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Abstract

Hysteretic properties of an assembly of uniaxial magnetic nanoparticles de-
scribed as double well systems (DWS) with either collinear or randomly dis-
tributed easy axes are studied by means of a rate-equation approach. The
resulting picture is sufficiently accurate to be exploited in high frequency
applications of nanoparticles such as magnetic hyperthermia.
The rate equation scheme allows an exhaustive description of hysteretic ef-
fects to be achieved in a rather simple way, with remarkable advantages
over treatments based on nonlinear equations of magnetization dynamics
and models derived from the Stoner-Wohlfarth theory.
Rate equations for the magnetic DWS are then simplified and decoupled by
making special assumptions on the escape frequency from the energy wells; it
is shown that the simplified rate equation scheme can be applied in extended
intervals of frequencies and temperatures, including the ones of interest for
present-day practical applications of magnetic nanoparticles.
Analytical solutions of the simplified rate equations allow one to explain sev-
eral hysteretic properties of the system when the magnetic field is applied
either parallel or perpendicular to the nanoparticle easy axis. These solutions
are suitable to be generalized to the case of an assembly of nanoparticles with
randomly distributed easy axes.
Minor hysteresis loops of an assembly of DWS exhibit an anomalous be-
haviour: the magnetization driven by the periodic field initially follows a
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spiral path in the (H,M) plane; closed, self-similar hysteresis loops corre-
sponding to the system’s steady state are achieved only after a sequence of
iterations that depends on the loop’s vertex field: the smaller the vertex field
is, the longer the time needed to reach the steady state. Only major loops
(i.e., ones where the magnetization goes from positive to negative satura-
tion) are closed since the very beginning. The anomaly occurs at all angles
between magnetic field and easy axis and at all explored frequencies. This
effect should be taken in due account in magnetic hyperthermia experiments.

Keywords: Magnetic Nanoparticles, Two-Level Systems, Rate Equations,
Hysteresis Loops

1. Introduction

Research on magnetic properties of ferro-/ferrimagnetic nanoparticles has
anticipated the present-day, generalized interest towards nanophysics [1, 2].
The interest on quasi-static magnetic properties of ultrafine particles was
first stimulated by the recognition of the peculiar magnetic effects originating5

from the reduction of size below a critical value [3] and was triggered by the
need of understanding and optimizing the behavior of materials for magnetic
recording [4].

More recently, the steadily increasing demand for new functional materi-
als [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] has acted as a driving force for10

a great variety of experimental and theoretical studies on magnetic nanopar-
ticles. The role of factors such as surface effects, particle size distribution,
interparticle interaction, tendency to aggregation has been investigated and
clarified in such a way that a commonly shared picture has gradually emerged
[18, 19, 20, 21, 22, 23, 24]. On the other hand, dynamic magnetic properties15

of nanoparticles submitted to cyclic magnetization have become a hot topic in
the last decade, in correspondence with the rise of interest towards biomedical
applications such as magnetic hyperthermia [25, 26, 27, 28, 29, 30, 31, 32, 33].

However, a high applicative interest may hinder the progress of in-depth
knowledge in favor of a simplified picture of the magnetic behavior of a20

nanoparticle assembly. The lack of an adequate theoretical description in the
end may prevent the development of promising technical applications. This
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work aims in particular to fill the gap of knowledge on magnetic hysteresis
in uniaxial nanoparticles starting from the recognition that one’s ability to
explain the features of hysteresis loops is getting increasing importance in25

high frequency applications [33, 34, 35, 36, 37].
In a dilute assembly where interparticle interaction energy can be con-

sidered as a perturbation, the effect of thermal fluctuations on magnetic
properties such as initial susceptibility, coercive force and magnetic rema-
nence is generally understood in the context of the Néel model for thermally30

assisted (Arrhenius) magnetization reversal [38]. Uniaxial nanoparticles are
described as classical double-well systems [39, 40] (DWS) where the parti-
cle’s magnetic moment viewed as a macrospin [41, 42] switches between the
energy minima.

Rate equations are a most natural way to picture the effects stemming35

from the redistribution of macrospins in the energy wells by effect of temper-
ature and/or magnetic field. These equations can be rigorously derived [43]
from the Fokker−Planck equation proposed by Brown [44, 45] for macrospin
orientation under the condition that the DWS barrier be high enough at all
temperatures of interest (anisotropy energy » thermal energy), as is often40

the case in real systems.
Rate equations have been exploited to reproduce the field-cooled (FC) and

zero-field-cooled (ZFC) [41, 46] curves of initial susceptibility in monodis-
perse [47, 48, 49, 50] and polydisperse [39, 51] uniaxial nanoparticles. In
DWS assemblies with randomly oriented easy axes, the difficulty of trans-45

forming rigorous results of numerical simulations in a simpler picture has
been recently overcome by using a linearization that eases the description of
FC/ZFC curves at low fields, allowing one to clarify the effects of cooling or
heating rate, temperature, size distribution and magnetic field intensity on
the behavior of FC/ZFC susceptibility [39].50

A fortiori, rate equations are a most natural way to study magnetic hys-
teresis loops of a DWS assembly submitted to a time-dependent magnetic
field. Actually, the canonical way to evaluate the dynamic evolution of mag-
netic structures at finite temperature implies solving the Landau-Lifshitz
(LL) [52] or the Landau-Lifshitz-Gilbert (LLG) [53] equations. Brown′s equa-55

tion itself can be derived from the stochastic LL/LLG equations[52]. How-
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ever, analytical solutions of LL/LLG equations have been obtained in terms
of continued fractions and not in closed form even in the case of uniaxial
anisotropy [54], and numerical simulations [43, 55, 56] are so time-consuming
that specific approximate approaches based, e.g., on Monte Carlo methods60

[53] must be developed.
Instead, a rate-equation approach to the dynamic behavior of a DWS

assembly has the notable advantage of giving a sufficiently accurate picture
of the system’s evolution without requiring much computational power and
time. Rate equations not only are an expedient analytical approximation of65

the more fundamental approach [45, 57, 58, 59], but also are suitable to be
further simplified under specific conditions allowing one to get simple ana-
lytical laws for the behavior of physically significant hysteretic parameters
such as coercive field and magnetic remanence. Their solutions are expected
to hold over a rather extended interval of magnetizing frequencies and tem-70

peratures. For magnetic nanoparticles, rate equations were shown [44] to
naturally emerge from the Fokker-Planck equation when the energy barrier
of the DWS is significantly larger than thermal energy kBT . In this paper,
such a condition is fulfilled everywhere.

The effect of temperature on the coercive field of an assembly of DWS has75

been investigated in a number of papers based on a variety of approaches,
including: i) the elementary Kneller’s law [2, 60], ii) more advanced mod-
els involving suitable modifications of the Stoner-Wohlfarth (SW) theory,
with the aim of either approximately accounting for the effect of thermal
disorder[61, 62, 63] or simplifying the mathematical treatment [64], and iii)80

theories explicitly considering the dynamics of magnetic-moment redistribu-
tion between the two wells [52, 59]. Often, models are intended for collinear
nanoparticles whose easy axis is parallel to the magnetic field; however, an-
alytical [65] or numerical [52, 59, 61, 62, 63] expressions of the temperature-
dependent coercive field for the case of a DWS assembly with randomly85

oriented easy axes do exist in the literature.
Typically, interaction among nanoparticles is neglected in the existing

literature on hysteretic properties of magnetic nanomaterials [52, 59, 66].
Interparticle interaction influences the temperature dependence of the co-
ercive field of SW nanoparticles in quasi-static conditions: in particular, it90
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has been shown that in a mean-field approach switching the interaction on
causes the coercive field at a given temperature to increase with respect to
the noninteracting case [67, 68]. However, the present knowledge on hys-
teretic magnetization in a nanoparticle assembly is so incomplete that the
effect of interactions should be introduced only after the noninteracting case95

has been understood in all details.
In this paper, rate equations are used to study the hysteretic properties

of a DWS assembly in quasi-static and high-frequency conditions over an
extended temperature range (from above the blocking temperature to the
T → 0 limit) and under different vertex fields. Features, strong points and100

limiting factors of the method are discussed in some detail in Section 2.
Simplified rate equations are introduced and discussed in Section 3. An-

alytic solutions are derived for the special case of an assembly of DWS with
collinear easy axes submitted to a field either parallel or perpendicular to the
easy axis direction. In this case, the simpler symmetry of the problem allows105

one to get handy expressions of coercive field, magnetic energy, phase shift
betheen magnetization and field waveforms and first magnetization curves.
In this way, the underlying physics is easily understood. These analytical
laws are shown to provide a more adequate representation of the system’s
properties with respect to the existing predictions based on simpler models.110

The peculiar hysteresis effects emerging from the rate-equations frame-
work are analyzed in Section 4. A specific anomaly is singled out and studied
for an assembly of collinear DWS whose easy axis makes an arbitrary angle
with the magnetic field direction, and shown to appear when magnetization
follows a minor loop (i.e., one whose vertex field is not enough to bring the115

system to magnetic saturation). Initially, the trajectories of loops do not close
on themselves and magnetization keeps spiralling in the (H,M) plane; in the
end the steady state corresponding to closed magnetization loops is reached
after a sequence of iterations that depends on the vertex field. The anomaly
is not present in major loops (vertex field sufficient to reach magnetic satura-120

tion of the system). The effect is explained by analytical expressions obtained
from the simplified rate equations.

