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Abstract: Sonodynamic therapy is an emerging approach that uses low-intensity ultrasound to
activate a sonosensitizer agent triggering its cytotoxicity for selective cancer cell killing. Several
molecules have been proposed as sonosensitizer agents, but most of these, as chlorophyll, are
strongly hydrophobic with a low selectivity towards cancer tissues. Nanocarriers can help to deliver
more e�ciently the sonosensitizer agents in the target tumor site, increasing at the same time their
sonodynamic e↵ect, since nanosystems act as cavitation nuclei. Herein, we propose the incorporation
of unmodified plant-extracted chlorophyll into nanocarriers with di↵erent composition and structure
(i.e., liposomes, solid lipid nanoparticles and poly(lactic-co-glycolic acid) nanoparticles) to obtain
aqueous formulations of this natural pigment. The nanocarriers have been deeply characterized
and then incubated with human prostatic cancer cells (PC-3) and spheroids (DU-145) to assess
the influence of the di↵erent formulations on the chlorophyll sonodynamic e↵ect. The highest
sonodynamic cytotoxicity was obtained with chlorophyll loaded into poly(lactic-co-glycolic acid)
nanoparticles, showing promising results for future clinical investigations on sonodynamic therapy.

Keywords: chlorophyll; liposomes; solid lipid nanoparticles; PLGA; ultrasound; sonodynamic
treatment; sonosensitizer; cancer

1. Introduction

Sonodynamic therapy (SDT) was introduced by Yumita in 1989 [1]. This recent non-invasive
treatment is based on the photodynamic therapy (PDT) already well known in clinical practice,
especially in the oncology field [2]. SDT refers to a new anticancer strategy which uses non-thermal
ultrasound (US) energy in combination with drugs known as sonosensitizer agents [3–6]. Normally,
low-intensity US frequency are used for this technique (1–3 MHz) to enhance the cavitation e↵ect [7,8].
The sonosensitizer molecule together with US irradiation, under aerobic conditions, create active
oxygen species able to destroy the tumor tissues [9,10]. Moreover, the incorporation of sonosensitizers
into nanoscaled carriers can increase the therapeutic e�cacy of SDT through the enhanced accumulation
of drugs in the target tumor site combined with the ability of nanocarriers to function as cavitation
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nuclei [11–13]. Among many sensitizers already investigated, some studies showed that derivatives of
chlorophylls/chlorins are potent photosensitizers in PDT [14,15]; on the contrary, natural chlorophyll
has not been so deeply exploited yet, and only few papers have proposed it as a sonosensitizer
molecule in SDT [16–18]. Despite that, the array of photoproperties, biocompatibility and natural
abundance of chlorophyll make it a suitable sonosensitizer candidate for SDT application [19], even
if the hydrophobicity of the chlorophyll macrocycle is a limit that cuts down the applications in
aqueous environment. Therefore, some chlorophyll derivatives have been obtained and associated
to colloidal carriers, such as micelles, ethosomes, liposomes, and nanoparticles, but only for PDT
applications [20–25]. This is the first work that investigates chlorophyll as it is in nature, such as a
mixture of di↵erent chlorophyll molecules, including chlorophyll a, b and pheophytin a. In particular,
herein we used chlorophyll obtained during the isolation of alkaloids from Galipea longiflora, a medicinal
species also known by the Amazonian ethnic group of Tacana as Evanta. It is traditionally used as an
antiparasitic agent in form of cataplasms and decoction. Recently, clinical studies on Evanta alkaloids
have showed interesting data in treating cutaneous Leishmaniosis [26–28]. In all the purification steps
performed to isolate Evanta alkaloids, chlorophyll is considered a non-useful fraction.

Based on these considerations, our aim was to use unmodified plant-extracted chlorophyll and
to incorporate it into nanocarriers with different composition (lipidic or polymeric) and different
structure (vesicular or matricial) to obtain aqueous chlorophyll-loaded nanosuspensions suitable to act as
sonosensitizer agents. The efficacy of these formulations has been tested on human prostatic cancer cells
(PC-3) and spheroids (DU-145) and the reactive oxygen species (ROS) production has been determined.

2. Materials and Methods

2.1. Materials and Instruments

All the phospholipids were provided by Avanti Polar Lipids and distributed by Sigma-Aldrich
(Milan, Italy). Miglyol 812N was a gift from Sasol (Witten, Germany). Poly(lactide-co-glycolide)
(PLGA) 75:25 (Resomer RG 752 H), trilaurin, ethyl acetate, benzyl alcohol, sodium taurodeoxycholate,
Pluronic F68, Sepharose CL-4B, cholesterol and all other reagents were obtained from Sigma-Aldrich.
Cremophor RH 60 (PEG-60 hydrogenated castor oil) was purchased from BASF (Ludwigshafen,
Germany). All the solvents used were of analytical grade and purchased from Carlo Erba Reagenti
(Milan, Italy). Solvent evaporation was carried out using a rotating evaporator (Heidolph Laborota 400,
Heidolph Instruments, Schwabach, Germany) equipped with a vacuum pump (Diaphragm Vacuum
Pump DC-4). TLC analyses were performed on silica gel aluminium plates (Macherey-Nagel, thick
25 µm, F254). HPLC analyses were carried out on a Waters instrument made up of 1525EF binary
pump, W717 plus auto-sampler and 2996 PDA detector (Waters, Milan, Italy).

2.2. Chlorophyll Extraction

Thanks to the help of the Tacana community, Evanta leaves were picked up by Gimenez’s group
(Instituto de Investigaciones Fármaco-Bioquímicas (IIFB), La Paz, Bolivia) in Sud Yungas area in La
Paz district [28,29]. The taxonomical identification was made by comparing the plant with samples
coming from the Herbario Nacional de Bolivia. Evanta leaves were air-dried for several days at
room temperature, in the dark and protected from humidity. Ethanol (25 L) was used as solvent
to extract milled material (5 kg). After one week, the filtrate was evaporated obtaining a residue
(6–10 g), which was dissolved in ethanol (100 mL). The solution was extracted with petroleum ether
(2 ⇥ 100 mL) and the collected organic phases were dried over sodium sulphate and evaporated
to give 3 g of crude product, which was re-dissolved in petroleum ether (80 mL) and washed with
methanol (2 ⇥ 80 mL). Sodium sulphate was used to dry petroleum ether phase and then the solvent
was removed under reduced pressure obtaining a green sticky solid (2.5 g). First, purification was
performed on a Sephadex LH 20 column (26 ⇥ 560 mm) eluting with chloroform/methanol 1:1, v/v.
Fractions were collected into 5 clusters by UV-Vis analysis. Each cluster was analyzed by HPLC on a
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Waters XTerra phenyl column (4.6 ⇥ 150.5 µm), using water (0.1% trifluoroacetic acid) and methanol
(0.1% trifluoroacetic acid) as eluents. Gradient profile was set as follows: (min, %B) 0, 65; 15.0, 65; 27.4,
100; 42.4, 100. Wavelength range observed by PDA detector was between 210 and 700 nm. Further
HPLC analysis (eluted with methanol 100%) showed a very similar composition (three main peaks with
the same shape were present) only in terms of chlorophyll content (at 405 nm, maximum absorbance
wavelength typical of chlorophylls) for all analyzed fractions (data not shown). A second purification
by Sephadex LH 20 column (1.5 ⇥ 26 cm; mobile phases 20%, 50%, 80% ethanol in water) was carried
out. Two final fractions were isolated: one retained/held on Sephadex LH 20 and one eluted with
ethanol 100% (washing phase). The content of chlorophylls was the same (in terms of peaks profile) in
both fractions. The chlorophyll mixture (A and B) (Chlor) was stored at �20 �C in tert-butilmethylether.
For the analysis, the sample was dissolved in acetonitrile/methanol/water 70:20:5, v/v. Reverse phase
chromatography column C30 (YMC) was used. DAD at 680, 480 e 420 nm and ESI-Ion trap MS2 in
Multi Reaction Monitoring modality was the set up for the detection of the desired molecules.

