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Abstract
Objective. Numerical simulations are largely adopted to estimate dosimetric quantities, e.g. specific
absorption rate (SAR) and temperature increase, in tissues to assess the patient exposure to the
radiofrequency (RF) field generated during magnetic resonance imaging (MRI). Simulations rely
on reference anatomical human models and tabulated data of electromagnetic and thermal
properties of biological tissues. However, concerns may arise about the applicability of the
computed results to any phenotype, introducing a significant degree of freedom in the simulation
input data. In addition, simulation input data can be affected by uncertainty in relative positioning
of the anatomical model with respect to the RF coil. The objective of this work is the to estimate the
variability of SAR and temperature increase at 3 T head MRI due to different sources of variability
in input data, with the final aim to associate a global uncertainty to the dosimetric outcomes.
Approach. A stochastic approach based on arbitrary Polynomial Chaos Expansion is used to
evaluate the effects of several input variability’s (anatomy, tissue properties, body position) on
dosimetric outputs, referring to head imaging with a 3 T MRI scanner.Main results. It is found that
head anatomy is the prevailing source of variability for the considered dosimetric quantities, rather
than the variability due to tissue properties and head positioning. From knowledge of the
variability of the dosimetric quantities, an uncertainty can be attributed to the results obtained
using a generic anatomical head model when SAR and temperature increase values are compared
with safety exposure limits. Significance. This work associates a global uncertainty to SAR and
temperature increase predictions, to be considered when comparing the numerically evaluated
dosimetric quantities with reference exposure limits. The adopted methodology can be extended to
other exposure scenarios for MRI safety purposes.

1. Introduction

Magnetic resonance imaging (MRI) is a largely used clinical imaging modality. Despite being an overall safe
technique, standards exist to limit the power deposition in human tissues caused by the interactions between
the radiofrequency (RF) magnetic fields used for imaging and the human body. The metric adopted to
evaluate the risk of temperature increase in body tissues is the specific absorption rate (SAR) (IEC
60601-2-33:2022 2022). Commercially available MRI scanners allow automatic whole-body and partial-body
SAR estimations when a specific imaging protocol is selected and warn the operator if regulatory limits are
likely to be exceeded. These parameters are introduced to limit the temperature increase of tissues, which is
caused by the spatial distribution of the local SAR within the body, a quantity that is not directly measurable.

Calculation of local SAR distributions in human subjects and consequent temperature increase (∆T) of
tissues, is a widely adopted strategy to complement and support safety analyses. Simulations require properly
designed software and sophisticated digital models of the human body. For the latter, reference anatomical
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human models are commonly adopted but concerns may arise about the applicability of the computed
results to any phenotype. To manage this issue, one possible strategy is to collect data by simulating a wide
range of human model categories (e.g. males/females, neonates/child/adults/elderly) accounting for anatomy
variability. In this way, SAR and∆T variability’s can be estimated as a function of the influence factors
selected to identify the categories, to provide adequate safety margin for the patient undergoing examination.
The results that appear to be more relevant to the specific patient can be extracted from the database, also
using Artificial Intelligence based techniques. A non-exhaustive list of studies following this approach is
collected in the references. Referring to clinical 1.5 T / 3 T scanners, studies were conducted on SAR
deposition in children/neonates compared to adults. For instance, Murbach et al (2011) investigated if
children and foetuses are at higher risks than adults when the current RF regulations are applied to a 1.5 T
whole-body coil. Malik et al (2015) found that SAR induced by whole-body RF coils at 1.5 T and 3 T in
neonatal subjects is less than that experienced in an adult in all scenarios. In Liu et al (2005), a numerical
model of a female body was developed to study the effects of different body types on B1+ and SAR
distribution at 64 MHz and 128 MHz. The results showed the dependence of dosimetric quantities on body
type and therefore the need for a variety of numerical models, representative of a broad population. The SAR
deposition due to whole-body 3 T multi-transmit body coil was investigated in Neufeld et al (2011), showing
a strong dependence on anatomy and leading the authors to suggest that patient-specific analysis is necessary
to avoid injuries by such systems.

Due to the peculiar effects at high field MRI, several studies have been developed on the effect of anatomy
on SAR deposition in 7 T scanners. For example, in de Greef et al (2013), RF fields generated by an
eight-channel head transmit array for a 7 T scanner were simulated with six detailed head models, showing
that a safety factor of 1.4 applied to prediction with a generic head model was found sufficient as a practical
alternative to patient-specific models. A safety factor (from 1.8 to 2) was found necessary by Meliadò et al
(2019) to cover the intersubject variability when a safety assessment for 7 T prostate imaging with an
eight-channel transmit array is performed using only one model.

As an alternative approach to the use of digital datasets, subject-specific digital models can be
constructed to perform detailed SAR simulations. To this end, in Homann et al (2011), a novel approach is
proposed for generating personalized body models from whole-body water-fat–separated magnetic
resonance (MR) data and applied to volunteers for SAR predictions at 3 T. Subject-specific 3 T head SAR
maps, derived only from the information given by the B1+ field, were determined in Martinez et al (2023)
through electrical properties tomography (EPT) techniques. Then, suitable correction factors, calibrated to
compensate for the missing information about the induced electric field, were introduced. The feasibility of
estimating SAR in real time is shown in Gokyar et al (2021), where SAR maps are predicted fromMR images
simulated at 3 T and 7 T in 10 realistic human body models via a convolutional neural network.

Subject-specific digital models are also proposed for 7 T MRI. Jin et al (2012) propose the use of image
registration techniques, in conjunction with high resolution image and tissue libraries, to create
patient-specific voxel models to be used for subject-specific simulations. In Brink et al (2022), it is shown how
a subject-specific body model can be automatically generated from a single T1-weighted dataset by means of
deep learning techniques, providing the required inputs for accurate and personalized local SAR predictions.

Despite the promising attempts to develop a subject-specific SAR analysis, definitions of safety criteria
based on simulations which use generic anatomical datasets are still largely adopted and useful, leading to the
need for determining their reliability in terms of accuracy and applicability to a wide range of exposure
scenarios.

A large literature exists aiming at evaluating the accuracy of computations and to establish the
parameters which most affect the results. Some studies focus the attention on model refinement effects (Wolf
et al 2013, Shao et al 2015a, Fiedler et al 2018); other works address the problem of increasing the tissue
segmentation details (Carluccio et al 2021, de Buck et al 2021), or the effect of model complexity (e.g.
thermoregulation for heating prediction) (Murbach et al 2016) or the effect of RF coil type (Lucano et al
2018). Further factors could also affect the SAR prediction, such as human body positioning within the RF
coil, which demonstrated to play an important role (Murbach et al 2014).

