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Dipolar interactions among magnetite nanoparticles for magnetic 

hyperthermia: a rate-equation approach

 Gabriele Barrera,∗a Paolo Allia,a and Paola Tibertoa

Rate equations are used to study the dynamic magnetic properties of interacting magnetite nanoparticles viewed as double 
well systems (DWS) submitted to a driving field in the radio-frequency range. Dipole-dipole interaction among particles is 
modeled by inserting an ad-hoc term in the energy barrier to simulate the dependence of the interaction on both interparticle dis-
tance and degree of dipole collinearity. The effective magnetic power released by an assembly of interacting nanoparticles 
dispersed in a diamagnetic host is shown to be a complex function of nanoparticle diameter, mean particle interdistance and 
frequency. Dipolar interaction markedly modifies the way a host material is heated by an assembly of embedded nanoparticles in 
mag-netic hyperthermia treatments. Nanoparticle fraction and strength of the interaction can dramati-cally influence amplitude and 
shape of the heating curves of the host material; the heating ability of interacting nanoparticles is shown to be either improved or 
reduced by their concentration in the host material. A frequency-dependent cut-off length of dipolar interactions is determined and 
explained. Particle polydispersity entailing a distribution of particle sizes brings about non-trivial effects on the heating curves in 
dependence of the strength of dipolar interaction.

1 Introduction

The recent years have witnessed an impressive growth of concern
on magnetic nanoparticles (NPs) for use in many different areas
of technology and biomedicine [1]. The research activity is de-
veloping along two main lines; the first one involves the progress
in materials science and chemistry with the aim to produce nano-
materials and/or nanostructures characterized by a combination
of exciting properties of potential interest in biomedicine, renew-
able energy technology, electronics and often characterized by a
high degree of engineering at the nanoscale [2, 3, 4, 5]; a second
line involves the optimization of the performance of known nano-
materials such as iron-oxide based NPs, where a large margin of
improvement is still possible [4, 5]. This line of development
is actively followed when magnetic NPs are considered for use
in biosensing and medicine, where they provide innovative solu-
tions for the clinical treatment of a variety of diseases [1, 6], in-
cluding early diagnosis [7], accurate bioimaging [8, 9] and above
all significant advances in therapeutic efficacy [9, 10, 11, 12].
Anti-tumor therapies based on, or assisted by magnetic nanopar-
ticles are effective in overcoming the resistance of some types of
malignant cells to standard treatments [13, 14]. Nanoparticles
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made of magnetic Fe oxides such as magnetite, maghemite or a
combination of both have been long since recognized as the most
promising nanomaterials for in-vivo applications [15, 16], owing
to the ease of preparation [17] and low toxicity[18]. Fe-oxide
nanoparticles in the range 10-20 nm can be used either as mag-
netically driven nanocarriers in standard or heat-assisted drug de-
livery [19, 20] or as magnetically activated, pointlike heat sources
in magnetic hyperthermia [10]. The latter practice has come to
play a central role in precision nanomedicine, an innovative branch
of medicine where nanotechnology helps overcoming treatment
resistance of cancer cells by exploiting the physical properties of
nanomaterials [21, 22, 23]. Magnetic hyperthermia is presently
being widely investigated either as a standalone therapy or in
strict association with chemotherapy, enhancing its therapeutic ef-
ficiency and improving tumor penetration [24]. Anti-tumor ther-
apies based on hyperthermia resulting from inoculated nanopar-
ticles of magnetite have already been tested and administered to
patients [25, 26].

Magnetic hyperthermia is based on heat generation by effect of
cyclic magnetization of ferro- or ferrimagnetic NPs in a diamag-
netic host. Heat is produced by the dynamic response of magnetic
dipole moments under the action of a periodic magnetic field
of suitable amplitude and frequency (usually, in the low radio-
frequency range, i.e. from 20-50 kHz to about 1 MHz [27]).
The main mechanisms of magnetic energy dissipation resulting
in heat transferred to the host are Brown’s and Néel’s relaxations



[28], the former effect being related to the oscillation/rotation of
each nanoparticle viewed as a rigid body by effect of a magnetic
force/torque, and the latter one to cyclic rotation and/or reversal
of particle’s magnetization with respect to the crystal axes. Néel’s
relaxation largely predominates at the radio frequencies of inter-
est for magnetic hyperthermia [29] and the key physical property
is the hysteresis loop of the magnetization, whose area is directly
proportional to the heating power released to the neighboring
tissue [22, 30]. It should be remarked that at high frequency
the cyclic magnetization of NPs is hysteretic even in particles ex-
hibiting a superparamagnetic behavior in quasi-static conditions
[31, 32]. Magnetic hysteresis appears because at high frequency
the particle’s magnetization is constantly kept out of equilibrium
by the driving field.