2.3. Preparation of Nanocarriers

2.3.1. Liposomes

Chlor-containing liposomes (Chlor-Lipo) were obtained by the method of thin
lipid film hydration and extrusion. Practically, a chloroform solution of the lipid
components 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol (CHOL) and
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG,
ammonium salt) (78:16:6 molar ratios) and containing 12% Chlor (mol Chlor/mol lipid) was dried
by a rotating evaporator. The obtained lipid film was vacuum dried overnight, then hydrated with
a 20-mM 4-(2-hydroxyethyl)piperazine-1-ethanesulforic acid (HEPES) bu↵er pH 7.4; the suspension
was vortexed for 10 min and then bath sonicated. The formulations were then passed 5 times under
nitrogen through a 400 and then a 200 nm polycarbonate membrane (Costar, Corning Incorporated,
Corning, NY, USA) in an extruder (Extruder, Lipex, Vancouver, BC, Canada) at a set temperature of
5 �C above the phase transition temperature of the lipid mixture. Unentrapped Chlor was separated
through chromatography on Sepharose CL-4B columns, eluting with HEPES bu↵er. Liposomes were
stored in the dark at 4 �C.

2.3.2. Solid Lipid Nanoparticles (SLN)

Chlor-containing SLN (Chlor-SLN) were prepared by the “cold dilution of microemulsion” method.
This method involves the preparation of an oil/water microemulsion (µE) and the subsequent dilution
with a 2% w/w polymeric aqueous solution to precipitate SLN [30]. Two hundred microliters (200 µL)
of trilaurin solution in ethyl acetate (300 mg/mL) was chosen as an oily phase since this lipid is highly
soluble in this partially water miscible solvent. Ethyl acetate and water were mutually pre-saturated
(named EAs and waters, respectively) and then used in µE formulation. Twelve percent (12%) w/w
Epikuron 200 (phosphatidyl choline 92%) was chosen as a surfactant together with Cremophor RH
60 at 3:1 w/w constant ratio. Then, 2.5% w/w sodium taurodeoxycholate was tested as co-surfactant
and 4% w/w benzyl alcohol as a co-solvent to pre-solubilize Chlor. Chlor was added to the µE
up to 0.6% w/w. µE (1.2 mL) was then diluted using an aqueous solution of Pluronic F68 2% w/w
(5 mL); the organic solvent was removed from the disperse phase and was extracted by dissolution
into the continuous phase, determining the 1% w/w trilaurin-SLN precipitation. SLN were purified
from unentrapped compound through chromatography on Sepharose CL-4B columns, eluting with
a hypertonic phosphate bu↵er saline (PBS) bu↵er (NaCl/KCl molar ratio 2:1). Fractions containing
purified SLN were collected and concentrated for the determination of the entrapped Chlor amount.
Then, the SLN dispersion was stored in the dark at 4 �C.
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2.3.3. PLGA Nanoparticles

For the preparation of Chlor-containing PLGA 75:25 nanospheres (Chlor-PLGA NSs) and
nanocapsules (Chlor-PLGA NCs) the nanoprecipitation technique was employed [31]. Practically,
for each preparation of Chlor-containing NSs, 24 mg of PLGA 75:25 were solubilized in acetone and
an aliquot of a stock solution of Chlor in ethanol (8 mg/mL) was added to obtain a total volume of
2 mL. This organic solution was then added to 4 mL of MilliQ® water under stirring. Particles formed
spontaneously. After solvent evaporation by a rotating evaporator, NSs in water were obtained. For
Chlor-containing NCs preparation, the same method was used, except that we added 4 µL of Miglyol
812N to the polymer organic solution to form the inner oily cavity. To separate the nanocarriers from
unentrapped Chlor, they were eluted through Sepharose CL-4B columns with PBS bu↵er. The particles
were then stored in the dark at 4 �C.

2.4. Physico-Chemical Characterization of Nanocarriers

The average diameter and the polydispersity index (PDI) of liposomes, SLN and PLGA NSs and NCs
were determined by quasi-elastic light scattering (QELS) at 25 �C with a nanosizer (Nanosizer Nano Z,
Malvern Inst., Malvern, UK). The selected angle was 90� and the measurements were made after dilution
of the particle suspensions in MilliQ® water. Each value reported is the average of three measurements.

The particle surface charge of all formulations was investigated by zeta potential measurements at
25 �C by diluting the suspensions in 10-mM KCl using the Smoluchowski equation and the Nanosizer
Nano Z. Three independent measures were performed.

The amount of Chlor incorporated in nanocarriers was determined by means of UV-Vis
measurements (Beckman Coulter DU730, Beckman Coulter, Milan, Italy) at 400 nm and at room
temperature (calibration curve obtained with dilutions of a Chlor stock solution in methanol in the
range 10–200 µg/mL). The results are the average of three measurements and they were expressed
as encapsulation e�ciency (EE), calculated as the ratio between the amount of entrapped Chlor and
the initial amount used in the preparation of nanocarriers ⇥ 100. Moreover, drug loading (DL) was
calculated as the ratio between the amount of entrapped Chlor and the total nanocarrier weight
⇥ 100. In particular, for liposomes, to 800 µL of suspension 200 µL of methanol were added and
the sample was centrifuged (6000 rpm, 15 min) and measured spectrophotometrically. Moreover,
phospholipid phosphorous was evaluated in each preparation performing the phosphate assay after
destruction with perchloric acid [32]. For SLN, the suspension was diluted 1:40 with a mixture of
dichloromethane/methanol (1:1, v/v) and after centrifugation (14,000 rpm, 15 min), the supernatant
was measured spectrophotometrically. For PLGA nanocarriers, 2 mL of previously prepared PLGA
NSs or NCs were lyophilized. Then, 200 µL of dichloromethane were added to dissolve the sample
and then 2 mL of methanol to precipitate PLGA. After centrifugation, 500 µL of the supernatant were
diluted 1:2 with methanol and measured spectrophotometrically.