It must also be remarked that SAR and∆T simulations rely on literature data of tissue physical
properties (Gabriel et al 1996, Hasgall et al 2018). These are often determined using ex vivo tissue samples
not completely representative of in vivo conditions and obtained using measurement techniques
characterized by a considerable measurement uncertainty (see for example (McCann et al 2019)).

All the above factors entail an intrinsic uncertainty in SAR and∆T computations that needs to be
quantified to draw reliable conclusions from simulations performed on non-specific digital human models.
Statistical simulation approaches are a useful tool to address this problem.

The stochastic dosimetry concept was first introduced to address the impact of random input variables in
different applicative fields. Most of them are focused on the variability of electrical tissue properties and are
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applied to the planning of transcranial magnetic stimulation (see Gomez et al 2015, Šušnjara et al 2020,
Colella et al 2021) or to the evaluation of human exposure to power-frequency electric and magnetic fields
(Fiocchi et al 2018, Lagouanelle et al 2024). Other examples of stochastic dosimetry are related to the analysis
of random variability of the field source, for example in the exposure to 5 G technologies (Bonato et al 2021)
or power-frequency fields (Chiaramello et al 2019).

In the MRI safety context, local SAR stochastic dosimetry concepts are adopted to study the variability
related to tissue property, anatomy and geometry variations. Shao et al. propose in Shao et al (2015b) a
statistical simulation approach to address the local SAR variability related to tissue property and geometry
variations. Instead of using the Monte–Carlo (MC) method with many sample points, the unscented
transform was applied with a small set of deterministic sample points.

A probabilistic analysis to study the safety factor employed to account for SAR intersubject variability
versus risk relationship in head imaging at 7 T is presented in Le Garrec et al (2017). Based on the SAR
matrices for each configuration, a multivariate second-order polynomial of the SAR versus the different
parameters (model scaling and two translations) was reconstructed for different types of radiofrequency
pulses. A MC calculation was then performed to compute the probability of occurrence of a given SAR value.

The applicability of an efficient whole-body individual modelling method for the assessment of 1.5 T
MRI RF exposure was investigated in Liu et al (2019). Stochastic dosimetry using a surrogate model was
adopted to evaluate SAR variability due to body misalignment and tilt in the coil.

Finally, the effect of variations in anatomical details of the human body model, dielectric tissue
properties and implant geometry on predicted SAR values during MRI in a patient with a DBS implant can
be found in Nguyen et al (2020).

In this work, we applied the polynomial chaos expansion (PCE) technique to study how the random
variability of physical tissue properties and body positioning in the RF coil affects the SAR prediction during
MRI of the head at 3 T and the consequent spatial distribution of∆T. PCE is a suitable technique to be used
whenever a direct MC approach results in an excessively time-consuming computation, like in most cases
that require the solution of a partial differential equation (PDE). Starting from a given statistical distribution
of input variables, PCE allows to determine the statistical distribution of the output variables with a limited
number of numerical simulations, used in the training phase to identify the coefficients of the polynomial
expansion. Details of the proposed approach are presented in section 2.

Specifically, attention is focused on the prediction of the head SAR and of the maximum local SAR
(averaged over 10 g of tissue) and maximum∆T after 900 s of exposure, both computed on the entire head
tissues. The analysis is repeated for 10 different anatomical head models (five males and five females) to
compare the effect of the anatomical variability with the effects of the other considered variables. Results
obtained by this analysis are reported in section 3. Finally, in the discussion section an attempt to associate a
global uncertainty to the dosimetric outcomes is given, accounting for the variability of the considered input
data.

2. Method

2.1. PCE
PCE is a technique, initially introduced by Wiener (1938), to construct a surrogate model in the form of a
high-dimensional polynomial in uncertain model parameters. It was first applied in physics and engineering
by Ghanem and Spanos (1991) and generalized by Xiu and Karniadakis (2002). It represents a widely
adopted technique, alternative to traditional approaches for stochastic simulation as brute-force MC
simulations (e.g. Maltz and Hitzl 1979) and related approaches (e.g. latin hypercube sampling (Helton and
Davis 2003)), which would require quite large computational power for complex models.

Potentialities and limitations of PCE technique are discussed in Augustin et al (2008). Papers (Sudret et al
2008, Oladyshkin et al 2012) demonstrate how classical PCE and its generalisation for arbitrary probability
distributions (arbitrary polynomial chaos, aPC) can deliver the information required for global sensitivity
analysis at low computational costs.

A non-intrusive approach was here adopted, which does not require manipulating the PDEs governing
the electromagnetic and the thermal physics. Multi-dimensional aPC was implemented following the scheme
proposed by Oladyshkin and Nowak (2012). Let Y= f(ξ 1, ξ 2, . . . , ξ N) denote a stochastic model with N
input random variables ξj (j= 1, …, N), each one having its own probability distribution. The model output
Y can be represented by a multivariate polynomial expansion as follows,

Y(ξ 1, ξ 2, . . . , ξ N)≈
∑M

i=1
αiΦi (ξ1, ξ2, . . . , ξN) , (1)
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where the coefficients αi quantify the dependence of the model output Y on the input parameters
ξ1, ξ2, …, ξN along the direction Φi. The number of terms in the expansion (M) depends on the total

number of input parameters and on the order d of the expansion, beingM= (N+d)!
N!d! ..

Functions Φi form an orthogonal basis of the space of polynomial functions of degree at most d, which

are constructed as a simple product of polynomials Pβ
i
j
(
ξ j

)
of degree βi

j ,

Φ i (ξ 1, ξ 2, . . . , ξ N) =
∏N

j=1
Pβ

i
j
(
ξ j

)
(2)

N∑
j=1

βi
j ⩽ d, i = 1, . . . ..,M,

where βi
j is a non-negative integer index.

In the original PCE formulation, limited to random variables with Gaussian distribution, P are Hermite
polynomials. The aPC, which generalizes chaos expansion techniques towards arbitrary distributions, does
not require the complete knowledge of a probability density function, avoiding assigning parametric
probability distributions (Oladyshkin and Nowak 2012). The adopted aPC implementation requires
statistically independent input variables.

The coefficients αi were determined by interpolating the selected output obtained fromM simulations
providing the spatial distribution of SAR and∆T in the voxels of the human head model, following the
procedure described in Oladyshkin and Nowak (2012).