Finally, the hysteretic properties of DWS assemblies with randomly di-
rected easy axes are discussed in Section 5 for both quasi-static and high-
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frequency major loops. Again, simplified rate equations are shown to play125

an important role in providing a simple expression of the coercive field as a
function of temperature and frequency.

2. Cyclic Magnetization of double Well Systems: Definitions and
Properties

2.1. Equations130

Magnetic nanoparticles (NPs) with predominant uniaxial anisotropy are
well described as double-well systems (DWS) [40]. In an assemby of nonin-
teracting DWS the energy-well populations are determined by rate equations
both at equilibrium and off-equilibrium [39, 51]. Features, advantages and
limits of the classical DWS model applied to magnetic NPs were discussed135

elsewhere[39]. There, the study was limited to typical features of NPs sub-
mitted to a static magnetic field such as field cooled (FC) and zero field cooled
(ZFC) susceptibilities. However, the model applies in non-static conditions
as well and can therefore be exploited in order to study hysteresis loops dis-
played by blocked-particle systems submitted to cyclic magnetization. Here,140

the main aspects of the model are summarized and the main equations are
expressed in dimensionless form.

Each magnetic nanoparticle is assumed to have size D and effective vol-
ume V = (π/6)D3 and carries a magnetic moment µ = MsV whereMs is the
saturation magnetization of the material (macrospin approximation[41, 42]:145

atomic spins tightly coupled by exchange interaction and negligible surface
effects); the magnetic moment is thought to be aligned by uniaxial anisotropy
of amplitude Keff to the easy axis. The easy directions of NPs are assumed
to be evenly distributed in space; nevertheless, a simple planar representation
is always able to fully describe the behavior of the magnetic moment[39]. In150

Figure 1a the plane containing the rotation of the µ vector is defined by the
applied field H and the easy axis of a nanoparticle.

In real systems, magnetic nanoparticles are usually distributed in size
according to a continuous law p(D). The effects of a size distribution on the
hysteretic properties of a DWS assembly will be discussed in Section 5.1.4;155

elsewhere monodisperse systems will be studied.
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Figure 1: a) parameters of the rate-equation model for a DWS. Top sketch: DWS
energy landscape without and with applied field; bottom image: reference system
for the DWS (easy axis parallel to the x-axis); b) major hysteresis loops of blocked
nanoparticles (Θ = 0.5) obtained from rate equations for different values of angle
φ and for an assembly of randomly oriented nanoparticles.

The blocking temperature TB is defined as KeffV/ln(τmeas/τ0)kB ≈
≈ KeffV/25kB , where V is the NP volume, τmeas is the typical measurement
time (see Section 2.4 for details; in quasi-static conditions, τmeas = 100 s),
τ0 ≈ 10−9 s is the reciprocal of the attempt frequency of a particle in an en-160

ergy well [3]. In polydisperse systems, V must be substituted by the average
NP volume < V >. In general, Ms and Keff are functions of temperature; in
this paper, both quantities are considered to be constant (the validity of such
an assumption is discussed elsewhere [39]). Let Nφ be the number of particles
of magnetic moment µ having an easy axis at an angle φ with respect to H;165

for symmetry reasons, only acute angles between H and the positive easy
axis need to be considered (with reference to Fig 1a, |φ| ≤ π/2). For easy-
axis directions evenly distributed in space Nφ = N/2π, N being the total
number of particles in the system. For each angle φ the occupancy numbers
in the two wells are N1φ and N2φ; here, the reduced quantities n1φ = N1φ/Nφ170

and n2φ = N2φ/Nφ will be used (n1φ + n2φ = 1). Moreover, the standard di-
mensionless magnetic quantities[3] will be introduced: m(φ) = M(φ)/Ms =
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M(φ)/Nφµ, h = HMs/2Keff . We also define Θ = T/TB. The dimensionless
energy of a single DWS, ε(θ, φ) = E(θ, φ)/KeffV is given by:

ε(θ, φ) = sin2(θ)− 2hcos(θ − φ)

where θ is the angle between the magnetic moment direction and the175

easy axis. The angles of minimum energy θ1(φ), θ2(φ) (see Figure 1a) are
found by putting the derivative of ε(θ, φ) with respect to θ equal to zero; the
magnetization along the field direction at the temperature Θ is therefore:

m(Θ, φ) = n1φ(Θ)cos(θ1(φ)− φ) + n2φ(Θ)cos(θ2(φ)− φ). (1)

The redistribution of particles in the two wells of a DWS assembly is ruled
by the rate equations[39]:180

dn1φ

dt
= − 1

τ1(t)
n1φ +

1

τ2(t)
n2φ =

1

τ2(t)
−
( 1

τ1(t)
+

1

τ2(t)

)
n1φ

(2)
dn2φ

dt
=

1

τ1(t)
n1φ −

1

τ2(t)
n2φ =

1

τ1(t)
−
( 1

τ1(t)
+

1

τ2(t)

)
n2φ.

In the standard Arrhenius picture the escape frequencies are τ−1
i = τ−1

0 exp
[
−

L
Θ

(εM − εi)
]
(i = 1, 2) where εi(t) are the energies of the two energy min-

ima, εM(t) is the energy at the top of the barrier(see Figure 1a), and L =

ln(τ0/τmeas)). The energies εi,M depend on time when h = h(t). The prob-
lem’s symmetry dictates the general relationship τ1(−h) = τ2(h) that holds185

at all angles φ.
It should be explicitly noted that the double-well configuration depicted in

Figure 1a is valid for |h| values not larger than a maximum value |hmax| that
depends on angle φ (for φ = 0 and φ = π/2, |hmax| = 1). Actually, when |h| >
|hmax| the DWS collapses and only one energy well is left. For a generic angle190

φ the rate equations must be numerically solved (details of the forward Euler
method are given elsewhere [39]); a first example of the features of the DWS
model applied to a cyclic magnetization process is given in Figure 1b, where
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three major hysteresis loops are plotted for an assembly of monodisperse
nanoparticles submitted to a magnetic field linearly decreasing/increasing in195

time well below blocking temperature. Further considerations about role and
representation of the rate of change of h(t) in cyclic conditions are reported
in Section 2.2

The curves of Fig. 1b are similar to but not coincident with the ones ob-
tained from the standard Stoner-Wohlfarth (SW) model [1] where the changes200

between n1φ and n2φ are not considered as produced by a thermally activated
process: they are assumed to occur when the absolute value of the applied
field reaches |hmax| and only one energy minimum remains.

The rate equations are considerably simplified when φ = 0, so that it205

becomes possible to solve them and to derive analytic expressions which help
understanding the underlying physics (see Sections 2.3 and 3). Finally, when
φ = π/2 the occupancy numbers n1π/2 and n2π/2 never change, so that the
rate equations reduce to dn1π/2/dt = dn2π/2/dt = 0.

2.2. Measurement Time and Sweep Rate in Cyclic Measurements210

Measurement time plays a central role in NP magnetism. In static con-
ditions, τmeas determines the magnetic regime (whether blocked or super-
paramagnetic) of the system at a given temperature [69]. Measurement time
also has effect on the time evolution of a DWS assembly during the cyclic
magnetization process. In this case however, a further parameter is to be215

considered, i.e., the rate of change of the magnetizing field h(t) (sweep rate).
In the recent literature on high-frequency effects, the sweep rate is sometimes
assumed to be proportional to τ−1

meas [66, 70]. However, such an identification
is far from being general if one makes reference to the experimental practice.