Rate equations are particularly appropriate to accurately model
off-equilibrium properties of an assembly of magnetic nanoparti-
cles described as classical two-level systems (DWS) [32, 33], pro-
vided that some conditions on magnetizing frequency and parti-
cle size are complied with [30]. Solving the rate equations allows
one to obtain the evolution of the population in the two wells by
effect of and driving field and temperature, so that the evolution
of magnetization can be immediately derived [30, 34].

Although the rate equation framework is only an approximate
way to study fast magnetization dynamics in nanostructures [30],
it turns out to be an accurate, flexible technique [30, 23]with the
great advantage of providing better physical insight than other
methods of numerical simulation. Moreover, rate equations have
been recently shown to effectively predict and describe new ef-
fects related to the use of unconventional driving-field waveforms
[30] and to the control of the driving field during a clinical treat-
ment, resulting in a fine tuning of the treatment temperature and
a reduction of treatment time [23].

So far, rate equations have been typically applied to non-
interacting nanoparticle systems [33, 35, 36, 34, 30, 32]. This
is a direct consequence of their formal structure [32] which is
best suited to describe independent DWS and cannot be imme-
diately extended to study particle interactions. However, dipo-
lar interactions among magnetic nanoparticles are not negligible
in assemblies of concentrated NPs and markedly influence their
heating efficiency, although the question is still open whether the
effects of interaction are actually detrimental or beneficial, ow-
ing to the contrasting experimental and/or theoretical evidence
gathered in favor of either conclusion. In fact, dipole-dipole in-
teraction has been shown to enhance [37, 38, 39, 40] or reduce
[41, 42, 43, 38, 44, 39] the heating efficiency of an assembly of
NPs with respect to the non-interacting case. Recently, the at-
tention has been focused on the heating capability of more com-
plex arrangements of particles such as clusters, aggregates, hybrid
structures where dipolar or contact interactions induce coopera-
tive magnetic effects [45, 46]. Remarkably, some studies were
done in in vivo conditions or inside living cells [47, 48].

Often, dipolar interaction among nanoparticles for magnetic
hyperthermia is accounted for by introducing an ad-hoc term
in the Fokker-Plank equation [38], or in the stochastic Landau-
Lifshitz equation [42, 49, 50], or in the expression of the energy
exploited in a Monte Carlo simulation [41, 43, 39, 51]. However,

the outcomes of these methods often do not help clarify the role
of interaction on the basis of physical considerations. Using a rate
equation framework is expected not only to provide an alternative
viewpoint but also to shade new light on this matter.

In the present model the effect of dipolar interaction is modeled
through a suitable change of the energy barrier of the DWS.

Rate equations are solved for an assembly of magnetite
nanoparticles with randomly directed easy axis directions, at dif-
ferent temperatures and for different values of driving field’s am-
plitude and frequency. In this way, the time evolution of the popu-
lation in the energy wells of the DWS is accurately determined, so
that the hysteresis loops can be drawn and their area calculated
as a function of the relevant physical parameters. The effective
power released by interacting nanoparticles to a diamagnetic host
material is inserted into a heat equation with appropriate bound-
ary conditions in order to study the evolution of the temperature
increment in the host as a function of both space and time.

Dipolar interactions turn out to have complex effects on the
thermal efficiency of monodisperse and polydisperse magnetite
nanoparticles. In particular, interacting particles are shown to
be either more or less efficient than non-interacting particles, de-
pending on the volume fraction. A frequency-dependent cut-off
length of dipole-dipole interaction is predicted to exist. All results
are explained on the basis of simple considerations on the redis-
tribution of the DWS populations by effect of temperature and
magnetic field.