2.2. Solver implementation
The aPC Matlab Toolbox (Oladyshkin 2024) was used in this work. This algorithm was coupled with a
frequency domain Finite Element electromagnetic solver, to compute SAR distribution, and a time domain
Finite Difference thermal solver, to compute the temperature increase. Both solvers were implemented in
Matlab R2022b using GPU computations where parallelization is possible. The electromagnetic solver is
based on the formulation proposed in Bottauscio et al (2015) and validated through experiments in
Bottauscio et al (2015). The solver uses a uniform Cartesian mesh with first order elements (voxels) for the
anatomical human models and a second order hexahedral mesh for the RF coil. The thermal solver is based
on the approach described in Arduino (2017).

Considering the computational burden required to solve the problem analysed in this article (see
section 2.4), a direct comparison of the PCE results with a brute-force MC method is not feasible, because it
would require a computational time up to hundreds of days (e.g. considering an Intel Xeon Gold 6238R CPU
@ 2.2 GHz, with 512 GB RAM and NVIDIA A100 GPU card). Despite the PCE technique was largely tested
against MC simulations in the literature (e.g. Kimaev and Ricardez-Sandoval 2020, Xikai et al 2019), a
comparison with a simplified electromagnetic problem was performed in this work, considering an
electromagnetic problem for which an analytical solution is available (see the appendix: 2D analytical
model). Despite its simplicity, the analytical model problem keeps some similarities with the problem under
study, allowing the comparison of the surrogate model with a direct MC approach.

2.3. Anatomical models
Ten digital head anatomical models (five males and five females) belonging to the XCAT library (2023) were
selected for the analysis to achieve a significant anatomical variability. The main characteristics of the
considered models are reported in table 1.

The following anatomical districts of the head models were identified and associated to four tissue
properties:

(a) White matter (WM), Commissura anterior, Medulla oblongata, Midbrain, Pons (for all these tissues,
properties are assumed to be those of WM);

(b) Grey matter (GM), Hippocampus, Thalamus (for all these tissues, properties are assumed to be those of
GM);

(c) Cerebrospinal fluid (CSF);
(d) Cerebellum (CB).

2.4. Problem under study
For each simulation, the head of the considered XCAT model was centred in the RF coil with the eyes in the
isocenter (figure 1). The RF coil is a birdcage body coil supplied at 128 MHz (3 T) in circular polarisation
mode. The coil was supplied in current-driven mode, namely a proper current phasor (amplitude and phase)
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Table 1.Main characteristics of the considered XCAT digital head models sorted by increasing head mass. For the definition of the head,
please refer to the next section 2.4.

XCAT model number Age (years) Sex

Whole body

Head mass (kg)Mass (kg) Height (cm) BMI (kg m−2)

#86 36 F 52.0 169.0 18.21 4.16
#71 27 F 55.6 172.7 18.64 4.25
#151 66 F 66.4 162.0 25.30 4.42
#76 31 F 69.6 156.0 28.60 4.55
#150 18 M 62.0 176.0 20.02 4.99
#80 33 M 69.4 176.2 22.35 5.11
#147 57 F 105.8 165.1 38.81 5.18
#196 78 M 69.2 173.0 23.10 5.35
#93 44 M 92.6 75.6 28.27 5.88
#184 50 M 120 177.8 37.96 6.20

Figure 1. On the top, body positioning within the RF coil. On the bottom, sagittal sections of the 10 XCAT anatomical head
models considered in this analysis. The head models are sorted like in table 1. The labels (F) and (M) close to the XCAT model
number identify the model sex. The blue lines represent the cuts used in each model to define the HeadSAR.

was imposed to each leg and portion of the end-ring to obtain a uniform B1+ field in the imaging slice, when
the head was not present.

To limit the computational burden, simulations were performed truncating the body at the level of the
shoulders (outside the RF coil). This simplification has a limited impact on the spatial SAR distribution
within the head region (Wolf et al 2013).

After each electromagnetic simulation, performed under continuous wave mode on the entire head, the
spatial average value of B1+ magnitude was computed in a slice of thickness 40 mm around the isocenter.
The choice of the slice thickness is arbitrary, but realistic for MRI imaging. Since in this work we are not
interested in a direct comparison of dosimetric outcomes with safety limits, but rather in an analysis of their
variability, electromagnetic field results were scaled to obtain an average value equal to 1 µT.

A 900 s transient thermal simulation was performed in cascade. The spatial distribution of∆T was
computed, and the maximum temperature increase at the end of the exposure time was recorded.

Three output quantities were selected for the aPC analysis: the maximum value of local SAR averaged
over 10 g (maxSAR10g), the partial body SAR in the head (HeadSAR), and the maximum value of∆T after
900 s (max∆T).

The local SAR averaged over 10 g, defined as the total power absorbed in a 10 g cubic volume divided by
10 g, was adopted, following the prescription of IEC 60601-2-33:2022 (2022). It was computed following the
algorithm described in the ICNIRP Guidelines (2020), where a cubic averaging mass of 10 g, including all
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Table 2. Coefficients of the dependence of physical properties on water percentage.

Physical property pi ,1 pi ,2 pi ,3

σ (i= 1) 0.286 1.5310−5 0.1185
εr (i= 2) −0.0287 5.91 −220
λ (i= 3) 3.5810−3 0.233 —
C (i= 4) 21.98 1923 —
δ (i= 5) −2.030 1217 —

tissues, is used. In proximity of the interface tissue-air, the cube is extended only towards tissues, until the
10 g mass is obtained.

Regarding HeadSAR, since its value depends on the definition of ‘head’, as demonstrated in Goren et al
(2024), in this work computation was done in accordance with the reference head definition taken by the
masks described in annex P of ISO/TS 10974 (2018). This mask region includes the cranial and cervical
vertebrae superior to C7.

For each considered output quantity, the coefficients αi of the polynomial expansion of aPC were
computed, allowing the estimation of the corresponding statistical distribution, along with its mean value
and standard deviation. The order d of the expansion was set to 3. The stability of the surrogate models
provided by aPC at the increase of the order of the expansion was assessed (see section 3.2).

The head phantoms were discretized in 2 mm voxels leading to a total number of voxels ranging from 479
761 (model #86) to 695 593 (model #184). For each SAR simulation, the computational time was variable
from∼40 min to∼70 min (depending on the problem size) on an Intel Xeon Gold 6238R processor with
512 GB RAM and NVIDIA A100-PCIE-40 GB GPU card. The computational time for the thermal
simulation was∼5 min on the same hardware.