Hysteresis loops on NP systems are usually measured in two distinctly220

different experimental conditions: a) quasi-static measurements are done us-
ing e.g. a Vibrating-Sample Magnetometer or a SQUID Magnetometer; b)
frequency measurements are done using e.g. a BH Tracer based on the in-
duction principle:
a) in the quasi-static case the sweep rate of h is largely independent of τmeas.225

The magnetic field is automatically modified by the instrument at a nomi-
nal, built-in rate; after reaching each target value the field is kept constant
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for a fixed time (= τmeas) in order to measure the magnetization of sample
with due accuracy; then the field is changed again. The whole procedure is
therefore composed of a sequence of measurements at fixed field separated230

by fast changes of h at the nominal sweep rate of the instrument. As a
first approximation, the field can be assumed to change from an upper ver-
tex (hv) to a lower vertex (−hv) and viceversa according to the linear law
h(t) = h(0)±rt, where h(0) is the initial value of the dimensionless field, r is
the average sweep rate in quasi-static measurements, defined as 2hv/∆t (∆t235

being the total time taken by the instrument to do all measurements from the
upper to the lower vertex) and is considered constant over the whole inter-
val. This rate is a positive quantity, and the ± sign refer to the lower/upper
branch of the hysteresis loop. Therefore, in magnetometric measurements
there is basically no strict relation between sweep rate and measurement240

time: the two parameters must be kept distinct.
b) in high frequency measurements τmeas is conventionally taken as the re-
ciprocal of measurement frequency f [66, 71]. In this case the sweep rate
is no longer a constant; nevertheless, it is still possible to introduce a r.m.s
sweep rate rRMS defined as rRMS = (π/

√
2)hvf where hv is the dimension-245

less vertex field. In the literature, slightly different expressions for the r.m.s.
rate have been proposed f [66, 72]; however the above expression is more
adequate to treat the case of a sinusoidal h(t) waveform. The dimensionless
rate equations (2) can be easily rewritten in terms of the dimensionless field
h:250

dn1,φ

dh
= ∓1

r

[ 1

τ2(h)
−
( 1

τ1(h)
+

1

τ2(h)

)
n1,φ

]
(3)

dn2,φ

dh
= ∓1

r

[ 1

τ1(h)
−
( 1

τ1(h)
+

1

τ2(h)

)
n2,φ

]
.

where r → rRMS in frequency measurements and the ∓ sign refers to the
upper/lower loop branch.
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2.3. Simplified Rate Equations

An analytically manageable form of the full rate equations is obtained
by neglecting 1/τ1 for h > 0 and 1/τ2 for h < 0 in Eq. 3; in this way, two255

independent equations are obtained for positive and negative values of h:

dn1,φ

dh
= ± 1

rτ1(h)
n1,φ h < 0

(4)
dn2,φ

dh
= ± 1

rτ2(h)
n2,φ h > 0

where the ± sign refers to the upper/lower loop branch. In both regions
of h the evolution of the complementary occupancy number is determined by
the relation dn2φ/dh = −dn1φ/dh.

The approximation amounts to assume that particles in energy minimum260

1(2) of the double well do not leave the minimum when h > 0 (< 0), and
holds when both wells are sufficiently deep at h = 0, i.e., when rτ1(0) =

rτ2(0) = rτ0exp(L/Θ) � 1. In high frequency measurements, L changes to
Lf = ln(1/(fτ0)) and the blocking temperature TBf increases with respect to
the one resulting from quasi-static measurements (see Supplementary Mate-265

rial [73], Section 1); however, the ratio Lf/(T/TBf ) ≡ Lf/Θf is independent
of f and is always equal to the ratio L/Θ, as shown in the Supplementary
Material. The above condition leads to the following inequality for the tem-
perature Θ in order to make use of the simplified equations:

Θ <
L

ln
(

1
rτ0

) =
L

ln
( √

2
πfτ0

) (5)

The right-side quantity takes values ranging from 1.27 for f = 1 Hz to 6.65270

for f = 10 MHz; therefore, simplified rate equations can be exploited below
the static blocking temperature and can be used even well above, depending
on frequency. Applications of the simplified rate equations will be discussed
in the following Sections.
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2.4. Limiting Factors in the Treatment of Magnetic Hysteresis by the DWS275

Model

The area of a magnetization loop m(h) (such as the ones shown in Figure
1b) is equal to the dimensionless energy ε released by the DWS assembly
towards the surrounding environment. At a finite temperature the energy
is released by the combined effect of thermal activation and magnetic field,280

which causes an imbalance between 1 → 2 and 2 → 1 transition proba-
bilities; specifically, transitions from the energy minimum higher in energy
towards the one lower in energy prevail and the associated net energy flux
equals the energy lost to the environment. However, the hysteresis loss pre-
dicted by the DWS model (as well as by the SW model) does not account285

for all microscopic mechanisms of energy loss (as, e.g., dissipation of eddy
currents generated within each nanoparticle). Moreover, the model does not
enter the details of the actual dynamics of the reversing macrospin during
the transition from one double-well minimum to the other; in fact, macrospin
reversal is considered to instantaneously take place once it is initiated by ac-290

tivation. This is of course an oversimplification because the actual magnetic-
moment reversal should follow a magnetization-dynamics equation such as
the Landau-Lifshitz-Gilbert equation [69].
An operational limit of the rate equation model applied to a DWS assembly,
partially related to the previous considerations, appears when high-frequency295

measurements are considered. By definition the highest escape frequency in
the Arrhenius formalism is τ−1

0 ≈ 1 × 109 Hz. As a consequence, the DWS
assembly becomes increasingly non-responding as f approaches such a limit;
the highest frequency studied in this work is therefore f = 1×107 Hz (for mi-
nor loops). This limit of the rate equation model was already acknowledged300

[72]. At higher frequencies, the model is no longer adequate and should be
substituted by other approaches able to account for faster changes of mag-
netization.
Despite these limits and criticalities, the rate equation model permits no-
table advances in knowledge and application of magnetic nanoparticles in305

dynamical conditions and has many advantages with respect to more sim-
plified treatments of cyclic magnetization processes, as shown in the next
Sections.
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3. Analytic Expressions for φ = 0 and φ = π/2

Although the NP easy axes in a real system usually point at random along310

all directions in space, the response of a DWS assembly with aligned easy axes
is a most interesting study case, because it allows one to derive approximate
rate equations and to find analytical solutions when the magnetic field is
applied either parallel (φ = 0) or perpendicular (φ = π/2) to the common
easy axis of nanoparticles.315

3.1. Energies and Time Constants

When φ = 0, the energies εi, εM are:

ε1 = −2h, εM = 1 + h2, ε2 = 2h (6)

so that the time constants τi become:

τ1 = τ0e
L
Θ

(1+h)2

, τ2 = τ0e
L
Θ

(1−h)2

When φ = π/2 the energies are:

ε1 = ε2 = −h2, εM = 1− 2h (7)

resulting in identical time constants:320

τ1 = τ2 = τ0e
L
Θ

(1−h)2

3.2. Solutions of the Simplified Rate Equations for φ = 0

When φ = 0 the simplified rate equations (4) admit the solutions:
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n10(h) = n10(hi)exp
(
± 1

r

∫ h

hi

1

τ1

dh
)

= n10(hi)exp
(
± 1

rτ0

∫ h

hi

e−
L
Θ

(1+h)2

dh
)

h < 0

(8)

n20(h) = n20(hi)exp
(
± 1

r

∫ h

hi

1

τ2

dh
)

= n20(hi)exp
(
± 1

rτ0

∫ h

hi

e−
L
Θ

(1−h)2

dh
)

h > 0

where hi is the initial value of h and again the ± sign refers to the up-
per/lower loop branch. These solutions will be exploited in the following
Sections.325

When φ = π/2 the populations in the two wells are equal and constant,
both below and above Θ = 1.

3.3. Coercive Field

Let us refer to the upper half of a major loop, with h taking values from
the positive vertex field hv = 1 to hv = −1. From the approximate rate330

equations, it is possible to obtain an analytic expression of the coercive field.
The coercive field hc is a negative quantity in this case, so that the first
of the Equations (8) must be used. The resulting expression for hc is (see
Supplementary Material [73], Section 2, for details):

hc = −1 +
(Θ

L

)1/2

erf−1
(

1− 2√
π

(L
Θ

)1/2

τ0rln2
)

where erf−1(y) is the inverse error function of argument y = 1 − x =335

1 −
[

2√
π

(
L
Θ

)1/2

τ0rln2
]
. The quantity x is always very small, so that an
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approximate expression of the erf−1 function [74] can be used, resulting in
the following analytically manageable expression for |hc|:

|hc| = 1−
(Θ

L

)1/2
[
− 2

πa
− ln(2x)

2
+

√( 2

πa
+
ln(2x)

2

)2

− ln(2x)

a

]1/2

(9)

where a ≈ 0.14 [74]. It should be noted that this expression is valid not
only in quasi-static measurements but also at high magnetizing frequency340

(with the only proviso that the r.m.s. rate rRMS substitute the static rate
r). The behavior of hc(Θ) is shown in Figure 2 for various values of fre-
quency, including quasi-static measurements. For each frequency, the lines
correspond to the approximate expression (9) and the symbols to the value
of hc obtained by numerically integrating the full rate equations (3). As ex-345

pected, the agreement between the two sets of data is always excellent for all
values of Θ compatible with condition (5).