The physical colloidal stability of all the Chlor-containing suspensions in the storage conditions
was evaluated by measuring the mean size, the zeta potential and the drug content of the particles
over a storage period of 28 days at 4 �C.

Chlor-encapsulating carriers were tested by differential scanning calorimetry (DSC) using a differential
scanning calorimeter DSC 7 (Perkin-Elmer, Waltham, MA, USA) equipped with an instrument controller
Tac 7/DX (Perkin-Elmer). Indium was used to calibrate the instrument daily (DH = 28.4 J/g, m.p. 156.6 �C)
for the determination of melting point and heat of fusion. A heating rate of 10 �C/min was employed
throughout the analyses to assess the melting point and the heat of fusion of particles. The temperature
range in which thermograms were recorded was 28–170 �C. Analyses were performed under a nitrogen
purge (40 mL/min); standard 40 µL aluminum sample pans (Perkin-Elmer) were used; as reference,
an empty pan was used. The main transition temperature (Tm) was determined as the onset temperature
of the highest peak. Indium (Tm = 156.83 �C) and n-decane (Tm = �29.6 �C) were used to obtain the
calibration. Triple runs were carried out on each sample. For liposomes, about 10 mg of suspension
samples were introduced into an aluminum pan and analyzed. SLN and PLGA suspensions were
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freeze-dried using a Modulyo Freeze Dryer (Edwards Alto Vuoto, Cinisello Balsamo, Italy). Freeze-dried
nanoparticles were weighted and placed in the aluminum pan for analysis.

2.5. Drug Release

The drug release was determined by incubating the nanocarrier suspensions in HEPES (Chlor-Lipo)
or PBS (Chlor-SLN and Chlor-PLGA NSs) bu↵er pH 7.4 at 37 �C. At di↵erent time intervals aliquots of
the formulations were submitted to purification, re-analyzed for Chlor content as described above and
compared with initial values. Sink conditions were maintained by replacing the removed aliquots
with the same quantity of fresh bu↵er.

2.6. Cell Culture

The human prostatic carcinoma cell lines PC-3 and DU-145 (ICLC, Interlab Cell Line Collection,
Genoa, Italy) and the human dermal fibroblast cell line HDF 106-05 (ECACC, Salisbury, UK) were
grown in Dulbecco’s modified Eagle medium (DMEM) added with 2-mM L-glutamine, 100 UI/mL
penicillin, 100 µg/mL streptomycin and 10% v/v heat-inactivated fetal calf serum, and incubated in 5%
CO2 air at 37 �C. When cells were grown to confluence, they were detached using a 0.05% trypsin-0.02%
EDTA solution and seeded at the appropriate cell density in culture medium for the di↵erent cell
culture experiments.

2.7. Cytotoxicity

The WST-1 cell growth assay was carried out to determine the cytotoxic e↵ect on PC-3 cells of
Chlor, to select the concentration suitable for the in vitro sonodynamic treatment. Briefly, in 96-well
culture plates (TPP, Trasadingen, Switzerland) 1.5 ⇥ 103 cells per well were seeded in 100 µL of culture
medium in 8 replicates; after 24 h, the medium was removed and the cells incubated with experimental
media of di↵ering Chlor concentrations (5, 10, 50, 100 and 500 µM) obtained by diluting in DMEM a
50 mM Chlor DMSO solution. The WST-1 reagent (10 µL/100 µL) was added at 24, 48, and 72 h and the
plates were incubated at 37 �C in 5% CO2 in air for 90 min. A microplate reader (Asys UV340, Biochrom,
Cambridge, UK) was used to detect well absorbance at 450 and 620 nm (reference wavelength).

2.8. In Vitro Sonodynamic Treatment

1 ⇥ 105 PC-3 cells were sub-cultured into Petri dishes (25 mm diameter) and were allowed to
attach to the surface for 24 h prior to treatment. Free Chlor or the Chlor-containing formulations
were then added to the cell culture medium to the appropriate concentration (i.e., 5 µM Chlor) and
incubated for the proper time according to the Chlor cell uptake analysis (i.e., 6 h for Chlor-Lipo and
Chlor-SLN or 24 h for Chlor and Chlor-PLGA NSs), before ultrasound (US) exposure. The US field was
generated by a plane wave transducer (25 mm diameter) at 1.5 MHz, connected to a power amplifier
(Type AR 100A250A, Amplifier Research, Souderton, PA, USA) and a function generator (Type 33250,
Agilent, Santa Clara, CA, USA). A mechanical adaptor was built to connect the Petri dish containing
the cells and filled with ultrapure water to create highly reproducible measurement conditions, at a
fixed Petri dish distance from the transducer (20 mm). Specifically, US exposure was performed at
1.5 MHz for 5 min at 1.5 W/cm2 under a dim light. After US exposure, PC-3 cells were removed with a
0.05% trypsin-0.02% EDTA solution and in 96-well culture plates were seeded 1.5 ⇥ 103 cells per well
in 100 µL of culture medium in replicates (n = 8). The WST-1 reagent (10 µL/100 µL) was added at 24
and 48 h, and plates were incubated at 37 �C in 5% CO2 for 90 min. The microplate reader Asys UV340
was used to detect well absorbance at 450 and 620 nm (reference wavelength). Results were expressed
as the percentage of the absorbance of treated versus untreated cells (100%). Moreover, the e↵ect of
Chlor-PLGA NSs under US treatment was also explored on the non-cancerous cell line HDF 106-05,
under the same US treatment conditions previously described. Cell growth was then evaluated at 24
and 48 h by WST-1 reagent.
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2.9. Flow Cytometric Analyses

A C6 flow cytometer (Accuri Cytometers, Milan, Italy) was used for the cellular uptake analysis
of free Chlor and Chlor-containing formulations. Briefly, PC-3 cells were seeded in 6-well culture
plates (TPP) at 5 ⇥ 104 per well and incubated with each Chlor formulation (5 µM) for 1, 3, 6, 12 and
24 h. Moreover, the cellular uptake of Chlor and Chlor-PLGA NSs was also performed in the human
prostate cancer DU-145 cells at the same incubation time. At the end of each incubation period, cells
were re-suspended in 300 µL PBS after detachment by a 0.05% trypsin-0.02% EDTA solution. For the
cytofluorimetric analysis of the intracellular Chlor, 10,000 events were considered, using 640-nm
excitation. The integrated mean fluorescence intensity (iMFI) was used to express the intracellular
fluorescence as the product of the frequency of the mean fluorescence intensity of the cells and the
frequency of cells positive to Chlor fluorescence. Data are expressed as iMFI ratio, i.e., the ratio between
the iMFI of treated and untreated cells. The proper Chlor incubation time for the US exposure was
then chosen according to the iMFI ratio.