2.5. Tissue physical properties
The effect of the variability of the physical properties (mass density, electrical conductivity and permittivity,
thermal conductivity, specific heat capacity) of brain tissues (WM, GM, CSF and CB) was first studied.

Having selected only adult models, age-related biological changes (see for example (Gräfe et al 2021) for
T1 variability from children to adults and related correlation with electrical properties (Michel et al 2016) are
not considered here. On the contrary, the results rely only on statistical tissue properties variability among
adult subjects.

For a given tissue, the considered physical properties are presumably correlated to each other depending
on the tissue water content. This would affect the requirement of the aPC to work with uncorrelated input
parameters. To solve this issue, tissue water content values of the four brain tissues, assumed independent
one from each other, are used as input random variables.

Electrical conductivity and permittivity were modelled as a monotonic function of tissue water content
percentage (W), under the principle of Maxwell’s mixture theory, as proposed in Michel et al (2016). For
brain tissues at 128 MHz, electrical conductivity σ is provided by the following exponential function,

σ = p1,1+ p1,2 e
p1,3W (3)

while the relative permittivity εr is described by the following second-order polynomial,

εr = p2,1W
2+ p2,2W+ p2,3. (4)

For mass density δ, thermal conductivity λ and specific heat capacity c, a linear relationship with water
content is adopted, as proposed in Ahuja et al (1978), Vaupel and Piazena (2022). Thus,

λ= p3,1W+ p3,2 (5a)

c= p4,1W+ p4,2 (5b)

δ = p5,1W+ p5,2. (5c)

The values of the coefficients pi,j are reported in table 2.
The thermal problem, being described by the bio-heat equation (Pennes 1948), depends also on the

perfusion rate of the tissues. This parameter, however, was left unchanged in the aPC analysis, assuming that
the perfusion rate is mainly associated with the physiopathological status of the patient, affecting its
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Table 3. Reference data of the four tissues considered in the analysis.

Tissue W ref (%) σ (S m−1) εr λ (W m−1K−1) c (J kg−1K−1) δ (kg m−3)

White matter (WM) 69.57 0.344 52.3 0.482 3453 1076
Grey matter (GM) 83.41 0.587 73.3 0.531 3757 1048
Cerebrospinal fluid (CSF) 98.8 2.149 83.8 0.587 4095 1017
Cerebellum (CB) 88.43 0.831 78.2 0.549 3867 1038

thermoregulatory system, instead of the tissue water content. The effect of its variability was analysed as a
standalone case.

The reference water content values and the associated physical property values, corresponding to the four
identified brain tissues, are reported in table 3. WM, GM and CSF water content values are obtained from
(Michel et al 2016). CB water content value was selected as the one that better fits the values of the physical
properties provided in the IT’IS Foundation database (Hasgall et al 2018).

In the aPC implementation, the water contentW in each tissue is assumed having a uniform distribution
centred on the reference valueW ref with variation of±Wdev (ranging from 1 % to 8 % in the following
analysis), that is

W∼ U(Wref−Wdev,Wref+Wdev) .

Being the number of input variables N equal to 4, the total numberM of electromagnetic and thermal
simulations required, for each XCAT model, to determine the coefficients αi of the polynomial expansion in
aPC was equal to 35.

For all other non-brain tissues in the head model, fixed values of physical properties were assigned from
IT’IS Foundation database (Hasgall et al 2018).

2.6. Head positioning
In this second analysis, the stochastic input variables ξj are the six parameters describing the possible
roto-translations of the reference head models with respect to the RF source. This stochastic input models
the uncertain positioning of the patient within the MRI scanner, where small deviations from a reference
position are admitted.

First, the axis of rotationΨR was extracted from a uniform distribution on the hemisphere. This was
obtained by extracting two non-dimensional numbers r and s uniformly distributed from 0 to 1. These
numbers are used to compute the polar and azimuth angles of the axis, in spherical coordinates, as
θ = π r,φ = acos(2s− 1). The head was rotated around the axisΨR of an angle extracted from a uniform
distribution with limits equal to±10◦. After the rotation, the translation along the Cartesian axes obtained
by extracting each component of the displacement vector (∆x,∆y and∆z) from a uniform distribution with
limits equal to±10 mm was applied.

In this case, being the number of input variable N equal to 6, the total numberM of electromagnetic and
thermal simulations, required for each XCAT model to determine the coefficients αi of the polynomial
expansion in aPC, was equal to 84.

2.7. Combined variabilities
An attempt to estimate the global uncertainty of the dosimetric quantities due to the considered variability of
input data (head anatomy, tissue properties and head positioning) can be pursued following the approach
here proposed.

For a given output Y (r) (maxSAR10g, HeadSAR, or max∆T) associated to the anatomical model r (r = 1,

…, 10), a reference value is defined, Y(r)
ref , obtained with the reference input quantities (water content and

head position). The corresponding PCE with respect to the water content of the four selected tissues (Wi) is
known:

Y (r)
PCE,W = f (r)PCE,w (W1,W2,W3,W4) . (6)

Similarly, for the PCE with respect to head positioning

Y (r)
PCE,p = f (r)PCE,p (ΨR,∆x,∆y,∆z) . (7)

7
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Expansions (6) and (7) can be normalized with respect to the reference output Y(r)
ref to obtain:

y(r)PCE,W =
Y(r)
PCE,W

Y(r)
ref

, y(r)PCE,p =
Y(r)
PCE,p

Y(r)
ref

. (8)

These two random variables are multiplicative correction factors whose standard deviations u(y(r)PCE,W)

and u(y(r)PCE,p) are known.
The combined multiplicative correction factor arising when both the tissue water content and the

positioning are considered simultaneously is approximated as the product of y(r)PCE,W and y
(r)
PCE,p by assuming

the independence of the two contributions. Thus, the random output for a given anatomical model r in the
most general situation is expressed as:

Y(r) = Y(r)
ref · y

(r)
PCE,W · y(r)PCE,p. (9)

The reference value Y(r)
ref depends on the anatomy and can be considered as a categorical variable. We

consider the set of values obtained with the 10 anatomical models as a continuous variable having a Gaussian
distribution with mean µref and standard deviation uref, whose numerical values are obtained in section 3.1:

Yref ∼N (µref,uref) . (10)

This choice is the one with maximum entropy if mean and standard deviation are the only information
available about the population (BIPM-JCGM 101:2008 2008).