According to Equation (9), hc is not zero at Θ = 1 (i.e., at the blocking
temperature) even in quasi-static measurements (full symbols in Figure 3).
As a matter of fact, hc only disappears at temperatures where thermal equi-350

librium is reached by the system, as clearly shown in Figure 3. There, the
behavior of the coercive field of a quasi-static loop is plotted together with the
ZFC susceptibility curve and the corresponding equilibrium susceptibility[39]
in the region around Θ = 1. As known, the distance of the ZFC susceptibility
from the equilibrium value measures how far the nanoparticle system is from355

thermal equilibrium. Indeed, hc disappears exactly when the ZFC curve (full
line) merges with the equilibrium curve (dashed line).
The present analytic expression for hc has the same structure as the formula
obtained in the simplest approach to coercive field of collinear NPs with φ = 0

[60], i.e., hc = 1−Θ1/2 = 1− (T/TB)1/2 (Kneller’s law), which however fails360

to account for the actual behavior of hc near to blocking temperature. As a
matter of fact, any expression not containing the magnetizing frequency or
the field sweep rate cannot fit the behavior of hc(Θ) predicted by the rate
equation model. Furthermore, Equation (9) is more accurate (particularly at
high frequencies) than the corresponding expression proposed by Usov [59].365

As clearly shown in Figure 2, the analytic expression for hc provides a
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Figure 2: Symbols: temperature behavior of the coercive field of collinear monodis-
perse nanoparticles (φ = 0) at different magnetizing frequencies, resulting from
the full rate equations; full lines: approximate analytical law (Equation (9). In-
set: hysteresis loops appearing at high frequencies well above the static blocking
temperature.
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Figure 3: Coercive field hc (symbols), ZFC susceptibility χZFC (blue full line) and
equilibrium susceptibility χEQ (red dotted line) around blocking temperature for
collinear monodisperse nanoparticles (φ = 0).
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Figure 4: Coercive field as a function of magnetizing frequency for collinear monodis-
perse nanoparticles (φ = 0) at three temperatures.

good approximation of the exact value at almost all temperatures Θ and at
all investigated frequencies, and can be exploited to evaluate how much does
hc increase with increasing f , as shown in Figure 4 for three values of Θ.
In particular, when Θ � 1 quasi-static and low-frequency curves become370

fully reversible (hc = 0), as expected; however, a hysteresis loop opens at
higher frequencies. An example is reported in the inset of Figure 2 where the
hysteresis loops for f ≥ 103 Hz are shown at Θ = 2.5; magnetization curves
taken at lower frequencies are reversible.
When φ = π/2 the m(h) curve displays no hysteresis.375
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3.4. Energy Stored in the DWS assembly

The general expression of the total energy of a DWS assembly is:

ε = n1φε1 + n2φε2

When φ = 0 the magnetization (Equation(1)) becomes:

m = 2n10 − 1 = 1− 2n20 (10)

and the total energy can be written:

ε = −2h(n10 − n20) = −2hm

where use has been made of Equations (6) and (10). Temperatures below380

and above Θ = 1 are separately considered:

a) below Blocking Temperature
When Θ < 1 the values of n10 and n20 can be obtained from the sim-

plified rate equations (4). The left-side panels of Figure 5 show energy and385

magnetization for φ = 0, Θ = 0.5 for the upper branch of a major hysteresis
loop (full black lines; for clarity’s sake the lower branch of both m(h) and
ε(h) are also shown as dotted lines). In this case, the magnetic field decreases
from hv = +1 to −hv = −1. When h = +1, only one energy minimum (1)
exists and the system’s Zeeman energy is minimized. When h is reduced390

the second energy minimum (2) appears, but is initially empty because the
quantity rτ1 is so large that dn10/dt ' 0. When the field becomes negative,
the energy is no longer minimized; however, initially rτ1 is still so large that
the 1 → 2 transitions are inhibited. A positive magnetic energy equal to
2n10h (in standard units, N10µH erg/cm3) is stored in the system. Around395

−|hc| the quantity rτ1 suddenly drops (and simultaneously rτ2 strongly in-
creases) so that the 1 → 2 transition processes become dominant, until the
energy well (1) is completely emptied. The stored magnetic energy is quickly
released by the ensemble to the environment as heat and the energy of the
DWS assembly is again minimized.400

b) above Blocking Temperature
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Figure 5: Left panels: behavior of energy ε and magnetization m on the upper
branch of a major loop well below blocking temperature for collinear monodisperse
nanoparticles (black full lines: φ = 0, black dashed lines: φ = π/2 ); behavior of
ε for an assembly of monodisperse nanoparticles with random easy axes (red line).
Right panels: the same quantities above blocking temperature.
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In this case, the full rate equations must be used because condition (5) is
no longer fulfilled. The full lines in the right-side panels of Fig. 5 show energy
and magnetization above blocking temperature (Θ = 1.15). As expected, the405

hysteresis loop disappears, and no magnetic energy accumulation is observed.
Here n10 = 1

1+e−α
and n20 = e−α

1+e−α
are the equilibrium occupancy values [39],

and α = (L/Θ)(ε2 − ε1) = 4(L/Θ)h ≈ 100h; therefore the energy becomes:

ε = −2h
1− e−α

1 + e−α
≈ −2h

the latter approximate equality being valid almost everywhere on the h
axis because α� 1 with the exception of a narrow region around h = 0 where410

the ε(h) curve continuously changes its slope without exhibiting a cusp.
When φ = π/2 the magnetization (Equation (1)) becomes:

m = −1 h < −1

m = h − 1 ≤ h ≤ 1

m = +1 h > 1

and the total energy is written, using Equation (7) :

ε = (n1π/2 + n2π/2)ε1 = ε1 = −h2

In this case, there is no difference between the curves taken above and
below blocking temperature, as shown in Fig. 5 (dashed black lines in the415

upper panels).
A discussion about the phase shift occurring between driving field and mag-
netization in high-frequency measurements is given in the Supplementary
Material [73], Section 3.

3.5. Curves of First Magnetization at Different Temperatures and Frequen-420

cies

The DWS assembly is now considered to be initially in the demagnetized
state (h = 0, m = 0, n10 = n20 = 1/2). The field is increased from h = 0 to
h = 1. The second simplified rate equation (4) applies; the solution with the

21



minus sign in the argument of the exponential must be used in the present425

case:

n20(h) =
1

2
exp
(
− 1

rRMS

∫ h

0

1

τ2

dh
)

so that by Equation (10)

m(h) = 1− e−
1

rRMS

∫ h
0

1
τ2
dh
. (11)

As shown in the Supplementary Material [73], Section 4 , Equation (11)
can be transformed into:

m(h) = 1− e−β(h)

β(h) =

√
π

2

1

τ0rRMS

(Θ

L

)1/2{
erf
[(L

Θ

)1/2]
− erf

[(L
Θ

)1/2

(1− h)
]}

(12)

'
√
π

2

1

τ0rRMS

(Θ

L

)1/2{
1− erf

[(L
Θ

)1/2

(1− h)
]}

where erf is the error function and 0 ≤ h ≤ 1. The assumption

erf
[(

L
Θ

)1/2]
' 1 is allowed because the argument is considerably larger than

unity for all Θ values of interest. Note that the first magnetization curve de-430

pends on frequency only through the rate rRMS. A set of curves at two fixed
temperatures and at different frequencies have been obtained using the ap-
proximation of the erf function[75, 76] given in the Supplementary Material
[73], Section 5, and are shown in Figure 6 (full lines for Θ = 0.5, dashed lines
for Θ = 2). The validity of the simplified rate-equation approach has been435

verified by comparing the curves for f = 100 kHz with the results obtained by
solving the full rate equations (Equation (3)) at both temperatures (circles
in Figure 6): the agreement is excellent. At Θ = 2, however, the simplified
rate equations and Equation (12) can be used only above 100 Hz, as required
by Equation (5).440
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Figure 6: Curves of first magnetization for collinear monodisperse nanoparticles
(φ = 0) at two temperatures (full lines: Θ = 0.5, dashed lines: Θ = 2) obtained
from Equation (12) for different magnetizing frequencies. Symbols: first magneti-
zation curves resulting from integration of the full rate equations.
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4. Minor Loops and Initial Loop Anomaly for an Arbitrary Angle
φ

When the vertex field hv is less than unity in absolute value, the magneti-
zation of a DWS assembly follows a symmetric minor loop [70]. In principle,
|hv| can take any value between 0 and 1 for any angle φ between the easy axis445

and the magnetic field; the latter is oscillating between hv and −hv at a fixed
frequency f . The study of minor loops is not only interesting per se (in high-
frequency measurements one usually deals with minor loops [70, 77]), but
also because of a remarkable effect appearing in a DWS assembly submitted
to cyclic magnetization. As a matter of fact, when the magnetization begins450

to follow a minor loop at a given frequency f starting from the demagnetized
state (m = 0), the steady state characterized by stable, self-similar closed
loops is reached only after a sequence of iterations that depends on the value
of vertex magnetization mv = m(hv).

