchitecture is the reduction of network size and training cost (Supplementary 
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Note 9). Note that the accuracy is notably higher than previously presented one-shot memristor-based 

RC systems,36 while accuracy can be further increased with multiple reads during the reservoir 

computation34, at the cost of a quadratic increase in computational complexity (Supplementary Note 

10).  

The RC architecture is also suitable for the prediction of purely time-dependent tasks such as Mackey-

Glass time series, a chaotic system that has a deterministic form, but is considered difficult to predict 

with conventional machine-learning algorithms.42,43 The Mackey-Glass task has been implemented 

by presenting an initial teacher signal generated by the Mackey-Glass equation, followed by the 

prediction by the trained system of the time-series some steps ahead. Figure 5f and g reports the 

results of autonomous time-series prediction, which was performed by considering multiple reservoir 

output nodes and the virtual node method for delayed feedback systems16,34,44 (details in Methods and 

Supplementary Figure S31). In Figure 5f, it can be observed that the target and the predicted value 

during the training process match accurately (accuracy ≈ 100%), showing that the trained readout 

weights are able to calculate the next time-step signal based on the reservoir outputs. After 

initialization, the network was used to predict the time series autonomously (Figure 5g). After time 

step 900, the readout output (i.e. the predicted signal) is fed as the new input to the reservoir state in 

a closed feedback loop. As a result, the system can autonomously and continuously produce the time 

series that was observed to well match with the expected ground truth, which is shown in the plot as 

a reference (trace plots in the phase space in Supplementary Figure S32). After few hundreds time 

steps of accurate time series prediction (accuracy of ~ 87% over 100 timesteps), deviations from the 

ground truth start to occur due to the accumulation of small errors in the autonomous prediction with 

consequent phase shift. Despite the loss of accuracy, the predicted signal still maintains the main 

features and temporal dynamics of the Mackey-Glass time series. Long-term prediction can be 

achieved by periodically updating the NW network reservoir, avoiding divergence of the system to 

the chaotic ground truth (Supplementary Figure S33). 
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Figure 5. NW network reservoir as a generic scalable computational substrate for multiple tasks. a. 
Versatility of the NW network to solve N tasks including MNIST handwritten digit classification 
(here the original image with 28 × 28 pixels is binarized, then divided into 7 columns and merged in 
a 196 × 4 pattern that is converted in 196 pulse streams with 4 timeframes) and Mackey-Glass time 
series prediction. b. Different tasks can be solved with the same NW network by associating to each 
task a readout that can be trained independently without interfering with what was learned in previous 
tasks. A NW network with a 14 × 14 grid of electrodes was considered. c. Direct visualization of the 
evolution of the reservoir state after each timeframe stimulation of digit “6” reported in panel a and 
d. corresponding reservoir output voltages. In panel c, red intensity of edges is proportional to the 
edge conductance, blue intensity of each node is proportional to the node voltage, while arrows 
indicate the current direction and black nodes represent input pads. e. Confusion matrix from 
inference results on classifying the MNIST test set of 10000 handwritten digits, after training the 
readout with the MNIST training set of 60000 handwritten digits. The color bar represents the 
occurrence of a given predicted output. f. training and g. autonomous forecasting of the Mackey-
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Glass time series with the NW network. The ground truth is represented in grey while the predicted 
output in red. 

 

Depending on the specific task, the accuracy of the system can be further improved by optimizing the 

stimulating parameters that regulates the NW network nonlinear response such as pulse amplitude, 

width, and rates. Also, the physical reservoir can be further simplified by compensating the reduction 

of physical nodes (i.e. number of electrodes) by introducing virtual nodes.44 Note also that the RC 

capabilities are not hindered by non-idealities including local variations of the NW density that lead 

to a non-homogeneous conductivity map over the NW network45 and/or by the junction-to-junction 

variability of the memristive behavior12. Indeed, these effects that lead to a different nonlinear 

response of different areas of the network can enhance the extraction of relevant features from the 

reservoir, resulting even beneficial for the computing performances.34,46 This opens the possibility of 

locally controlling the topology and memristive response of the network to optimize computing 

performances on specific tasks. Also, the number of reservoir input/outputs signals is limited only by 

the number of contacts that can be realized, which supports the possibility of designing cost-effective 

neuromorphic nanoarchitectures able to process a large number of spatio-temporal inputs. Although 

the power consumption of our NW-based physical reservoir is higher than state-of-the-art of top-

down memristive RC systems, the energy efficiency can be largely optimized by properly engineering 

the NW core-shell structure to reduce the switching/operating currents (Supplementary Note 11). 