Looking at the worst-case scenario (maximum variability due to tissue property variation and due to

head positioning), let us now denote by yPCE,W and yPCE,p the random variables y
(r)
PCE,W and y

(r)
PCE,p with the

largest standard deviations, so that

u(yPCE,W) =max
r

u
(
y(r)PCE,W

)
and

u
(
yPCE,p

)
=max

r
u
(
y(r)PCE,p

)
.

Finally, the random variable Y that models the output quantity accounting for the variability introduced
by the anatomical models, the tissue water content, and the head positioning is defined as

Y= Yref · yPCE,W · yPCE,p. (11)

The statistical distribution of Y is so determined using the MC method.

3. Results

3.1. Results for reference values
One set of simulations was performed using the reference input data (tissue properties in table 3 and central
head positioning). Figure 2 shows the spatial distributions of SAR10g and∆T after 900 s in the transverse
slice crossing the isocenter for the 10 head models. The corresponding values of maxSAR10g, HeadSAR and
max∆T are reported in figure 3 for all considered models.

By comparing these results with the characteristics of the XCAT models (table 1), an almost monotonic
behaviour is observed for the HeadSAR versus the head mass, whereas not clear correlation is found for
maxSAR10g and max∆T. The maximum values of these two outputs are found for model #80, which gives
the ‘worst case’ among the selected anatomical models.

The intersubject geometric variability leads to a maxSAR10g ranging from 0.485 W kg−1 (#86) to
0.747 W kg−1 (#80), to an HeadSAR from 0.159 W kg−1 (#71 and #86) to 0.197 W kg−1 (#184), and to a
max∆T from 0.122 K (#71) to 0.142 K (#80). The mean values (standard deviations) of the 10 reference
outputs are 0.630 W kg−1 (0.101 W kg−1) for maxSAR10g, 0.174 W kg−1 (0.012 W kg−1) for HeadSAR and
0.130 K (0.007 K) for max∆T.
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Figure 2. SAR10g (top) and∆T after 900 s (bottom) maps in the central slice for the reference cases. Results refer to an average
B1+ equal to 1 µT in the transverse slab of thickness 40 mm around the isocenter. For each output (SAR10g and∆T), the maps
are sorted like in table 1. The labels (F) and (M) close to the XCAT model number identify the model sex.

Figure 3. Reference cases: maximum value of SAR10g, HeadSAR and maximum∆T after 900 s of each XCAT model. A
categorical abscissa is adopted, reporting the XCAT model number. Results refer to an average B1+ equal to 1 µT in the transverse
slab of thickness 40 mm around the isocenter. The labels (F) and (M) close to the XCAT model number identify the model sex. All
numerical values are reported in the supplementary table 1.
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Table 4.Mean values and standard deviations of the outputs (maxSAR10g, HeadSAR and max∆T) for model #80 considering three
values for the aPC polynomial orders d.

d No. of simulation for training (M)

maxSAR10g (W kg−1) HeadSAR (W kg−1) max∆T (K)

Mean StdDev Mean StdDev Mean StdDev

2 15 0.758 0.008 0.177 0.003 0.143 0.001
3 35 0.751 0.010 0.177 0.003 0.143 0.001
4 70 0.751 0.011 0.176 0.003 0.143 0.001

Table 5.Minimum and maximum values of the output quantities (maxSAR10g, HeadSAR and max∆T) for model #80 obtained with
aPC or considering two extreme cases for the tissue physical properties of the four head model districts: water content percentage equal
to− 4 % (W− ) or+ 4 % (W̄).

Case

maxSAR10g (W kg−1) HeadSAR (W kg−1) max∆T (K)

Min Max Min Max Min Max

aPC 0.706 0.806 0.167 0.189 0.137 0.150
W− ,W̄ 0.742 0.763 0.167 0.188 0.141 0.145

3.2. Results for variability of tissue properties
This set of simulations was performed by considering the independent variability of water content in the four
selected tissues (WM, GM, CSF, CB) withW ref as reported in table 2 andWdev equal to 4 % for WM, GM
and CB and 1 % for CSF. For CSF the variability was limited to 1 % to avoid an unphysical upper limit forW
greater than 100 %.

The corresponding lower and upper limits for the property values (whose distribution is, in general, not
uniform) are:

• Electrical conductivity: (0.322 ÷ 0.379) S m−1 for WM, (0.473 ÷ 0.768) S m−1 for GM, (1.963 ÷ 2.378)
S m−1 for CSF, and (0.624÷ 1.159) S m−1 for CB.

• Relative permittivity: (44.13 ÷ 59.46) for WM, (68.33 ÷ 77.31) for GM, (83.49 ÷ 83.96) for CSF, and
(74.40÷ 81.07) for CB.

• Specific heat capacity: (3365÷ 3541) J kg−1K−1 for WM, (3669÷ 3845) J kg−1K−1 for GM, (4073÷ 4117)
J kg−1K−1 for CSF, and (3779÷ 3955) J kg−1K−1 for CB.

• Mass density: (1084 ÷ 1068) kg m−3 for WM, (1056 ÷ 1040) kg m−3 for GM, (1019 ÷ 1015) kg m−3 for
CSF, and (1046÷ 1030) kg m−3 for CB.

• Thermal conductivity: (0.468 ÷ 0.496) W m−1K−1 for WM, (0.517 ÷ 0.546) W m−1K−1 for GM,
(0.583÷ 0.590) W m−1K−1 for CSF, and (0.535÷ 0.564) W m−1K−1 for CB.

The effect of the aPC polynomial order (d) on the stability of the results was first assessed considering the
anatomical model #80. The mean value and standard deviation of maxSAR10g, HeadSAR and max∆T,
obtained with d ranging from 2 to 4, are reported in table 4. Based on these results, a polynomial order d = 3
was chosen for all successive simulations as a trade-off between result stability (also for the local quantity
maxSAR10g) and required computational time.

The aPC coefficient values (d = 3), for all XCAT models are reported in the supplementary material.
Figure 4 shows the box plots of the statistical distributions of the output quantities (maxSAR10g, HeadSAR
and max∆T) for the 10 considered anatomical models. The plots have been sorted by increasing mass to
evidence if a correlation between the considered output quantity and mass exists.

The absolute variability due to tissue properties is almost identical for all the anatomical models when
considering the HeadSAR, with a relative percentage value ranging from 1.5 % to 1.9 %. The absolute
variability is more different among models for local outputs, leading to relative percentage values ranging
from 0.4 % to 1.5 % for maxSAR10g and from 0.7 % to 3.3 % for max∆T.