A typical example of such an anomaly is shown in the top panels of Figure455

7. The top left panel shows minor hysteresis loops of collinear nanoparticles
obtained by solving the full rate equations for φ = 0 starting from the de-
magnetized state. The first magnetization curve up to hv (indicated by label
0) is followed by a sequence of loops (numbered by 1, 2, 3, ..) whose trajec-
tories do not to close on themselves and keep spiralling in the (h,m) plane.460

The center of symmetry of each loop is not at (h = 0,m = 0) but is shifted
along the positive vertical axis; however, such a shift steadily goes to zero
with increasing the number of iterations. The effect is observed at all angles
(excluding φ = π/2); two examples are shown in the top right panel of Figure
7.465

In order to explain the nature of the anomaly and to provide a quantita-
tive picture of the effect it is convenient to use the simplified rate equations
when this is possible.

4.1. Simplified Rate Equations for Minor Loops

First, it is shown that when hv < 1 and for an arbitrary value of φ the470

condition determining when rate equations can be applied in the simplified
form (Equation (4)) does not only involve the temperature as previously
discussed (Equation (5)) but also hv and φ. Simplified equations can be
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Figure 7: Top panels: minor loops of monodisperse nanoparticles for three φ angles.
Bottom panel: first magnetization curve of an assembly of collinear monodisperse
nanoparticles (φ = π/6) well below blocking temperature at fixed magnetizing
frequency (black line). Insets: shapes of minor hysteresis loops whose vertex fields
are highlighted on the black line. Labels A − E in the top inset show the states
referred to in the text.
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used when either τ−1
1 becomes negligible with respect to τ−1

2 or viceversa,
the first condition applying to the case h > 0. It is possible to make this475

condition more quantitative by requiring, e.g., that τ−1
2 ≥ 1× 103 τ−1

1 at the
positive vertex field (where the largest possible difference between τ1 and τ2

is expected). With reference to the general definitions of τ−1
1 and τ−1

2 given
in Section II.1 this requirement can be put in the form:

ε2(φ, hv)− ε1(φ, hv) ≥
Θ

L
ln(1× 103) ≈ 6.91

Θ

L
(13)

the energies in the potential wells εi being:480

εi(φ, hv) = sin2θi(φ)− 2hvcos(θi(φ)− φ)

For a given temperature Θ satisfying to Equation (5) the above condition
is not fulfilled by all pairs of values of hv and φ. Direct calculation shows
that for a given vertex field hv the angle φ cannot exceed an upper limit, as
shown in Figure 8 where the shaded area contains the pairs of hv, φ values
satisfying to Equation (13) at two temperatures. In major loops (hv = 1),485

the simplified rate equations can be applied at all angles.
When φ = 0, ln(τ1/τ0) = L

Θ
(1 + hv) and ln(τ2/τ0) = L

Θ
(1 − hv) so that

the condition reduces to:

hv ≥ 6.91
Θ

L
.

As an example, when Θ = 0.5, hv must be larger than about 0.14.

4.2. Loop anomaly490

We consider a DWS assembly submitted to cyclic magnetization with
positive vertex field hv at frequency f and temperature Θ , all parameters
being such that the simplified rate equations apply. Initially h = 0 andm = 0

(demagnetized state, point A in the upper inset, bottom panel of Figure 7;
in this case the applied field is h(t) = hvsin(2πft) and the states B → E are495

reached in sequence. The vertex magnetization on the first magnetization
curve (point B) is m[1]

v = m(hv); points C and E correspond to the upper
and lowermagnetic remanence m[1]

RUP , m
[1]
RLO on the first loop. When the

field reaches again the positive vertex a new loop begins.
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Figure 8: The shaded region contains all pairs of values of angle φ and vertex field hv
such that the simplified rate equations can be applied at the magnetizing frequency
f and at two temperatures.
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The general solutions of the simplified rate equations (Equation (8)) allow500

one to obtain the values of the upper and lower remanence m[k]
RUP and m[k]

RLO

as functions of the number of iterations k. Detailed calculations are given in
the Supplementary Material [73], Section 6. The result is:

m
[k]
RUP =

{
1− 2z

[
1− z2k−2

1 + z
+

1

2
z2k−2

]}
cosφ

(14)

m
[k]
RLO =

{
1− 2

[
1− z2k

1 + z
+

1

2
z2k

]}
cosφ

where k = 1, 2, 3, ... is the number of loop interations and:

z =
4

β2
φ

(αφ −m[1]
v )2 (15)

with αφ = cos(θ1(hv) − φ) and βφ = [cos(θ1(hv) − φ) − cos(θ2(hv) − φ)].505

When φ = 0, the simpler relation z = (1−m[1]
v )2 holds.

The typical behavior with k of m[k]
RUP , m

[k]
RLO and of their arithmetic mean

(m[k]
AV = m

[k]
RUP + m

[k]
RLO)/2 is shown in the top panel of Figure 9 for two

different values of hv. The three quantities relax towards asymptotic values
with a rate strongly increasing with increasing hv. Large open symbols show510

the exact results obtained from the full rate equations, whereas the small
symbols (perfectly superimposed to the previous ones) correspond to the
prediction of Equation (14) deriving from the simplified rate equations. It
should be remarked that in closed hysteresis loops the arithmetic mean of
the remanences is zero, corresponding to loops centered in the origin. In fact,515

the two remanences become equal in absolute value and opposite in sign in
the limit k →∞:

limk→∞
[
m

[k]
RUP

]
=
(

1− 2z

1 + z

)
cosφ =

1− z
1 + z

cosφ

(16)

limk→∞
[
m

[k]
RLO

]
=
(

1− 2

1 + z

)
cosφ = −1− z

1 + z
cosφ
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Figure 9: Top panel: upper/lower remanences m[k]
RUP/LO and arithmetic mean

m
[k]
RAV of minor loops with two different vertex fields hv as functions of the number

of iterations k for an assembly of collinear (φ = π/6) monodisperse nanoparticles.
Large open symbols: values resulting from the full rate equations; full symbols: val-
ues obtained from Equation (14). Bottom: number of iterations needed to reach
the asymptotic remanences k∗ (left panel) and visibility factor v (right panel; see
Supplementary Material [73], Section 7) as functions of vertex field for two values
of φ. 29



The following conclusions can be drawn:
a) in general, minor loops of a DWS assembly initially do not close on

themselves: the arithmetic mean of the two remanences starts from a positive520

value and becomes zero only after an ideally infinite number of iterations; in
other words, the system is self-adjusting and the spiral path initially followed
by the magnetization in the (h,m) plane gradually transforms into a closed
loop;

b) however, loops where m[1]
v ≡ αφ are closed loops since the very be-525

ginning because z = 0 and there is no relaxation of the remanence. This
condition amounts to say that the loop is a major loop for any angle φ
(6= π/2): in fact, Equation (1) shows that when hv is such that m[1]

v = αφ
only one potential well survives and n1φ = 1; such a condition defines the
major loop. As a consequence, major loops are stable for any φ; when φ = 0530

the condition for having a closed loop since the beginning becomes simpler:
m

[1]
v = 1, i.e., hv ≥ 1;
c) the smaller the pair of (hv,mv) values is, the slower the system’s re-

laxation. This is clearly shown in the bottom right panel of Figure 9 for
two values of φ; there, k∗ is the number of iterations needed to reach the535

asymptotic remanence values.
In order to establish a quantitative criterion to determine k∗, we introduce

the relative variation R[k] =
[(
m

[k]
RUP + m

[k]
RLO

)
/
(
m

[k]
RUP −m

[k]
RLO

)]
, which is

a positive, monotonically decreasing function of k with asymptotic value
R[∞] = 0 as easily proven by Equations (14) and (16). In this work, k∗ is540

defined as the value of k at which R[k] becomes less than 1× 10−3.
Finally, it has been verified that the anomaly exists independently of the

starting point of the loops. It should be noted that the limit hv → 0 cannot
be properly investigated for two orders of reasons: i) the simplified rate
equations no longer hold in this limit (see Section 4.1); ii) the loop becomes545

extremely narrow and cannot be resolved by numerically solving the rate
equations.
A visibility factor for the loop anomaly can be defined, as shown in the
Supplementary Material [73], Section 7.
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5. Hysteresis Loops of a DWS Assembly with Random Easy Axis550

Directions

The behavior of a DWS assembly with randomly distributed easy axes
is studied by averaging the solutions of the full rate equations (3) over all φ
angles. In three dimensions, the average of a φ-dependent quantity g(φ) is
the sum:

∑N
1 g(φi)sin(φi)/

∑N
1 sin(φi) over N angles in the interval −π/2 ≤555

φi ≤ π/2. In this work, N has been fixed to 181; the relative difference
between the average done with N = 181 and with N = 1801 is negligible [39]
(< 2× 10−3).