Reactive oxygen species (ROS) production was evaluated 1, 15, 30, 60 and 90 min after US treatment
of Chlor pre-incubated PC-3 cells. Cells were incubated with 10 µM of 2,7-dichlorofluorescein diacetate
(DCFH-DA) as intracellular probe for oxidative stress, 30 min before the flow cytometric analysis.
DCFH-DA is a nonfluorescent molecule able to promptly cross the cell membrane and to be hydrolyzed
to the non-fluorescent DCFH by intracellular esterases. DCFH is rapidly oxidized to highly fluorescent
dichlorofluorescein (DCF) upon oxidation by ROS. After DCFH-DA incubation, ROS generation was
carried out by the C6 flow cytometer, evaluating 10,000 events at a 488-nm excitation. ROS production
was expressed as iMFI ratio, where the iMFI is the product of the mean fluorescence intensity of the
cells and the frequency of ROS-producing cells.

PC-3 cell death was evaluated using the allophycocyanin (APC)-Annexin V and propidium
iodide (PI) Apoptosis Detection Kit (Life Technologies, Milan, Italy) 24 h after the treatment. Briefly,
1.0 ⇥ 105 PC-3 cells were detached by trypsin, washed with 1⇥ Annexin-binding bu↵er and stained
with APC-Annexin V and PI. Samples were analyzed by using the C6 flow cytometer, considering
10,000 events and any cell debris were excluded from the analyses. All analyses were carried out using
FCS Express software version 4 (BD Bioscience, Italy).

2.10. ROS Scavenging Assay

N-acetyl-cysteine (NAC, Sigma-Aldrich, Milan, Italy) was used to evaluate ROS role to provoke
cytotoxicity under US exposure in Chlor-incubated PC-3 cells. Specifically, PC-3 were incubated for 6 h
with Chlor-Lipo or Chlor-SLN and for 24 h with Chlor and Chlor-PLGA NSs at the same concentration
(5 µM Chlor) and 5 mM NAC was added for the last 3 h of Chlor incubation. Cells were then detached
from the flask, washed with PBS and treated with US, using the settings and parameters previously
mentioned. WST-1 was then used to determine cell growth after 24 and 48 h.

2.11. Fluorescence Microscopy

The uptake of the various Chlor formulations by PC-3 cells was determined by using fluorescence
microscopy in order to obtain a qualitative intracellular localization of compounds. Briefly, 2 ⇥ 105

PC-3 were seeded for 24 h on glass coverslips in small plates and then underwent to Chlor-Lipo
and Chlor-SLN incubation for 6 h or to Chlor and Chlor-PLGA NSs incubation for 24 h (5 µM
Chlor concentration). At the end of the incubation time, slides were fixed for 15 min with 4%
paraformaldehyde and 40,6-diamidine-20-phenylindole dihydrochloride (DAPI) was added for 10 min
to stain cell nuclei. Images were acquired using a Leica DMI4000B fluorescence microscope (Leica
Microsystems, Milan, Italy).
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2.12. DU-145 Spheroid Generation

DU-145 spheroids were grown in 96-well plates (U shape, Perkin Elmer). Cells were seeded
(6 ⇥ 103, 200 µL) in selected wells previously coated with agarose (1.5%, Sigma-Aldrich). Plates were
then put inside the incubator for a total of 6 days in order to let cells to organize in 3D structure. Every
3 days, the cellular medium was changed by replacing 100 µL of old media with 100 µL of fresh media.
Six days after the seeding, spheroids were selected and divided into the following groups: control (i.e.,
untreated, molecule-free medium), Chlor only (10 µM) and Chlor-PLGA NSs (10 µM Chlor). At the
end of the incubation, where required, individual spheroids were washed with PBS and then exposed
to US. At the end of each treatment, spheroids were incubated in a humidified 5% CO2 atmosphere at
37 �C. Twenty-four hours after treatment, cellular damage on the corona was investigated by staining
spheroids with PI. Briefly, spheroids underwent to 4 PBS washes to remove medium and were then
incubated in the dark at room temperature with PI (100 µg/mL) in PBS for 20 min. At the end of
the incubation, spheroids were washed 3 times with PBS to remove PI excess and then images were
captured using a Leica DM6000 fluorescent microscope. Bright and fluorescence fields (540 nm band
pass excitation and 590 nm long pass emission filters) were acquired. PI fluorescence quantification was
then determined by using Image J software and it was expressed as a % of PI fluorescence intensity/µm2,
i.e., the fluorescence of PI was normalized and adjusted according to the spheroid area.

2.13. Statistical Analysis

In vitro data are shown as average values of three independent experiments ± standard deviation.
Statistical analyses were performed using Graph-Pad Prism 5.0 software (La Jolla, CA, USA); one- and
two-way analyses of variance and Bonferroni’s test were used to calculate the threshold of significance.
Statistical significance was set at p < 0.05.

3. Results

3.1. Chlorophyll Extraction

Chlor was obtained from leaves of Galipea longiflora by extraction and purification. According to
the detection analysis of the obtained molecules, at 420 nm the predominant mass fragmentations were
identified as pheophytin a, b (Figure 1).
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3.2. Preparation and Characterization of Nanocarriers

Chlor-loaded nanocarriers of di↵erent composition (liposomes, SLN and PLGA nanoparticles)
were prepared to compare the Chlor encapsulation e�ciency and the in vitro e�cacy on cancer cells.
The physico-chemical characteristics of the nanocarriers are summarized in Table 1.

Table 1. Physico-chemical characteristics of Chlor-loaded nanocarriers (n = 3).

Parameters Chlor-Lipo Chlor-SLN Chlor-PLGA NSs Chlor-PLGA NCs

Mean diameter (nm) ± S.D. 165 ± 2 251 ± 3 140 ± 2 173 ± 4
PDI 0.124 0.133 0.078 0.091

Zeta potential (mV) ± S.D. �6.48 ± 0.64 �20.12 ± 2.40 �44.40 ± 0.42 �47.92 ± 2.44
EE (%) 98 ± 2 98 ± 2 97 ± 3 87 ± 4
DL (%) 1.8 9.1 4.6 3.6

Different liposomal formulations were tested and liposomes composed of DSPC:CHOL:DSPE-PEG
(78:16:6) showed the best characteristics in term of Chlor EE (98%), corresponding to a DL of 1.8%.
We observed that the presence of PEG stabilized the formulation. Liposomes displayed a dimensional
range around 165 nm with a low PDI (<0.13) and a negative zeta potential value around �6 mV (Table 1).