In table 5, the range of variation of the output parameters predicted by the aPC algorithm are compared
with those obtained considering two extreme cases for the tissue physical properties of the four head model
districts: water content percentage variation equal to−4 % (W− ) or+4 % (W̄). The results refer to the
anatomical model #80. The comparison highlights that the range of variation of the outputs is always higher
for aPC simulations, particularly for the local quantities, maxSAR10g and max∆T. This result shows that the
output variabilities predicted by using extreme values of water content percentage underestimate the actual
variability.
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Figure 4. Box plots of the statistical distributions of the output quantities (from top to bottom, maxSAR10g, HeadSAR and
max∆T) due to the variability of the physical properties of the four brain tissues (WM, GM, CSF, CB). The box plots are sorted
by increasing head mass and the colour is related to the mass scale on the right. A categorical abscissa is adopted, reporting the
XCAT model number. The dots correspond to the values obtained in the reference case (figure 3). The labels (F) and (M) close to
the XCAT model number identify the model sex. The mean values and standard deviations of the distributions are reported in the
supplementary table 2.

Figure 5 compares the statistical distributions of the output quantities for the #80 XCAT model for
Wdev = 4 % andWdev = 8 %. As expected, increasing the percentage variation of water content (Wdev) for
WM, GM and CB led to an increase of the standard deviation of the output quantities.

The mean value of maxSAR10g, HeadSAR and max∆T remained almost unchanged (0.751 W kg−1,
0.177 W kg−1 and 0.143 K, respectively), while the standard deviations increased from 0.010 W kg−1 to
0.019 W kg−1 (for maxSAR10g), from 0.003 W kg−1 to 0.007 W kg−1 (for HeadSAR) and from 0.001 K to
0.003 K (for max∆T).

Finally, the effect of a variability in the tissue perfusion rates on the mean values and standard deviations
of max∆T was quantified for the XCAT model #80 with aWdev = 4 %. In particular, the tissue perfusion rate
of all tissues in the anatomical model was reduced to 75 % and 50 % of the reference value of the IT’IS
database. Results are summarized in table 6. It is worth observing that by halving the perfusion rate
coefficient, the mean value of max∆T is increased by+15 %, while the standard deviation is unchanged.
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Figure 5. Comparison between the box plots of the output quantities (maxSAR10g, headSAR and max∆T) varyingWdev from 4
% to 8 % for WM, GM and CB. The value was kept equal to 1% for CSF. Results refer to the XCAT model #80.

Table 6.Mean values and standard deviations of max∆T (K) for model #80 for different reductions of the tissue perfusion rates.

Perfusion rate factor Mean StdDev

1 (reference values from IT’IS database) 0.143 0.001
0.75 0.152 (+6 %) 0.001
0.5 0.164 (+15 %) 0.001

3.3. Results for uncertainty in head positioning
For each XCAT model, the aPC coefficients were computed based on the 84 electromagnetic and thermal
simulations (coefficient values are reported in the supplementary material). Figure 6 shows the box plots of
the output quantities (maxSAR10g, HeadSAR and max∆T) for the ten anatomical models. Similarly to
figure 4, the plots are sorted by increasing mass.

The variability of the output quantities due to head positioning is similar among anatomical models for
maxSAR10g and HeadSAR, whereas it is more widespread for max∆T. This latter seems to be uncorrelated
with respect to the head mass and shape. The relative percentage values range from 1.4 % to 3.7 % for
maxSAR10g, from 0.6 % to 1.5 % for HeadSAR and from 1.5 % to 3.6 % for max∆T.

3.4. Results for combined variabilities
Combined variability of the considered dosimetric quantities was determined following the approach
described in section 2.7. The statistical distributions of the combined maxSAR10g, HeadSAR and max∆T,
obtained by MC method, are plotted in figure 7.

The mean values (standard deviations) of the three combined distributions are 0.630 W kg−1

(0.103 W kg−1) for maxSAR10g, 0.176 W kg−1 (0.013 W kg−1) for HeadSAR and 0.131 K (0.009 K) for
max∆T.

4. Discussion

A comparison between the different sources of variability in the estimated dosimetric quantities can be
derived based on the results obtained by the above stochastic analysis. First, the head anatomy was found to
be the most significant parameter affecting the considered output quantities, confirming results of other
studies (e.g Liu et al 2005, Murbach et al 2011). The maximum percentage variation with respect to the mean
value due to the geometrical differences between the anatomical models was found to be±19 % for
maxSAR10g (from 0.485 W kg−1 to 0.747 W kg−1),±13 % for HeadSAR (from 0.159 W kg−1 to
0.197 W kg−1) and±10 % for max∆T (from 0.122 K to 0.142 K). As expected, the variability is lower for
HeadSAR and max∆T, the former being an integral quantity and the latter being determined by the thermal
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Figure 6. Box plots of the output quantities (maxSAR10g, HeadSAR and max∆T) following the uncertainty in head positioning
(roto-translation). The box plots are sorted by increasing head mass and the colour is related to the mass scale on the right. A
categorical abscissa is adopted, reporting the XCAT model number. The dots correspond to the values obtained in the reference
case (figure 3). The labels (F) and (M) close to the XCAT model number identify the model sex. The mean values and standard
deviations of the distributions are reported in the supplementary table 3.

diffusion/perfusion process in tissues. The higher stability makes these quantities more reliable as safety
metric than the maxSAR10g.

The observed variability of SAR due to the anatomy is a little bit larger than the variability observed in
Liu et al (2019), where a deformable whole-body anatomical model, adapted to fit the patient’s anatomy, is
compared with the reference model in the case of thorax imaging. Indeed, in that work, the variation was 5
% on whole-body SAR and 10 % on maxSAR10g. Being assessed for head imaging, the results here presented
cannot be directly extended to imaging of other anatomical regions.

By the analysis of the different models, it can also be observed a good correlation between maxSAR10g
and max∆T (minimum and maximum values are found for both quantities in models #71 e #80,
respectively), while a different trend is found for HeadSAR (minimum is found in model #184 and
maximum in models #71 and #86).

The intrinsic physiological variability of tissue physical properties (considering a water content variability
of±4 %) contributes to the global variability of the output quantities with a relative standard deviation
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Figure 7. Combined probability distributions of maxSAR10g, HeadSAR, and max∆T including all considered sources of
variability (anatomical model, tissue properties, head positioning). Results were obtained using 10 000 randomly generated
inputs. The relative probability in the y-axis is the number of elements in each bin relative to the total number of elements in the
input data.

ranging from 0.4% to 1.5 % for maxSAR10g, from 1.5 % to 1.9 % for HeadSAR and from 0.7 % to 3.3 % for
max∆T.