However, it is important to remark that this network-type reservoir based on NW networks is able to 

process multiple inputs by experiencing synaptic plasticity at many spatial and temporal scales from 

µs up to hundreds of seconds depending on input stimuli, as required to reach the potential of brain-

derived computing.47 For this reason, this low-cost physical reservoir can be explored for a wide 

range of applications including speech recognition, natural language analysis, motion identification 

and processing of multiple sensorial inputs for robotics. For all these challenging computing tasks, a 

versatile implementation design of a large-scale NW-based fully memristive system is proposed in 

Supplementary Figure S34. 
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In conclusion, a fully memristive RC architecture was implemented in hardware by using a 

memristive NW network acting as a network-wide reservoir. Similar to biological organisms, 

computational properties of the network emerge as a collective property of the self-organizing and 

highly connected system, having a large number of interacting components (memristive elements). 

The recognition of spatio-temporal patterns was demonstrated by coupling the NW network with a 

memristive readout network of ReRAM devices, where data processing in both reservoir and readout 

was performed in hardware. In particular, the computing capabilities of the NW network physical 

reservoir was demonstrated by classification of the MNIST handwritten digit dataset and Mackey-

Glass time series prediction. These results pave the way for the in-materia implementation of brain-

inspired unconventional computing paradigms thanks to the exploitation of emergent memristive 

behavior in self-organizing NW networks combined with conventional top-down ReRAM devices, 

towards the realization of general-purpose intelligent systems that combines different neuromorphic 

hardware technologies aiming to general intelligence. 
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Methods 

Fabrication of memristive NW networks 

NW networks were realized by drop casting Ag NWs with diameter of 115 nm and length of 20-50 

µm in isopropyl suspension (from Sigma-Aldrich) on a SiO2 (1 µm)/ Si commercial substrate 

(Supplementary Figure S1). The structural topology of the network was characterized by means of 

scanning electron microscopy (FESEM; Zeiss Merlin). Structural and chemical characterization of 

Ag NWs, performed in our previous work12 by means of transmission electron microscopy (TEM) 

and X-ray photoelectron spectroscopy (XPS), revealed that these NWs are characterized by the 

presence of a polyvinylpyrrolidone (PVP) shell layer of ~ 1–2 nm surrounding the Ag NW core.  The 

presence of this shell layer is a direct consequence of the polyol synthesis process, where this polymer 

is used as surfactant to control the morphology of these nanostructures. Besides acting as a memristive 

shell, the PVP layer contributes also to the chemical stability of the Ag NW inner core preventing its 

direct contact with the surrounding atmosphere. Memristive NW networks with areal mass density 

(AMD) of 41 mg/m2 were realized by controlling the concentration of Ag NWs in the suspension and 

by fixing the drop volume deposited on a 12 × 12 mm2 to 20 µl in order to ensure homogeneous 

distribution of NWs all over the sample.45 Electrical contacts on the NW network were realized by 

deposition of Au pads by sputtering and shadow mask (thickness of 250 nm, approximate size of 1.2 

x 0.3 mm). 

Memristive readout fabrication 

The ReRAM cross-point array for hardware implementation of the memristive readout is fabricated 

by e-beam evaporation of a TaOx active layer (3 nm, RMS roughness < 0.3 nm) sandwiched between 

a Pt bottom electrode and a Ta/Ti top electrode, again realized by e-beam evaporation. The oxide 

layer and the top electrode are evaporated without breaking the vacuum.  The ReRAM array was 

composed of different columns of single cross-point cells (Supplementary Figure S2). 
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Electrical characterization of NW network 

Electrical measurements in two-terminal configuration reported in Figure 2 were performed by 

contacting Au pads separated by ≈ 7 mm with electrical probes in a SemiProbe probe station coupled 

with a Keithley 4200 semiconductor device analyzer equipped with pulse measuring units (PMUs). 