Chlor-SLN mean diameter was about 250 nm, higher than that of liposomes, with a low PDI,
suggesting the presence of a monodispersed size population. Chlor-SLN showed a zeta potential of
about �20 mV and a high EE (98%) (DL 9.1%), indicating that the new SLN preparation method from
µE avoids significant Chlor losses during the formulation (Table 1).

Concerning Chlor-loaded PLGA 75:25 nanoparticles, the mean diameter of NCs was higher (about
170 nm) than that of NSs (140 nm), as expected, due to the presence of the inner oily cavity formed
by Mygliol 812N. Nevertheless, both formulations showed a unimodal size distribution (PDI < 0.1).
Due to the negative charges of PLGA 75:25 copolymer, Chlor-containing NSs and NCs both displayed
highly negative zeta potential values. While, for Chlor-PLGA NSs, the EE was similar to that of
liposomes and SLN, for NCs it was below 90% (Table 1), corresponding to DL values of 4.6% and
3.6%, respectively.

The physical stability of all the Chlor-containing suspensions in the storage conditions was
evaluated by measuring the mean size and the zeta potential of the particles over a storage of 28 days:
during this period no precipitation, aggregation or appreciable formulation size or zeta potential
modifications occurred (less than 10% for all the samples), excepted for Chlor-PLGA NCs, whose mean
diameter began to increase after 3 weeks (>250 nm). Considering the lower EE and stability of PLGA
NCs if compared to NSs, we decided to carry out further assays only with PLGA NSs. The drug leakage
during the storage was determined by removing aliquots of liposomes, SLN or PLGA NSs at various
time points and re-determining after purification the drug content; the formulations maintained their
initial drug content for at least 90% of the initial value.

In order to evaluate the interactions between Chlor and the nanocarrier components, DSC analysis
was performed for all Chlor-containing formulations. Concerning liposomes phospholipids, the main
transition of pure DSPC was at Tonset = 54.2 �C. With DSPE-PEG, the transition temperature did
not significantly change (Tonset = 53.9 �C), but the peak was slightly enlarged. The incorporation
of CHOL altered the calorimetric profile: the main transition was shifted to a lower temperature
(Tonset = 51.6 �C), indicating the interaction of CHOL with the liposome bilayer. When Chlor was
encapsulated, the main transition was found at a lower temperature (Tonset = 47.8 �C) and the melting
temperature peaks were broadened, indicating that Chlor through hydrophobic interactions perturbs
the phase transition profile (Table 2). To better understand the interaction of Chlor with the main
phospholipid in the liposomes (DSPC), two formulations with di↵erent amounts of Chlor (6% and 12%
mol) were prepared. In the formulation containing 6% of Chlor the main transition occurred at a higher
temperature if compared to the one containing 12% Chlor (52.7 and 49.8 �C, respectively), revealing a
Chlor concentration-dependent e↵ect on the main transition temperature of DSPC. A similar trend was
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observed in thermal phase behavior studies on liposomes containing temoporfirin, a potent, clinically
approved, second-generation photosensitizer [33].

Table 2. DSC analysis of empty and Chlor-loaded nanocarriers.

Formulation Tonset (�C) Tpeak (�C)

Empty Lipo 51.6 53.6
Chlor-Lipo 47.8 54.2
Empty SLN 44.5 48.5
Chlor-SLN 42.6 48.0

Empty PLGA NSs 52.3 54.2
Chlor-PLGA NSs 51.7 53.7

For SLN, DSC analysis was aimed to verify the solid state after µE dilution and to evaluate the
degree of crystallinity of lipids, investigating the presence of polymorphs, since these conditions
influence the drug incorporation and release profiles [34]. Trilaurin, a triglyceride obtained by
esterification of glycerol with lauric acid, shows a sharp endotherm peak at Tonset = 48 �C, corresponding
to the melting of the stable trilaurin �-form [35]. DSC thermograms of Chlor-SLN showed a broaden
endotherm peak with Tonset = 42.6 �C, probably related to the unstable �0-form melting and no
supercooled melt was revealed (Table 2). Alternatively, according to Siekmann and Westesen [36],
the shift of the melting point to a lower temperature for SLN might be due to their colloidal nature,
in particular to their high surface-to-volume ratio and not to recrystallization of the lipids in a
metastable polymorph.

Unloaded PLGA 75:25 NSs showed a sharp main endothermic event with Tonset = 52.3 �C and
glass transition temperature 54.2 �C. Incorporation of Chlor into PLGA NSs slightly decreased the
melting temperature (Table 2).

The Chlor release profile from the di↵erent formulations was evaluated in HEPES (Chlor-Lipo) or
PBS (Chlor-SLN and Chlor-PLGA NSs) bu↵er at 37 �C. During 24 h, the release was faster for liposomes
and SLN (40% and 35% of the initial Chlor content, respectively) than for PLGA NSs (18%).

3.3. PC-3 Cell Uptake of Chlor-Containing Formulations

To investigate the e�cacy of the di↵erent Chlor formulations, namely Chlor-Lipo, Chlor-SLN and
Chlor-PLGA NSs, as sonosensitizers, we first investigated the Chlor cytotoxicity to select a proper
non-cytotoxic concentration. As shown in Figure 2, Chlor started to significantly a↵ect PC-3 cell
growth at 500 µM. Thus, we decided to investigate the Chlor e�cacy as sonosensitizer at a 100-times
lower concentration than the cytotoxic concentration observed, i.e., 5 µM, being the sonosensitizer
non-cytotoxicity itself one of the pivotal features of the sonodynamic treatment.
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To investigate the influence of the di↵erent Chlor formulations on the PC-3 cell uptake,
we performed a flow cytometric study at the same non-cytotoxic Chlor concentration, i.e., 5 µM,
for all the formulations. A time-dependent increase of the iMFI ratio, corresponding to the Chlor
internalization, was observed after the incubation of all the Chlor formulations (Figure 3). Noteworthy
is the fact that the iMFI was significantly enhanced for the encapsulated Chlor compared to the free
Chlor after 6 and 12 h incubation for liposomes and SLN, and after 12 and 24 h incubation for PLGA
NSs. The higher statistically significant level of Chlor cell uptake was reached after 6 h incubation for
Chlor-Lipo (iMFI ratio 15.1 ± 1.7, p < 0.01) and Chlor-SLN (iMFI ratio 14.6 ± 1.0, p < 0.01) and after
24 h incubation for Chlor (iMFI ratio 11.2 ± 1.5, p < 0.01) and Chlor-PLGA NSs (iMFI ratio 21.8 ± 2.6,
p < 0.001). Therefore, these incubation times were selected for the sonodynamic treatment with the
di↵erent Chlor formulations.
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Figure 3. Chlor uptake by PC-3 cells. PC-3 cells were incubated with Chlor formulations at the same
Chlor concentration (5 µM) for 1, 3, 6, 12 and 24 h. Fluorescent signal was detected using a flow
cytometer at 488 nm excitation to measure the intracellular Chlor and expressed as the integrated
mean fluorescence intensity (iMFI) ratio calculated as reported in Materials and Methods. Statistical
significance vs. 1 h incubation: * p < 0.05; ** p < 0.01; *** p < 0.001.