2 Model

2.1 Rate Equations and Dipolar Interactions

Rate equations have proven to be a powerful tool in the analy-
sis of the behavior of magnetic nanoparticles (NPs) described as
classical double-well systems (DWS) [35, 52, 34, 32, 30]. The
DWS model [34, 32, 22, 23] applies when the magnetic behav-
ior of particles is dominated by a predominantly uniaxial mag-
netic anisotropy. The particles are assumed to be made of mag-
netite, which is nowadays the most promising iron oxide ex-
ploited in magnetic hyperthermia, and are characterized by vol-
ume V = (π/6)D3 (D being the average NP diameter) and mag-
netic anisotropy K0, whose value in magnetite NPs [31] is such
that the quasi-static blocking temperature [32] TB ' K0V/25kB is
well below room temperature (T0 = 300 K). In this paper, the
following room temperature values of saturation magnetization
and magnetic anisotropy have been used: Ms(T0) = 350 emu/cm3

(350 kA/m) and K0(T0) = 2×105 erg/cm3 (2×104 J/m3 ). Mag-
netic anisotropy may contain both volume and surface contribu-
tions [53], and is a single-particle property.

Rate equations describe the redistribution of magnetic mo-
ments in the two energy wells of a DWS (see Electronic Supple-
mentary Information) by effect of temperature and/or magnetic
field, both at equilibrium and off-equilibrium, according to the
classical Arrhenius law [34]. As a consequence, magnetic hys-
teresis loops can be calculated at different temperatures, under
different driving-field waveforms and over extended frequency
intervals [32, 30, 22], provided that their limits of validity (dis-
cussed in detail elsewhere [30, 32]) are taken into account. In



particular, rate equations in magnetic NPs can be derived from
the Fokker-Planck equation [54] when the energy barrier EB is
significantly larger than thermal energy kBT ; for the magnetic
anisotropy values considered here, such a condition is fulfilled at
all temperatures of interest when D & 12 nm; as a consequence,
the smallest size investigated in this paper is D= 13 nm. The driv-
ing field frequency f is in the range 1×103 ≤ f ≤ 1×106 Hz, i.e.,
well below the upper limit of validity of the method (≈ 1× 107

Hz) [30].
The rate equation formalism used in this paper has been de-

scribed in detail elsewhere [34, 30]; an overview can be found in
the Electronic Supplementary Information.

Magnetite particles are assumed not to be in contact with each
other, to be rather evenly dispersed in the host material, and
not to aggregate in clusters nor order in chains. In fact, the
aim of this work is to highlight the effect of dipolar interac-
tions on the magnetic properties and heating efficiency of the NPs
rather than on the consequences of the arrangement in space of
the particles themselves. Although linear chains of large mag-
netic nanoparticles were shown to be characterized by a greater
heating efficiency than evenly dispersed particles of compara-
ble size [40, 55, 56], chains can be broken by a high-frequency
driving field [57]. In addition, magnetic mesostructures can be
harder to eliminate after a clinical treatment: removal of non-
biodegradable particles or aggregates from the body is both a
central issue and a complex process [58]; inoculated nanopar-
ticles larger than about 5.5 nm are typically removed through the
hepatobiliar path, which is much easier to take by smaller than
by larger particles [58] and a fortiori nanoparticle aggregates and
chains.

In the explored frequency range, the dominant mechanism of
heat generation by magnetic NPs is Néel’s relaxation, Brown’s
relaxation effects being negligible [29]. In in-vivo applications
Brown’s relaxation is further reduced because particles inoculated
in a living body typically settle in definite positions around an
organ in the body, losing to a large extent their rotational and
translational degrees of freedom [59, 60].

In the rate-equation framework, a central role is played by
thermally assisted redistribution of DWS populations between
wells i = 1,2 [31, 34] (see Electronic Supplementary Informa-
tion) which occurs in a characteristic time (different for 1→ 2
and 2→ 1 transitions under a magnetic field):

τi = τ0 exp
( EBi

kBT

)
(i = 1,2) (1)

where τ0 ≈ 10−9 s and EB1,2(H,φ) are the total energy barriers
for 1→ 2 transitions and viceversa; when H = 0, EB1 = EB2 = EB,
so that a single characteristic time τ = τ0 exp

(
EB/kBT

)
is defined.

The energy barriers EBi also depend on the angle φ between
the easy axis of the DWS and the magnetic field. Usually, a 3D
random distribution of particles’ easy axis directions is assumed,
and all model’s results are to be averaged over all angles [34, 32].