The conductance weight change reported in Figure 2c was evaluated as Δw = [G2 − G1]/G1, where G2 

is the effective conductance evaluated at the end of stimulation or 500 µs after stimulation while G1 

is the effective conductance before stimulation as schematized in Supplementary Figure S4. In order 

to monitor the spontaneous relaxation process of the network after stimulation, stress voltages in the 

range of 10- 50 mV were applied to minimize the influence of the bias voltage on the relaxation 

process ensuring at the same time recording of a high signal-to-noise current time trace. All 

measurements were performed in air at room temperature.  

NW network modeling 

Modeling of the spatio-temporal evolution of the memristive NW network was performed in Python 

exploiting the NetworkX package. For this purpose the NW network was modelled as a regular grid 

graph with random diagonals where the edge dynamics with short-term memory effect is described 

with a physics-based potentiation-depression rate balance equation according to the Miranda’s 

model.48 Pads were disposed on the grid graph according to the geometry of the considered 

experimental NW network sample. Details of NW network representation with a grid graph model 

are reported in Figure S3 and Supplementary Note 2, while the state equation regulating edge 

dynamics is described in Supplementary Note 3. Parameters of the model extrapolated from 

experimental data are reported in Supplementary Table 1. 

Experimental setup for multiterminal measurements and RC 

The NW network device was bonded on a custom package and connected to a printed circuit board 

(PCB). A TTI TGA1242 4-channel arbitrary waveform generator (AWG) acting as a voltage buffer 
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was used to generate input signal and connected to terminals A of 4 input resistance R = 82 Ω whose 

terminal B was directly connected to the NW network pads (refer to Figure 3b). The AWG was 

programmed such that the output impedance is fixed to 50 Ω and comparable to R. A Tektronix 

MSO58 8-channel oscilloscope was used to monitor the circuit voltages by means of high-impedance 

probes connected to the B terminals of the input resistances. For each resistance, 2 probes were 

connected for being able of monitoring the voltage developed across the NW network both during 

the set operation, which usually shows relatively large currents, and read operation, which drains 

typically a lower current. The read of the reservoir output voltages for each timeframe during pattern 

classification was performed according to Supplementary Figure S9, where the final reservoir state 

after stimulation to be passed to the readout for classification corresponds to the reservoir output 

voltages at timeframe t4. Note that for n input channels only n-1 output voltages are independent 

according to the Kirchhoff’s law. 

Readout training 

The memristive readout function for spatio-termporal pattern recognition was offline trained through 

supervised learning by minimizing the categorical cross-entropy loss function (𝐿): 

                                                            𝐿(𝑤) = −∑ 𝑦)(𝑤) ⋅ 𝑙𝑜𝑔(𝑦.))/
)01                                             (1) 

where N is the dimension of the output size, 𝑤 the model parameters, 𝑦) the desired target and 𝑦.) the 

readout model prediction. The minimization of the loss function performed in a Python environment 

has been achieved according to the Adam algorithm,49 which relies on the optimization of stochastic 

gradient-descent method by the adaptive tuning of the learning rates for the different parameters to 

train. The parameters vector is updated at each step 𝑡 according to: 

                                                                  𝑤3 = 𝑤341 − 𝜂3∇𝐿)(𝑤)                                                   (2) 

with 𝜂3 the adaptive learning rate and 𝐿) the loss function associated to a random subset of training 

dataset. For each epoch, eq. (2) is iterated over the whole train dataset subsets. Typically, the epochs 



 23 

number to obtain a good convergence of the model has been set to 2000. The readout was trained 

with linear regression for Mackey-Glass time-series prediction.  

Memristive readout classification 

The reservoir state has been classified by means of a simple one-layer neural network readout function 

implemented in hardware in a ReRAM array. The one-layer neural network readout is fully 

connected, whose neurons are activated through the softmax (𝑆8) non-linear function. The model 

prediction results to be: 

                                                                𝑦.) = 𝑆8(𝐴𝑥) + 𝑏)                                                                (3) 

where A is the neural network weights matrix and b the bias vector that were implemented in hardware 

in the TaOx ReRAM cross-point array while 𝑥) are the readout inputs. As readout inputs, the 

standardized reservoir outputs (by removing the mean value and scaling to the unit variance) were 

passed as voltage inputs to the readout function. In the readout memristive circuit, the synaptic weight 

W is mapped by a pair of conductance G+ and G- biased at positive and negative voltages, 

respectively, and the synaptic weight is described by the equivalent conductance G+ - G-.50 Synaptic 

weights were linearly mapped in the range 45 – 100 µS to ensure device stability, while the input 

readout voltage amplitude was linearly mapped in the range 0.01 – 0.31 V. The ReRAM devices in 

each column were first formed, then they were connected to the external pads of a package by wire 

bonding, and finally they were operated in a crosspoint fashion, e.g., the top electrodes of the first 

cell in each column were all short-circuited to form the first row of the ReRAM array. The crosspoint 

operation was executed by a switch matrix enabling the reconfigurable connection of all terminal. 