5.1. Quasi-static conditions

5.1.1. Stored Energy560

An expression for the energy of a system with randomly distributed easy
axes is obtained starting from the general expression of the energy ε(φ) stored
in a collinear DWS assembly with arbitrary φ, i.e.:

ε(φ) = −2hm+
sin2θ1 − sin2θ2

cos(θ1 − φ)− cos(θ2 − φ)
m

(17)

− sin2θ1 cos(θ2 − φ)− sin2θ2 cos(θ1 − φ)

cos(θ1 − φ)− cos(θ2 − φ)

as calculated in the Supplementary Material [73], Section 8. It is easily
checked that Equation (17) reduces to ε = −2hm and ε = −h2 for φ = 0565

and φ = π/2, respectively (see Section 3.4). The average over all φ values is
reported in Figure 5 for Θ = 0.5 and 1.15 (red lines). The same comments
of Section 3.4 apply: in particular, during every half-cycle the magnetic
energy is first stored in the DWS assembly and then quickly released to the
environment at h ≈ |hc|. Averaging over all angles has the effect of somewhat570

reducing the amount of stored energy per cycle with respect to the collinear,
φ = 0 case; in fact, the best storage efficiency is associated to those particles
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whose easy axis is aligned to the magnetic field so that a textured material
with a dominant easy-axis direction would more efficient as a heat generator.

5.1.2. Curves of First Magnetization575

The first magnetization curves of a system with randomly distributed
easy axes are shown in Figure 10 in quasi-static conditions and for tempera-
tures in the range 0 ≤ Θ ≤ 1.15. The result for Θ→ 0 is coincident with the
Stoner-Wohlfarth first magnetization curve, i.e., the average between upper
and lower branch of the SW loop [1]. The sudden change in slope of m(h)580

corresponds to the field where the change of occupancy numbers n1 and n2

is largest; the effect occurs at increasingly lower fields with increasing tem-
perature; finally, when Θ > 1 m(h) becomes coincident with the equilibrium
curve.

5.1.3. Effects of Temperature and Sweep Rate585

The sweep rate r of the magnetic field has a detectable effect on the
temperature dependence of the coercive field of a system whose kinetics is
described by rate equations [59]. Figure 11 shows the hc(Θ) curves for a
monodisperse system obtained solving the full rate equations both in quasi-
static conditions (reduced sweep rate r) and at a high frequency f . The590

curves become significantly less steep with increasing r or f . In quasi-static
conditions, the considered r values have been chosen to result in actual sweep
rates of 1 − 100 Oe/s in measurements done on typical magnetite nanopar-
ticles (Keff ≈ 5× 105 erg/cm3, Ms ≈ 350 emu/cm3, D ≈ 7× 10−7 cm); this
is basically the interval of instrumental sweep rates in quasi-static measure-595

ments done using a standard magnetometer.
In this range of r values, the hc(Θ) curves obtained by solving the com-

plete rate equations (open symbols in Figure 11) are well fitted by the fol-
lowing law:

|hc| = 0.479

{
1−
(Θ

L

)γ[
− 2

πa
− ln(2x)

2
+

√( 2

πa
+
ln(2x)

2

)2

− ln(2x)

a

]γ }
(18)

where γ ' 0.77 (full lines in Figure 11). This law is a straightforward600

generalization of Equation (9) valid for the φ = 0 case, the argument x being
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Figure 10: First magnetization curves of an assembly of monodisperse nanoparticles
with random easy axes directions in quasi-static conditions at different tempera-
tures. The dotted line for Θ = 1.15 is the equilibrium curve.
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Figure 11: Temperature dependene of coercive field hc for an assembly of monodis-
perse nanoparticles with random easy axes, for typical sweep rates of quasi-static
measurements (bottom horizontal axis) and typical high frequencies (top horizon-
tal axis). Symbols: results of full rate equations; lines: approximate analytic law
(Equation (18)). Inset: shape of the corresponding hysteresis loops at fixed tem-
perature.
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defined as x =
[

2√
π

(
L
Θ

)1/2

τ0rln2
]
as before. The approximate expression

of the erf−1 function entering Equation (18) begins to lose validity near to
hc = 0 exactly as in the φ = 0 case.

Interestingly, the same exponent γ ' 0.77 appears in the power law605

hc/hc(0) = 1−Θγ proposed by Pfeiffer [65] for nanoparticles with randomly
distributed easy axes, and often used in the analysis of experimental results
[78, 79, 80, 81]. This exponent results from the analysis of thermal fluctu-
ations when one considers the different effect of temperature on irreversible
and reversible magnetization processes taking place in the nanoparticle as-610

sembly [65, 82]. A similar power law with γ = 0.75 was derived starting from
the behavior of barrier energy with angle φ in the SW approximation [83].
However, these laws are not based upon a rate equation model and therefore
do not take into account the effect of the rapidity at which the magnetic field
changes. Our results clearly indicate that no simple power law of the type615

hc/hc(0) = 1−Θγ is able to fit the true temperature behavior of the coercive
field of an assembly of DWS with random easy axes. In fact, the shape of
hc(Θ) is markedly influenced by the sweep rate. Approximate expressions for
hc(Θ) derived from a rate equation approach and explicitly containing the
sweep rate have been proposed[59, 66]; however, they are less effective than620

Equation (18) in reproducing the exact temperature dependence of coercivity
in this range of r values.

The major hysteresis loops of the DWS assembly calculated well below
blocking temperature (Θ = 0.6) are reported in the inset of Figure 11 for
the same sweep rates (line colors correspond to symbols in the main frame).625

The results clearly indicate that the most important effect of sweep rate is
actually on hc, while the kinetics of redistribution between the two energy
wells is only marginally affected by a quasi-static sweep rate.

5.1.4. Effects of Size Distribution
The effect of a distribution of nanoparticle sizes on the hysteretic proper-630

ties of a DWS assembly with random easy axis directions is shown in Figure
12. The size distribution is assumed to be lognormal with median diameter
D0 and shape parameter σ:
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Figure 12: Left panel: effect of nanoparticle size distribution on the temperature
behavior of the coercive field for an assembly of nanoparticles with random axes
in quasi-static conditions. The corresponding p(D) curves are shown in the inset.
Right panel: effect of the distribution on the shape of major hysteresis loops at
fixed temperature.

36



p(D/D0) =
1√

2πσ2

1

(D/D0)
e−

ln2(D/D0)

2σ2 ,

σ = 0 corresponding to a monodisperse system. The average blocking
temperature < TB > is defined as the temperature where the particles of635

size < D > become blocked. The behavior of hc as a function of < Θ >=

T/ < TB > is shown in the left panel of Figure 12 for three values of σ
(the corresponding p(D) curves being displayed in the inset). The smooth
monotonic behavior of hc(T ) is generally preserved; however, the tail of the
curve above < Θ >= 1 becomes more pronounced with increasing σ because640

of the increasing contribution from larger nanoparticles still in the blocked
state. On the contrary, at low < Θ > values the coercive field is lower
for higher σ because of the increased influence of small NPs which become
unblocked well below < Θ >= 1. Increasing σ makes the hysteresis loops
less steep and more slender in shape (an example is given in the right panel645

of Figure 12). The loop area decreases from AL = 0.440 to AL = 0.345

when the size distribution broadens (σ = 0 → σ = 0.2). This is expained
considering that the field region where the occupancy numbers n1 and n2 are
modified by the rate equations becomes larger in a polydisperse system.