The local SAR variability is lower with respect to the values found in Shao et al (2015b), but the results
cannot be directly compared because the two studies considered different MRI systems (3 T with body coil in
this study, and 7 T with local RF coil in Shao et al (2015b) and the variability was applied to different tissues
(brain tissues in this study and tissues closer to RF coil in Shao et al (2015b).

Considering only the maximum values, it results that the anatomical variability has a contribution to the
variability of the output quantities that is 10 times larger than the contribution due to the variability of the
tissue property values for maxSAR10g (relative standard deviation of 16 % vs. 1.5 %), almost four times
larger for HeadSAR (relative standard deviation of 6.9 % vs. 1.9 %) and almost two times larger for max∆T
(relative standard deviation of 5.4 % vs. 3.3 %). By doubling the variability of water content percentage, from
4 % to 8 %, the standard deviation of the output quantities almost doubles, reducing the distance from the
anatomical variability contribution.

A larger contribution is the one due to the uncertainty in head positioning, which leads to a standard
deviation ranging from 1.4 % to 3.7 % for maxSAR10g, from 0.6 % to 1.5 % for HeadSAR and from 1.5 % to
3.6 % for max∆T. The weaker dependence of an integral quantity like HeadSAR to model positioning agrees
with the results published in Le Garrec et al (2017), even if the latter refers to a 7 T head imaging.

Considering only the maximum values, this relative standard deviation is about four times lower than the
one associated with the anatomical variability for maxSAR10g and HeadSAR and about two times lower for
max∆T.

In summary, the global variability of the considered dosimetric quantities due to the variability of input
data (head anatomy, tissue properties and head positioning) results to be dominated by the anatomy. This is
evident by comparing the standard deviation of the combined distributions and the ones deriving from the
10 reference cases. From the resulting distributions (figure 7), assuming a coverage interval of 95 %, it is
reasonable to associate a global extended variability to the three considered dosimetric quantities equal to 32
% for maxSAR10g, 14 % for HeadSAR and 13 % for max∆T. The knowledge of these variabilities can be
used to attribute an uncertainty to the results obtained using a generic anatomical head model (e.g. the
model giving the mean values with reference physical properties and placed in the reference position) when
the SAR and temperature increase values are compared with limits for evaluating safety exposure.

When using the approach here presented to associate an uncertainty to the computation of SAR and
temperature increase in a patient exposed to the field generated by the RF coil of a 3 T MRI scanner, some
limitations must be considered.

First, the analysis was limited to head imaging and the results cannot be extrapolated to the entire body
or to the imaging of other anatomical districts. Indeed, both the anatomy and the different tissue types could
have a different impact on the distribution of power deposition and temperature increase. In addition, the
dependence of tissue properties from water content here adopted was based on literature data mainly focused
on brain tissues (Ahuja et al 1978, Michel et al 2016, Vaupel and Piazena 2022) and cannot be applied to
other type of tissues without a proper validation. Also, the amount of variability in the model position was
conceived for head imaging. For the extension to other body parts, the variability input data need to be
reconsidered.

Regarding tissue physical properties, the analysis was limited by considering the variability of four
clusters of head tissues. For all the other non-brain tissues, fixed values of physical properties were assigned.
This choice is justified considering the attention posed to brain tissues in the definition of basic restrictions,
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based on considerations related to functional changes and structural damage in the brain (IEC
60601-2-33:2022 2022).

Another limitation to be accounted for is that the analysis was conducted for 3 T imaging and with an RF
body coil. While it is possible to repeat the analysis for 1.5 T MRI without changing the exposure setup, the
extension at higher fields needs to reconsider the transmit coil, since a standard birdcage body coil is not
typically adopted at higher frequencies. The use of a local RF coils may indeed introduce important
variations on the obtained results, considering that the field distribution within the imaging volume would
result in stronger heterogeneities.

The uncertainty of the output dosimetric quantities here deduced cannot be considered as an exhaustive
uncertainty budget of all influence factors. Other influencing factors (e.g. RF source variability,
environments, etc) can also contribute to the overall uncertainty budget. In any case, having fixed the
exposure scenario, our results represent an estimate of the dosimetric simulations.

A final important remark must be considered. For practical reasons, the analysis was limited to 10
anatomical models. The models were chosen from a large library with the purpose of covering, as much as
possible, the variability, in head size and shape, of adult phenotypes, as can be seen from the data in table 1.
At the same time, regarding the biological tissue properties, age-related biological changes are small for
adults compared to the major changes in juveniles and children. Here we have accounted for statistical tissue
properties variability rather than variability consequent to the evolution process from youth to adulthood.

Anyway, all the adopted choices are inevitably incomplete and head anatomies and age-related tissue
property variability can produce results that extend beyond the extreme values of the dosimetric quantities
here determined (data in figure 7 and supplementary table 1).

5. Conclusions

In this study, the PCE is applied to estimate the variability of SAR and temperature increase at 3 T head MRI.
Different sources of variability are considered as input: the effect of head anatomy, the stochastic variability
of tissue physical properties among adult subjects and the uncertainty in model positioning within the
scanner. To avoid correlation when considering the variability of tissue physical properties, as required by the
adopted aPC implementation, the latter have been written as a function of tissue water content values, which
are consequently used as input random variables.

For the sake of generality, the analysis was conducted normalizing the output data to an average value of
B1+ magnitude equal to 1 µT in a central slab. Output values can be quadratically rescaled to different values
of B1+.

Head anatomy was found to be the prevailing source of variability for the considered dosimetric
quantities, affecting the global variability obtained by combining all contributions.

From the knowledge of the variability of SAR and temperature increase, uncertainties were associated to
the data obtained using a generic anatomical head model. For the 3 T head imaging here considered, they
resulted to be around 32 %, 14 % and 13 %, respectively, for maxSAR10g, HeadSAR and∆T, with a coverage
interval of 95 %.

The adopted methodology can be extended to other exposure scenarios in MRI, allowing to associate an
uncertainty value to the prediction of SAR and temperature increase in tissues. The quantification of an
uncertainty value associated to the estimated dosimetric quantity can be conveniently used to verify
compliance with reference limits for patient safety exposure.
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Appendix

2-D analytical model
The aPC model was preliminary tested versus a direct MC approach using a simple reference 2D

problem. The availability of an analytical solution allows to limit the computational burden of the MC
solution, using a sufficiently high number of random extractions.