The weights Gij were then programmed in the crosspoint array in differential mode, i.e., a synaptic 

weight was obtained by programming a positive conductance G+ in a cell and a negative conductance 

G- in another cell, to obtain the desired weight Gij = G+ - G-. Finally, the voltage signal was applied 

at the row terminals and the column currents were collected to enable physical summation according 
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to the Kirchhoff’s law. An Agilent B1500 semiconductor parameter analyzer was used for 

programming the ReRAM devices in the desired weights via quasi-static programming pulse. A 

program and verify algorithm was used to correctly program the analog weights, by targeting a 

conductance Gtarget and applying set/reset pulses until convergence upon a given tolerance ± 5%. A 

Keithley 707 switch matrix was used to access to any device in a random fashion and connect the 

cross-point array with common rows/columns in a crossbar. A TTI TGA1252 4-channel AWG was 

used to generate analog vectors corresponding to the output of the reservoir layer, to apply to the 

cross-point array columns, while the rows were kept at ground through a low impedance input of an 

Tektronix MSO58 8-channel oscilloscope, that was used also for monitoring the currents.  

Classification of handwritten digits of the MNIST dataset 

Classification of the MNIST handwritten digit dataset was performed by modelling the NW network 

as a grid graph with 29 × 29 nodes, where the properties of memristive edges were extrapolated from 

experimental measurements (refer to Supplementary Figure S4). The stimulation was performed by 

arranging the n = 196 input electrodes in a 14 × 14 array, as schematized in Figure 5b. The input pads 

are numbered from left to right, from top to bottom. The reservoir state after stimulation is represented 

by the output voltage drop (Vout) on a series resistance (R = 82 Ω) that was monitored over time by 

applying a small DC voltage bias (Vread = 100 mV) to an arbitrary selected electrode (circled in red in 

Figure 5b), reproducing the experimental setup reported in Figure 3b with 195 (n – 1) independent 

output voltages. Training and inference were performed according to the experimental procedure 

described before with a software readout function. Details on training are reported in Supplementary 

Figure S15. 

Mackey-Glass time-series prediction 

Time-series prediction was demonstrated by considering the Mackey-Glass time series described by 

the time-delayed differential equation: 
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𝑑𝑥
𝑑𝑡 = 𝛽

𝑥(𝑡 − 𝜏)
1 + (𝑥(𝑡 − 𝜏))A − 𝛾𝑥(𝑡) 

This equation can display a wide range of chaotic behaviors, depending on the values of parameters. 

The Mackey-Glass time series was normalized and transformed to an input voltage signal (in the 

range 1 – 6 V) to be presented to the NW network reservoir system by using a chessboard scheme, as 

schematized in Supplementary Figure S26. To increase the accuracy prediction of the system, the 

reservoir dynamics was expanded i) by considering the response of multiple reservoir output nodes 

that result in qualitatively similar but quantitatively different responses to the same input (refer to 

Supplementary Figure S26), and ii) by using the virtual node method for delayed feedback systems 

44. Autonomous time-series prediction using the NW network-based system was obtained by 

considering the output of 98 reservoir outputs and 20 virtual nodes, by setting the parameters 𝛽 = 0.2, 

𝛾 = 0.9, 𝑛 = 10 and 𝜏 = 18 that correspond to chaotic dynamics (chaotic behaviors can be observed 

for 𝜏 > 16.8). Before autonomous prediction, since the chaotic time series strongly depends on the 

initial conditions, the network (initially in the pristine state) was excited during an initialization step 

by sending the true input without training. The performance accuracy of the Mackey-Glass time series 

prediction was evaluated as 1-RMSE, where RMSE represents the root mean square error. 
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