Moreover, to discriminate di↵erences in the Chlor intracellular localization due to the di↵erent
formulations used, we observed PC-3 cells by fluorescence microscopy. Figure 4 shows principally a
cytoplasmic distribution of Chlor for all the formulations tested at the selected times of incubation (6 h
for Chlor-Lipo and Chlor-SLN, and 24 h for Chlor and Chlor-PLGA NSs).
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Magnification: 63⇥. Scale bars: 20 µm.
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3.4. E↵ect of the Sonodynamic Treatment with the Chlor Formulations on PC-3 Cell Growth, ROS Production

and Cell Death

The sonodynamic e↵ect on PC-3 cell growth was evaluated 24 and 48 h after US exposure of
the prostatic cancer cells pre-incubated for 6 h with Chlor-Lipo or Chlor-SLN and 24 h with Chlor or
Chlor-PLGA NSs at the same Chlor concentration (5 µM). As shown in Figure 5, only when the cells
were pre-incubated with one of the Chlor formulations the US were able to significantly decrease PC-3
cell growth. Moreover, the decrease in cell growth was time-independent for all the Chlor formulations.
Noteworthy was the fact that the higher decrease in cell growth was obtained by the sonodynamic
treatment with Chlor-Lipo and Chlor-PLGA NSs, reaching after 48 h a 48.4 ± 6.2% of cell growth with
Chlor-Lipo (p < 0.001) and a 34.8 ± 5.4% of cell growth with Chlor-PLGA NSs (p < 0.001), compared to
untreated cell growth.
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Figure 5. E↵ect of sonodynamic treatment on PC-3 cell growth. Cells were incubated for 6 h with
Chlor-Lipo or Chlor-SLN and for 24 h with Chlor or Chlor-PLGA NSs at the same concentration (5 µM)
and then exposed to US at 1.5 MHz for 5 min at 1.5 W/cm2. In the graphs is also shown the e↵ect of
sonodynamic treatment in presence of the ROS scavenger, N-acetyl-cysteine (NAC). Before exposing
PC-3 cells to US, 5.0 mM NAC was added for the last 3 h incubation of the various Chlor formulations,
as reported above. Cells were then exposed to US at 1.5 MHz for 5 min at 1.5 W/cm2. Cell growth
was evaluated after 24 and 48 h by WST-1 assay. Statistically significant di↵erence vs. untreated cells:
* p < 0.05, ** p < 0.01, *** p < 0.001.

Interestingly, cells exposed to each of the Chlor formulations alone or to US alone did not a↵ect
PC-3 cell growth when compared with untreated cells, i.e., control cells (Figure 5). Moreover, we
did not observe any di↵erence in term of cell growth over time. This could be due to an e↵ect of
sonodynamic treatment on cell growth that is not time related. The di↵erent activities observed with
the Chlor formulations after US exposure might be ascribed to the Chlor cell uptake, as it is lower
for Chlor alone with respect to the other formulations (Figure 3), but also to the physico-chemical
properties of the di↵erent Chlor formulations, as the Chlor cell internalization at the concentration
tested of Chlor-Lipo, Chlor-SLN and Chlor-PLGA NSs was quite the same. These can be related to the
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interaction of the intracellular energy locally generated by US with the nanocarrier structure. Indeed,
is well known that the presence of nanocarriers can elicit a cavitation threshold decrease improving the
e�cacy of the sonodynamic treatment [37,38]. Moreover, we monitored the e↵ect of Chlor-PLGA NSs
under US stimulation on the non-cancerous cell line HDF 106-05 over time. We did not observe any
significant di↵erences compared to untreated cells (Figure 6), highlighting a selective responsiveness
to sonodynamic treatment of cancer cells compared to healthy cells.
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with Chlor-PLGA NSs at the same concentration (5 µM) and then exposed to US at 1.5 MHz for 5 min
at 1.5 W/cm2. Cell growth was evaluated after 24 and 48 h by WST-1 assay.

Since the mechanism underlying the sensitizer cytotoxicity under US exposure is thought to be
ROS generation, we performed the sonodynamic treatments with the di↵erent Chlor formulations also
in the presence of the ROS-scavenger NAC. Interestingly, when cells were pre-incubated with NAC
and then exposed to US, the cytotoxicity of the sonodynamic treatment was suppressed with each one
of the Chlor formulations tested (Figure 5, the far-right bars of each graph).

Furthermore, in order to confirm the ROS involvement in the cytotoxicity exerted by the
sonodynamic treatment with the di↵erent Chlor formulations, we assessed the ROS generation.
When PC-3 cells were exposed only to US, a very limited increase in intracellular ROS production
was observed, whereas the sonodynamic treatment of PC-3 cells incubated with the di↵erent Chlor
formulations induced a significant increase in ROS production (Figure 7). The highest level of
intracellular ROS generation was achieved 30 min after the exposure of PC-3 cells to US for all the
Chlor formulations tested, being the higher ROS levels obtained with Chlor-Lipo (iMFI ratio 8.2 ± 0.7,
p < 0.001) and Chlor-PLGA NSs (iMFI ratio 12.3 ± 1.0, p < 0.001). These results mirror the ones showing
the higher cytotoxicity by the sonodynamic treatment with Chlor-Lipo and Chlor-PLGA NSs compared
to the sonodynamic treatment with Chlor or Chlor-SLN (Figure 5).