5.2. High frequency650

Finally, the effect of frequency on the hysteretic properties of a monodis-
perse system with randomly distributed easy axes is shown in Fig. 13. Here,
we limit ourselves to discuss major loops. The left panel shows the loops
calculated at different frequencies for Θ = 0.5. The curve calculated in
quasi-static conditions is reported for comparison (dotted line). Increasing655

the frequency causes a shift of hc towards higher values; the region of fields
where the most important changes in occupancy numbers n1, n2 occur be-
comes slightly wider. Both effects contribute to the increase of the loop area
with frequency reported in the right panel of Fig. 13. In the investigated
region, the increase of loop area AL is almost linear with the logarithm of f ,660

corresponding to a power law of the type AL ∝ f ζ with ζ ≈ 0.03.
The behavior of the coercive field as a function of temperature is well

fitted by Equation (18) with the same exponent (γ = 0.77) even at high
frequencies, as shown in Figure 11 for f = 10 and 100 kHz, corresponding to

37



Figure 13: Left panel: effect of frequency on the shape of major loops for an assembly
of nanoparticles with random easy axes at fixed temperature. Right panel: loop
area AL as a function of magnetizing frequency.

the typical operation range in magnetic hyperthermia applications. There-665

fore, Equation (18) is appropriate to describe the coercive field behavior of
hysteresis loops measured in all types of experimental conditions.
It is remarkable that the expression of hc for a random assembly of NPs
(Equation (18)) is almost identical to the one for collinear DWS and φ = 0

(Equation (9)), with the mere substitution of the exponent γ = 1/2 with670

γ = 0.77 exactly as in the formulas for hc derived from Stoner-Wohlfarth
theory[78].

6. Conclusions

A method based on rate equations has been applied to study magnetic
hysteresis in an assembly of uniaxial nanoparticles described as double well675

systems. Although rate equations result from an approximation to magneti-
zation dynamics in nanosystems, they allow an accurate picture of hysteresis
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to be gained without much computational effort.
Rate equations can be further simplified by making special additional as-
sumptions which hold for a large range of values of temperature, magnetic680

field and angle between field and easy axis. As a consequence, simple an-
alytical expressions of significant quantities such as coercive field, magnetic
energy, time lag of magnetization have been easily obtained in the case of
collinear DWS. The analytical expressions given in this work can be applied
over a very large range of magnetizing frequencies, including the ones typi-685

cally used in practical applications of materials for magnetic hyperthermia.
A new expression for the temperature behavior of the coercive field, working
at all frequencies of interest, has been derived in the case φ = 0. This ex-
pression can be applied, in a slightly modified form, to the interesting case
of an assembly of DWS with randomly oriented easy axes.690

The phase shift between m(t) and h(t) at a given magnetizing frequency has
been directly linked to the value of the coercive field at the same frequency,
allowing the latter to be easily obtained in measurements done using a lock-
in amplifier.
A distinctive anomaly has been observed in minor hysteresis loops and quan-695

titatively expained. Simplified rate equations allow one to deduce analytical
laws and to predict the condition of maximum visibility of the effect. From
a fundamentalist′s viewpoint, the effect is interesting because it shows how
much does the kinetics of population redistribution impact on a system′s
ability to reach the steady state under the effect of a steady driving force.700

Such an anomaly turns out to be certainly non-negligible in loops whose ver-
tex fields are much lower than the coercive field. This is the usual condition
when operating at high frequencies in a typical experiment of magnetic hy-
perthermia: in that case vertex fields are rather low for technical reasons
related to the response of magnetizing coils, whereas the coercive field is705

much larger than in quasi-static measurements, as shown in this work; there-
fore the condition hv << hc is usually met in hyperthermia measurements,
so that this anomalous effect is hardly an academic issue.
A random distribution of easy axes preserves all features observed in the
collinear system while somewhat smoothing the effects. At high frequency,710

the area of a major loop increases with frequency according to a power law.
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A distribution of nanoparticle sizes p(D) brings about changes in the be-
havior of coercive field with temperature, shape of the loop and loop area.
In particular, the wider the size distribution is, the smaller the loop area.
However, the size distribution of nanoparticles has probably less effect on715

the hysteretic properties than on the FC/ZFC curves whose features are ex-
tremely dependent on mean value and width of p(D).

In conclusion, simplified rate equations describe the hysteretic behavior of
an assembly of non-interacting magnetic nanoparticles in a most satisfactory720

way, the simplifications involved in the model being useful to reduce the com-
plexity of the problem without significantly distorting the underlying physics.
The results of the present study can also be applied to the important case of
weakly interacting nanoparticles where the effect of interparticle interaction
can be described by an effective field theory, and can serve as a starting point725

in the description of magnetic hysteresis in strongly interacting NP systems
where magnetization reversal is a collective process rather than the result of
independent events.
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SUPPLEMENTARY MATERIAL TO:

HYSTERESIS EFFECTS IN MAGNETIC
NANOPARTICLES: A SIMPLIFIED

RATE-EQUATION APPROACH
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1INRIM, Advanced Materials Metrology and Life Sciences, Strada delle Cacce 91, 10135
Torino (TO), Italy

2DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy

1 - Ratio L/Θ in Frequency Measurements

In measurements done at frequency f the blocking temperature TBf is
defined by the relation LfkBTBf = KeffV where Lf = ln(1/(fτ0)); as a
consequence the blocking temperature of a DWS assembly increases with5

respect to the static (f → 0) blocking temperature TB, so that at any T the
reduced temperature Θf = T/TBf is smaller than Θ = T/TB; however the
ratio Lf/Θf turns out to be independent of f because

Lf
Θf

=
LfTBf
T

=
KeffV

kBT
=
LTB
T

=
L

Θ

where L = ln(τmeas/τ0) = ln(100/τ0) ' 25 is the conventional relation
valid for quasi-static measurements.10

2 - Explicit Calculation of hc for φ = 0

On the upper half of a major loop, h continuously decreases from hv = 1

to hv = −1. Well below TB the potential energy well (1) is completely filled
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(hv = 1→ n10 = 1,m = 1). The coercive field on the loop’s upper branch hc15

is defined as the negative field such that m = 0, i.e., n10 = 1/2. Therefore,
the first of Equations 8 of the main text becomes:

1

2
= exp

( 1

τ0rRMS

∫ hc

1

e−
L
Θ

(1+h)2

dh
)

where hc < 0; the equation transforms to:∫ 1

hc

e−
L
Θ

(1+h)2

dh = τ0rRMSln2

Making the substitution of variable L
Θ

(1 + h)2 = u2 one has:

∫ 1

hc

e−
L
Θ

(1+h)2

dh =
(Θ

L

)1/2
∫ 2(Θ/L)1/2

(Θ/L)1/2(1+hc)

e−u
2

du =

=

√
π

2

(Θ

L

)1/2
{
erf

[
2
(L

Θ

)1/2
]
− erf

[(L
Θ

)1/2

(1 + hc)

]}
= τ0rRMSln2

It is possible to put erf
[
2
(
L
Θ

)1/2]
= 1 because the argument is consid-20

erably larger than unity for all Θ values of interest here; therefore:

erf

[(L
Θ

)1/2

(1 + hc)

]
= 1− 2√

π

(L
Θ

)1/2

τ0rRMSln2

This relation allows one to express hc as:

hc = −1 +
(Θ

L

)1/2

erf−1

[
1− 2√

π

(L
Θ

)1/2

τ0rRMSln2

]
Recalling the definition of rRMS, hc becomes:

hc = −1 +
(Θ

L

)1/2

erf−1

[
1−

(L
Θ

)1/2

τ0fln2

]

2



The coercive field on the upper loop branch turns out to be a negative
quantity, as expected. By analogy, the coercive field on the lower loop branch25

is:

hc = 1−
(Θ

L

)1/2

erf−1

[
1−

(L
Θ

)1/2

τ0fln2

]

When x =
(
L
Θ

)1/2

τ0fln2 is much smaller than one, the approximate ex-
pression of the erf−1 function [2] reported in Equation (9) of main text can
be applied. In fact, the condition x� 1 is valid even for very small Θ values;
for example when f = 1 MHz, Θ must be larger than about 10−5 (an easily30

satisfied condition) in order to use Equation (9).

3 - Phase Shift in High-Frequency Measurements
In typical high-frequency measurements, the system′s response is mea-

sured as a function of time by applying a sinusoidal waveform h(t) [1]. Here,35

the field is supposed to be initially at the positive vertex of a major loop
(hv = 1); therefore, h(t) = cos(ωt) where ω = 2πf . According to Equation
(10) of main text the magnetization is m(h) = 2n10(h)− 1; initially n10 = 1

and m = +1. The m(t) waveform is obtained using the simplified rate equa-
tions 4 of the main text; h(t) and m(t) are plotted as functions of time in40

the left panel of Fig. 1 for Θ = 0.5. A time lag between the two waveforms
appears; its amount can be evaluated by looking for the time t∗ for which
h = hc on the upper branch:

hc(f) = cos(ωt∗) → t∗ =
1

2πf
arccos[hc(f)]

Note that t∗ > T/4 (T = 1/f being the waveform’s period) because hc is
a negative quantity. In a very narrow time interval around t = t∗ well (1) is45

emptied (n10 → 0) and m→ −1. Therefore, when m is plotted as a function
of t the first zero is at t = t∗ whereas the first zero of h(t) is at t = T/4 (see
Figure 1). The time lag of m(t) with respect to h(t) is:

∆t =
1

2πf
arccos

[
hc(f)

]
− 1

4f

3



Figure 1: Left panel: time evolution of the magnetization of collinear monodisperse
nanoparticles (φ = 0) (full line) under a harmonic magnetic field h(t) (dotted line);
the resulting time lag is indicated by red dots. T is the waveform’s period. Right
panel: phase shift δ between h(t) and m(t) as a function of magnetizing frequency.