A phantom constituted of two non-concentric cylinders aligned with the z-axis is adopted. The cylinders
have an infinite length along their axes. The internal cylinder (material 2), centred in the origin, has diameter
equal to 40 mm; the external cylinder (material 1) has diameter equal to 100 mm and is translated by 40 mm
along the x-axis. A spatially uniform, sinusoidal magnetic flux density is applied along the z-axis.

For this 2D structure an analytical solution is available under the assumption of an unperturbed
magnetic field (Polk and Song 1990), providing the spatial distribution of the induced electric field and
currents in the xy-plane.

This problem, even if extremely simplified with respect to the realistic case, has some similarities with it
because it describes interfaces between tissues of different electrical conductivity and the consequent change
in the induced current path depending on the contact between the electrical conductivities of the two
materials.

In the analysis, the electrical conductivities of material 1 and 2 were assumed to be stochastic variables.
For material 1 the conductivity was chosen uniformly distributed from 0.2 S m−1 to 0.8 S m−1, whereas for
material 2 it was chosen, independently, uniformly distributed from 1.5 S m−1 to 2 S m−1.

For aPC solution, a polynomial expansion order d equal to 3 was chosen. Since two input stochastic
variables are present (N = 2), the numberM of PCE coefficients is equal to 10. For the MC solution, results
were obtained from 10 000 random extractions.

The statistical distributions obtained by MC and aPC of the output total power and maximum power
density in materials 1 and 2 are compared in figure A1. Data are normalized to the square of the product
between flux density amplitude and frequency. The figure shows an excellent agreement between the two
approaches in terms of predicted mean, standard deviation, and statistical distribution.
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Figure A1. Reference problem involving an analytical solution: comparison between the statistical distributions of the total power
and the maximum power density (normalized to the square of the product between flux density amplitude and frequency) in
materials 1 and 2 computed with a direct MC (10 000 randomly generated inputs) and an aPC method. The corresponding mean
value and standard deviation (in brackets) are reported under each histogram. The relative probability in the y-axis is the number
of elements in each bin relative to the total number of elements in the input data.
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Šǔsnjara A, Dodig H, Cvetkovíc M and Poljak D 2020 Stochastic dosimetry of a three compartment head model Eng. Anal. Bound. Elem.

117 332
Vaupel P and Piazena H 2022 Strong correlation between specific heat capacity and water content in human tissues suggests preferred

heat deposition in malignant tumors upon electromagnetic irradiation Int. J. Hyperthermia 39 987
Wiener N 1938 The Homogeneous Chaos Am. J. Math. 60 897
Wolf S, Diehl D, Gebhardt M, Mallow J and Speck O 2013 SAR simulations for high-field MRI: How much detail, effort, and accuracy is

needed?Magn. Reson. Med. 69 1157
Xikai C, Liu Q and Wang Y 2019 Uncertainty of geomagnetically induced current in Xinjiang 750kV planned power grid based on

polynomial chaos expansion J. Phys.: Conf. Ser. 1237 042015
Xiu D and Karniadakis G E 2002 The Wiener–Askey polynomial Chaos for stochastic differential equations SIAM J. Sci. Comput. 24 619

19

https://doi.org/10.1002/nbm.3256
https://doi.org/10.1002/nbm.3256
https://doi.org/10.1016/0021-9991(79)90150-5
https://doi.org/10.1016/0021-9991(79)90150-5
https://doi.org/10.1109/JERM.2023.3236153
https://doi.org/10.1109/JERM.2023.3236153
https://doi.org/10.1007/s10548-019-00710-2
https://doi.org/10.1007/s10548-019-00710-2
https://doi.org/10.1002/mrm.27518
https://doi.org/10.1002/mrm.27518
https://doi.org/10.1002/mrm.26193
https://doi.org/10.1002/mrm.26193
https://doi.org/10.1016/j.pbiomolbio.2011.09.017
https://doi.org/10.1016/j.pbiomolbio.2011.09.017
https://doi.org/10.1002/mrm.25986
https://doi.org/10.1002/mrm.25986
https://doi.org/10.1002/mrm.24690
https://doi.org/10.1002/mrm.24690
https://doi.org/10.1088/0031-9155/56/15/002
https://doi.org/10.1088/0031-9155/56/15/002
https://doi.org/10.1088/1361-6560/abac9f
https://doi.org/10.1088/1361-6560/abac9f
https://ch.mathworks.com/matlabcentral/fileexchange/72014-apc-matlab-toolbox-data-driven-arbitrary-polynomial-chaos
https://ch.mathworks.com/matlabcentral/fileexchange/72014-apc-matlab-toolbox-data-driven-arbitrary-polynomial-chaos
https://doi.org/10.1016/j.advwatres.2011.11.001
https://doi.org/10.1016/j.advwatres.2011.11.001
https://doi.org/10.1016/j.ress.2012.05.002
https://doi.org/10.1016/j.ress.2012.05.002
https://doi.org/10.1152/jappl.1948.1.2.93
https://doi.org/10.1152/jappl.1948.1.2.93
https://doi.org/10.1002/bem.2250110305
https://doi.org/10.1002/bem.2250110305
https://doi.org/10.1016/j.mri.2015.04.002
https://doi.org/10.1016/j.mri.2015.04.002
https://doi.org/10.1002/mrm.25367
https://doi.org/10.1002/mrm.25367
https://doi.org/10.1016/j.ress.2007.04.002
https://doi.org/10.1016/j.ress.2007.04.002
https://doi.org/10.1016/j.enganabound.2020.04.010
https://doi.org/10.1016/j.enganabound.2020.04.010
https://doi.org/10.1080/02656736.2022.2067596
https://doi.org/10.1080/02656736.2022.2067596
https://doi.org/10.2307/2371268
https://doi.org/10.2307/2371268
https://doi.org/10.1002/mrm.24329
https://doi.org/10.1002/mrm.24329
https://doi.org/10.1088/1742-6596/1237/4/042015
https://doi.org/10.1088/1742-6596/1237/4/042015
https://doi.org/10.1137/S1064827501387826
https://doi.org/10.1137/S1064827501387826

	Polynomial chaos expansion of SAR and temperature increase variability in 3 T MRI due to stochastic input data
	1. Introduction
	2. Method
	2.1. PCE
	2.2. Solver implementation
	2.3. Anatomical models
	2.4. Problem under study
	2.5. Tissue physical properties
	2.6. Head positioning
	2.7. Combined variabilities

	3. Results
	3.1. Results for reference values
	3.2. Results for variability of tissue properties
	3.3. Results for uncertainty in head positioning
	3.4. Results for combined variabilities

	4. Discussion
	5. Conclusions
	Appendix
	References