The e↵ect of sonodynamic stimulation of Chlor formulations was also studied from a cell death
point of view. A significant increase in necrotic (15.63 ± 4.01%) and apoptotic (22.39 ± 0.92%) cells was
observed when PC-3 cells were exposed to Chlor and treated with US. However, the highest percentage
of necrotic and apoptotic cells was obtained when cells were treated with Chlor-PLGA NSs and then
exposed to US stimulation (20.63 ± 1.41% and 39.35 ± 9.53%, respectively) (Figure 8).
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Figure 7. PC-3 ROS production after sonodynamic treatment as a function of time. PC-3 cells were
exposed to US (1.5 MHz for 5 min at 1.5 W/cm2) or pre-incubated with the various Chlor formulations
at the same concentration (5 µM) and the proper time (6 h for Chlor-Lipo or Chlor-SLN and 24 h for
Chlor or Chlor-PLGA NSs) and then exposed to US (1.5 MHz for 5 min at 1.5 W/cm2). ROS levels were
determined according to the DCFH-DA assay by flow cytometry and expressed as the integrated mean
fluorescence ratio (iMFI), as described in Materials and Methods. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 8. Induction of cell apoptosis on PC-3 cells after sonodynamic treatment with Chlor and
Chlor-PLGA NSs. PC-3 cells were exposed to Chlor, Chlor-PLGA NSs (5 µM) for 24 h and then where
required underwent to US exposure (1.5 MHz for 5 min at 1.5 W/cm2) or left untreated. Apoptosis
assays were carried out by flow cytometry, following APC-Annexin V and PI staining. A percentage
of apoptotic cells (positive to APC-Annexin V and negative to PI) and necrotic cells (positive to
APC-Annexin V and PI) and live cells (negative to APC-Annexin V and PI) was evaluated 24 h after
treatment. Statistical significance vs. untreated cells (i.e., control): ** p < 0.01, and *** p < 0.001.

3.5. E↵ect of the Sonodynamic Treatment with the Chlor formulations on DU-145 Spheroids

Since PC-3 cells were not able to form compact spheroids to be treated with US, we decided to
use the human prostate cancer cell line DU-145 to generate spheroids. We decided to investigate on
three-dimensional (3D) prostatic cancer cell cultures the sonodynamic activity of free Chlor and of the Chlor
formulation with the best sonodynamic effect on two-dimensional (2D) prostatic cancer cell cultures, i.e.,
Chlor-PLGA NSs. Thus, we first determined the ability of Chlor and Chlor-PLGA NSs to be taken up by
DU-145 cells by flow cytometry. A significant time dependent fluorescent signal was observed when cells
were exposed for 12 and 24 h to Chlor (iMFI ratio 43.0 ± 6.5, p < 0.05 and 55.9 ± 9.5, p < 0.01, respectively).
However, this fluorescent signal was significantly higher when cells were exposed to Chlor-PLGA NSs
compared to free Chlor both at 12 h (iMFI ratio 76.00 ± 14.42 and 43.10 ± 6.53, respectively) and 24 h
incubation (iMFI ratio 103.00 ± 20.05 and 55.90 ± 9.58, respectively) (Figure 9).
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Figure 9. Chlor uptake by DU-145 cells. DU-145 cells were incubated with Chlor and Chlor-PLGA
NSs (5 µM) for 1, 3, 6, 12 and 24 h. Fluorescent signal was detected using a flow cytometer at 488 nm
excitation to measure the intracellular Chlor and expressed as the iMFI ratio calculated as reported in
Materials and Methods. Statistical significance vs. 1 h incubation: * p < 0.05; ** p < 0.01; *** p < 0.001.

Having successfully determined the ability of Chlor-PLGA NSs to induce a significant reduction in
cell viability under US exposure (Figure 5), a 3D prostate cancer model was then used to evaluate their
e�cacy compared to Chlor activity. Indeed, 3D spheroids show a more closely cellular organization to
the in vivo tumor features than classic 2D models, becoming, therefore, a helpful tool for investigating
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drugs and drug delivery systems [39]. Spheroids were treated with free Chlor or Chlor-PLGA NSs
and then exposed or not to US. Then, the e↵ect of each treatment was evaluated by determining the
volume of each spheroid and also by staining the spheroids with PI to identify necrotic cells. As shown
in Figure 10, a significant reduction of spheroid volume was observed when DU-145 spheroids were
treated with a combination between Chlor-PLGA NSs and US (p < 0.05), while no significant reduction
in spheroid volume was observed for the other conditions. In particular, any statistically significant
di↵erence in the spheroid volume was observed after the combined treatment with free Chlor and US
compared to untreated spheroids.
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Figure 10. E↵ect of sonodynamic treatment on DU-145 spheroid volume. DU-145 spheroids were left
untreated or treated with Chlor or Chlor-PLGA NSs (10 µM) for 24 h and then, where required, exposed
to US (1.5 MHz for 5 min at 1.5 W/cm2). Data are expressed as spheroid volume (µm3). Statistically
significant vs. control: * p < 0.05.

Moreover, PI evaluation identified a slight increase of necrotic cells when DU-145 spheroids were
treated with Chlor-PLGA NSs and then exposed to US, observed as well in the quantification of PI
signal (Figure 11a,b).
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Figure 11. Optical (bright field, BF) and fluorescence (propidium iodide, PI) micrographs of DU-145 
spheroids. DU-145 spheroids were left untreated or exposed to Chlor or Chlor-PLGA NSs and their 
respective combinations with US. Spheroids were stained with PI 24 h following treatment. Panel (a) 
shows PI quantification expressed as % of PI fluorescence intensity/µm2. Statistically significant vs. 
no US exposure: * p < 0.05. Panel (b) shows representative pictures of spheroids, taken 24 h after each 
treatment, in bright field (BF) or stained with PI in fluorescence field. Magnification: 10×. Scale bars: 
100 µm. 
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4. Discussion

Although natural chlorophylls are well-known nontoxic photosensitizers, easy to restock and
widespread, the literature reports only a few studies about their use as sonosensitizing agents [20].
In this work, chlorophyll was derived from the Galipea longiflora leaves and used as it is in nature.
To counteract its hydrophobicity, which hampers its formulation in aqueous media and distribution
in the human body, di↵erent nanocarriers (i.e., liposomes, solid lipid nanoparticles and polymer
nanoparticles) have also been investigated to identify a proper formulation for the sonodynamic
treatment of cancer. Despite the di↵erences in composition and structure, all the Chlor-containing
nanocarriers showed a mean diameter in the range of 140–250 nm, with a negative zeta potential and a
high EE. All the formulations were stable for at least one month of storage, except for PLGA NCs, which
also showed a lower EE if compared to that of NSs; thus, we abandoned this formulation in the further
steps of the work. No matter which formulation, incorporated Chlor interacted with the nanocarrier
components, lowering the thermogram peak temperature, as observed by DSC analysis. Concerning
Chlor release, PLGA NSs showed a slower leakage than that of liposomes and SLN, probably due to a
di↵erent disposition of Chlor in the matrix system.