4



and the associated phase shift δ = ω∆t is

δ = arccos
[
hc(f)

]
− π

2
(SM.1)

The behavior of δ as a function of frequency is reported in the right50

panel of Figure 1 for three different values of Θ. The shift increases in abso-
lute value with increasing f , as expected. Above blocking temperature, the
phase shift appears when the hysteresis loop opens. It should be remarked
that Equation (SM.1) of the Supplementary Material file allows one to eval-
uate the coercive field hc by measuring the phase shift δ. This can be very55

useful in high-frequency measurements, when it can be experimentally much
simpler to quickly get the phase shift (e.g., using a lock-in analyzer) rather
than to measure a full hysteresis loop.

4 - Explicit Calculation of the First Magnetization Curve for φ = 060

The first magnetization curve of a DWS assembly is defined as the path
followed by the system’s magnetization by effect of an increasing positive
field h starting from the demagnetized state (h = m = 0; n10 = n20 =

1/2). In close analogy with the procedure developed in Section 2 of this
Supplementary Material, the argument of the exponential in Equation (11)65

of main text transforms to:

− 1

τ0rRMS

∫ h

0

e
L
Θ

(1−h)2

dh = − 1

τ0rRMS

(Θ

L

)1/2
∫ ( L

Θ
)1/2

(1−h)( L
Θ

)1/2

e−u
2

du.

Following the steps reported in Section 2, this expression becomes the −β(h)

function given in Equation (12) of main text.

5 - Approximate formula for the erf Function70

The following approximation for the erf function [3] has been used in
Section 3.5 of the main text:

erf(x) ≈ 1−
[
a1

( 1

1 + a4x

)
+ a2

( 1

1 + a4x

)2

+ a3

( 1

1 + a4x

)3]
e−x

2

5



with

a1 = 0.3480242; a2 = −0.0958798; a3 = 0.7478556; a4 = 0.4704700.

The absolute error between exact and approximate values of the erf function
is less than 2× 10−5 [3].75

6 - Iterative Expression of Magnetic Remanence at all φ Angles

With reference to the loop points indicated in the upper inset, bottom
panel of Figure 7 of the main text, the evolution of n10 and/or n20 will here be
followed during the transformation A → B → C → D → E → B involving:80

a) the first magnetization curve from the demagnetized state A to the upper
vertex B and b) the first complete loop.
The general solutions shown in Equation (8) of main text apply. As an
example, in the A→ B → C transformation n2φ varies in the following way:

in A : n2φ(0) =
1

2

in B : n2φ(hv) =
1

2
exp
(
− 1

rRMS

∫ hv

0

1

τ2

dh
)

in C : n2φ(0) =
[1

2
exp
(
− 1

rRMS

∫ hv

0

1

τ2

dh
)]

exp
(

+
1

rRMS

∫ 0

hv

1

τ2

dh
)
.

The change in sign in the argument of the rightmost exponential of the85

last line arises from the change in sign of the rate rRMS. The general property
τ1(−h) = τ2(h) implies some identities among integrals entering the solutions
(8) when applied to different segments of the transformation. In particular,
defining:

6



IA→B = exp
(
− 1

rRMS

∫ hv

0

1

τ2

dh
)

IB→C = exp
(

+
1

rRMS

∫ 0

hv

1

τ2

dh
)

IC→D = exp
(

+
1

rRMS

∫ −hv
0

1

τ1

dh
)

(SM.2)

ID→E = exp
(
− 1

rRMS

∫ 0

−hv

1

τ1

dh
)

where the change of sign of rRMS between transformations done with90

increasing/decreasing h has been taken in due account, one gets:

IA→B = IB→C = IC→D = ID→E ≡ z1/2

having introduced the quantity z = I2
A→B. Note that 0 < z < 1 for

any hv. It is now easy to get the evolution of the occupancy numbers n[k]
1φ

and/or n[k]
2φ with the number of loop iterations k by making repeated use of

Equations (8) of hte main text. In point A, n2φ = 1/2; therefore:95

in B : n
[1]
2φ =

1

2
z1/2

in C : n
[1]
2φ =

1

2
z −−→ n

[1]
1φ = 1− 1

2
z

in D : n
[1]
1φ = z1/2 − 1

2
z3/2 (SM.3)

in E : n
[1]
1φ = z − 1

2
z2 −−→ n

[1]
2φ = 1− z +

1

2
z2

in B : n
[1]
2φ = z1/2 − z3/2 +

1

2
z5/2

where label [1] indicates that these are the values on the first loop. Each
of the transformation’s segments has the effect of multiplying the expression

7



for the relevant occupancy number niφ (i = 1, 2) by z1/2. We are interested in
determining the upper and lower magnetic remanence, i.e., the magnetization
at points C and E. On the first loop (k = 1), the above expressions give the100

following values for the two remanences:

m
[1]
RUP =

(
1− 2n

[1]
2φ

)
cosφ = (1− z)cosφ

m
[1]
RLO =

(
2n

[1]
1φ − 1

)
cosφ = (−1 + 2z − z2)cosφ = −(1− z)2cosφ

By simple iteration, the remanences of the k-th loop are found to be:

m
[k]
RUP =

[
1− 2z

(
1− z + z2 − ...− z2k−3 +

1

2
z2k−2

)]
cosφ =

=
[
1− 2z

(1− z2k−2

1 + z
+

1

2
z2k−2

)]
cosφ

m
[k]
RLO =

[
1− 2

(
1− z + z2 − ...− z2k−1 +

1

2
z2k
)]
cosφ =

=
[
1− 2

(1− z2k

1 + z
+

1

2
z2k
)]
cosφ

where use has been made of the formula for the sum of a geometric pro-
gression of ratio (−z). These expressions are valid for all φ angles 6= π/2

and are coincident with the ones appearing in Equation (14) of main text.105

In particular, if z = 0 one has m[k]
RUP = cosφ, m

[k]
RLO = −cosφ while for z = 1

one has m[k]
RUP = m

[k]
RLO = 0 . For 0 < z < 1 both remanences are monotoni-

cally decreasing functions of the iteration number k.

Finally, there is no need of actually calculating the parameter z from110

the integrals of Equation (SM.2). In fact, z can be easily related to the
magnetization m

[1]
v = m[1](hv) evaluated in the upper vertex (point B) on

the first magnetization curve (A → B); from the first of Equations (SM.3)
one has:
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z = 4n2
2φ (SM.4)

whereas the magnetization in B on the first magnetization curve is:115

m[1]
v = cos(θ1 − φ)−

[
(cos(θ1 − φ)− cos(θ2 − φ)

]
n

[1]
2φ ≡ αφ − βφn[1]

2φ. (SM.5)

Equation (15) of main text directly follows from Equations (SM.4) and
(SM.5).

7 - Visibility Factor for the loop anomaly

The whole range of possible loop shapes is summarized by the three insets120

in the bottom panel in Figure 7 of main text: small minor loops (red curve)
are so narrow that the anomaly (although large) is hardly visible; almost
major loops (green curve) are basically closed and stable; the anomaly if
most apparent at intermediate hv values (blue curve). This suggest one to
define a visibility factor v in the following way:125

v = k∗
(
m

[∞]
RUP −m

[∞]
RLO

)
= 2k∗

1− z
1 + z

cosφ

where k∗ is the number of iterations needed to reach stability and
(
m

[∞]
RUP−

m
[∞]
RLO

)
is a measure of the loop width. These two quantites have opposite

behavior as functions of hv, so that their product exhibits a sharp maximum
univocally indicating the vertex field where loop anomaly is best observed.
The visibility factor is shown in the bottom right panel of Figure 9 of main130

text for φ = 0 and φ = π/6.

8 - Magnetic Energy of a Collinear DWS Assembly at all φ Angles

The general expression of the magnetic energy ε(φ) = n1φε1(φ)+n2φε2(φ)

is obtained using Equation (1) of main text which implies that:135
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n1φ =
m(φ)− c2

c1 − c2

n2φ = −m(φ)− c1

c1 − c2

where ci = cos(θi − φ). The energies of the two energy wells are εi =

s2
i − 2hci where s2

i = sin2θi. After simple steps the total magnetic energy
ε(φ) turns out to be:

ε(φ) = −2hm(φ) +
s2
i − s2

2

c1 − c2

m(φ)− s2
1c2 − s2

2c1

c1 − c2

which is coincident with Equation (17) of main text.
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