To perform in vitro experiments on human prostate cancer PC-3 cells, a non-cytotoxic Chlor
concentration was selected (5 µM), being in these conditions the bare nanocarriers non cytotoxic as well.
Then, to properly tune the sonodynamic treatment protocol, Chlor intracellular uptake was evaluated
on PC-3 cell line and the maximum level was observed after 6 h of incubation for Chlor-Lipo or
Chlor-SLN and after 24 h of incubation for Chlor or Chlor-PLGA NSs. These data are in agreement with
previous studies on Chlor, in which similar incubation times for cancer cell uptake were observed [40].
Moreover, fluorescence microscopy analysis revealed that Chlor (free or entrapped) has principally a
cytoplasmic distribution after the incubation with PC-3 cells.

The sonodynamic treatment with the di↵erent Chlor formulations showed a significant inhibition
of PC-3 cell growth, contrary to US or Chlor formulations alone. The di↵erence observed in the
sonodynamic cytotoxicity of free Chlor when compared to Chlor-loaded nanocarriers might be ascribed



Pharmaceutics 2020, 12, 605 17 of 20

to di↵erent mechanisms of cell internalization, since it is known that Chlor enters cells by di↵usion [41],
whereas liposomes and nanoparticles mostly enter cells by endocytosis [42,43]. Noteworthy, the highest
decrease in cancer cell growth was obtained with US associated to Chlor-PLGA NSs, even if the level of
Chlor cellular internalization after incubation with Chlor-Lipo, Chlor-SLN and Chlor-PLGA NSs was
quite the same. By analyzing the physico-chemical characteristics of Chlor nanocarriers, Chlor-PLGA
NSs showed the lowest mean diameter and zeta potential values. Indeed, it has been reported in the
literature that particle size and aggregation can influence the e�ciency of a sonosensitizer loaded into
nanoparticles [44]. Moreover, PLGA NSs showed a slower and more controlled release of incorporated
Chlor. The highest sonodynamic cytotoxicity observed with Chlor-PLGA NSs can be also related to
the interaction of the intracellular energy locally generated by US with the nanoparticle structure [11].
Indeed, recent studies have shown that nanoparticles with rough surfaces can promote a reduction in
the acoustic cavitation threshold, positively favoring the e↵ect provoked by US cavitation [45]. PLGA
nanoparticles, with their porous surface, seem to confirm this statement, as investigated studying
low-intensity US and porous PLGA on peripheral nerves [46]. Therefore, it can be assumed that
polymer nanoparticles, such as PLGA ones, loaded with a sonosensitizer, can be considered not only
as a tool to increase the sonodynamic activity, but also as an e↵ective vehicle able to target cancer cells
and tumor tissues.

To confirm that sonodynamic treatment led to cytotoxic e↵ects through Chlor-mediated
intracellular ROS production, ROS levels were determined according to DCFH-DA assay by flow
cytometry. A significant increase in ROS production was observed in PC-3 cells after Chlor-PLGA
NSs exposure to US, mirroring the cytotoxicity data. The exposure to US alone induced a very limited
increase in intracellular ROS, while the highest level was obtained 30 min after US exposure for all the
Chlor formulations tested, being the higher ROS levels obtained with Chlor-Lipo and Chlor-PLGA
NSs. Furthermore, pre-incubation of PC-3 cells with a ROS scavenger, i.e., NAC, suppressed the
cytotoxicity of the sonodynamic treatment with all the Chlor formulations tested, compared to
untreated cells, emphasizing the role of ROS in the sonodynamic cytotoxic e↵ect. These data are in
agreement with Wang et al. [47] that underline the strong ROS production as the fundamental step
in the sonodynamic killing of target cells. Moreover, the US-mediated Chlor activation seems to be
selective according to cell type, being e↵ective against human prostatic cancer PC-3 cells but not against
human fibroblast HDF 106-05 cells. Experimental evidence suggests that outcome and selectivity of the
sonodynamic treatment [48] could be strongly supported by the relevant di↵erences between cancer
and non-cancerous cells in cell structure and mechanical properties and then in US responsiveness [49].

It is well known that low ROS levels inside cells play a role of mediating intracellular signals,
whereas high ROS levels can lead to cell death as apoptosis and necrosis [50]. In order to evaluate
the percentage of apoptosis and necrosis induced by the combined treatment with US and Chlor
formulations, Chlor-PLGA NSs, as the formulation with the highest sonodynamic cytotoxicity, and
free Chlor as reference were chosen. Chlor-PLGA NSs sonodynamic activation was able to induce
a significant increase in apoptotic and necrotic cell death, doubling the values obtained by the
sonodynamic activation of free Chlor. These results reinforce the data previously reported, showing
that the combined action of US and Chlor-PLGA NSs led to an increase in ROS production, triggering
the mechanisms responsible of cell death.

Once demonstrated the capability of Chlor to act as a sonosensitizer on a 2D monolayer cell
culture model of human prostate cancer cells, attention shifted to evaluate the sonodynamic treatment
e↵ect with US and Chlor (as free drug or loaded into PLGA NSs) on a 3D spheroid culture model.
For spheroid development, DU-145 cell line was used, as PC-3 cells showed a poor capacity for cell
adhesion and aggregation. Before performing the sonodynamic experiments on DU-145 spheroids,
a Chlor cellular uptake evaluation was performed on this cell line; a particularly high Chlor uptake
was observed 24 h after the incubation with both free Chlor and Chlor-PLGA NSs. Since spheroids
are organized in several layers of cells, an increased non-cytotoxic concentration of Chlor (i.e., 10 µM)
compared to that used for 2D cell monolayer (5 µM) was used. After sonodynamic treatment with
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Chlor-PLGA NSs, a reduction of about 60% in spheroid volume compared to untreated spheroids was
observed. It is interesting to note that the volume of spheroids treated only with Chlor-PLGA NSs,
therefore not subjected to US exposure, was una↵ected. By using PI to evaluate cell death, an increase
in PI fluorescence in spheroids treated with US and Chlor-PLGA NSs was also observed, indicating an
increased damage of cell membranes caused by the sonodynamic activation of Chlor. If compared to
untreated spheroids, the use of Chlor-PLGA NSs respect to free Chlor was more e↵ective in leading to
cytotoxicity under US exposure. These data are in accordance with those obtained using 2D monolayer
cell cultures.

5. Conclusions

This work demonstrates the e↵ectiveness of Chlor as sonosensitizer in killing prostate cancer
cells, thanks to ROS generation triggered by Chlor US-mediated activation. The Chlor sonodynamic
cytotoxicity was observed in both prostate cancer 2D cell monolayer cultures and 3D spheroids.
Moreover, Chlor loading into nanocarriers was able to influence its sonodynamic activity by enhancing
the cytotoxic e↵ect, especially using polymer nanoparticles, such as PLGA NSs. Further research should
first focus their attention on enhancing the nanoparticle ability to provoke cavitation, i.e., boosting and
increasing not only the morphological but also the chemical features of the nanoparticle surface.
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