In the literature, the effect of dipolar interactions on the mag-
netic properties of NPs is described in a variety of ways, basically
consisting in introducing either a dipolar field [42, 39, 61] or

a dipole-dipole energy [49, 51, 38, 43] in an assembly of NPs.
A simple but very effective way to include dipolar interactions
in the rate-equation framework is to add a positive term to the
energy barrier EBi of the non-interacting DWS. A higher energy
barrier means that dipole-dipole interaction basically acts against
the changes in the magnetic state of a nanoparticle system, both
at equilibrium (resulting, e.g., in the increase of the quasi-static
blocking temperature [62, 63]) and out of equilibrium, hinder-
ing the redistribution of population in the two wells of the DWS
by effect of the periodic field and resulting in a larger magnetic
hysteresis.

In fact, an enhancement of EBi with respect to the non-
interacting case by effect of dipole-dipole interactions is sup-
ported by a variety of experimental results [64, 65, 53, 66] and
is often assumed as a starting point in theoretical models or sim-
ulations [67, 68, 69]. The model can be assimilated to a mean-
field theory and is therefore conceptually simpler and less deep-
rooted than numerical simulations of dipole-dipole interaction
in more fundamental equations for the magnetization dynam-
ics [38, 42, 49, 50]. Collective magnetic states possibly arising
in samples with a high particle concentration by effect of inter-
particle dipole interactions, and resulting in spin-glass-like ar-
rangements for randomly distributed particles [70], cannot be
described by a mean-field theory; however, a collective behav-
ior is typically found in NP systems whose concentration is much
higher than the ones typically exploited in magnetic hyperther-
mia applications [70]. Moreover, as for all mean-field models,
the simplicity of the approach allows one to achieve physical in-
sight of the role of dipolar interaction on the magnetic properties
and the heat released by an assembly of nanoparticles.

The total energy barrier of a DWS is viewed as composed of
two terms, i.e., the energy deriving from the particle’s magnetic
anisotropy and a contribution accounting for the effect of dipole-
dipole interaction on the DWS in an average way. The magnitude
of the latter term is assumed to depend on the inverse cube of
the interparticle distance and the degree of alignment of all mag-
netic dipole moments in the system, as suggested by the existing
literature [71, 72, 73]. As a consequence of the variation with
interparticle distance, the dipolar contribution explicitly depends
on the volume fraction of nanoparticles. Non-interacting particles
correspond to the limit of infinite interparticle distance.

In a monodisperse system comprised of particles separated by
an average center-to-center distance d > D, the maximum r.m.s.
dipolar energy can be written as:

Emax
D = α

µ2

d3 = αM2
s V

V
d3 = αM2

s V fV (2)

where µ = MsV = π

6 MsD3 is the magnetic moment of NPs in
the macrospin approximation [34] and α is a dimensionless nu-
merical constant deriving from purely geometrical considerations
and obtained by summing the dipole-dipole energy contributions
which derive from the magnetic moments surrounding each par-
ticle ; in this work, we take α = 10, a value given in the literature
[74]. The dependence of the energy barrier on the inverse cube
of the interparticle distance was experimentally verified [75] by
measuring the behavior of the blocking temperature in magnetic



iron oxide particles with properly tunable d. Note that the volume
fraction of particles embedded in the host medium is univocally
related to the interparticle distance by the relation fV =V/d3, so
that the dipolar energy actually scales with fV . The expression of
fV is easily obtained from the ratio of the total magnetic volume
of N particles VNP = NV to the volume of the host medium which
contains the N particles, VH = Nd3. This has remarkable conse-
quences on the magnetic and thermal behavior of an assembly of
interacting particles.

Existing theories or simulations [71, 72, 73] show that in disor-
dered systems the magnitude of the dipolar field on each particle
is largest when the magnetic moments are completely disordered
and is strongly reduced (by a factor which can be of the order of
one half) when moments are collinear. The effect is particularly
apparent for volume fractions in the 0.1 - 0.35 range and deter-
mines a variation of the local dipolar energy with the degree of
magnetic order of the system. In order to approximately take into
account this effect, the dipolar energy has been modeled as:

ED = αM2
s V (1− |m0|

2
) fV ≡ Emax

D (1− |m0|
2

) (3)

where |m0|= |M0|/Ms is the absolute value of the reduced mag-
netization of a non-interacting system of monodisperse particles
with randomly distributed easy axes (the dimensionless quantity
|m0| takes values between 0 and 1). Therefore, the total energy
barrier of the DWS of volume V with easy axis making an angle φ

with the magnetic field becomes:

EBi(H.φ) = E 0
Bi(H,φ)+ED = E 0

Bi(H,φ)+αM2
s V (1− |m0|

2
) fV . (4)

where E 0
Bi(H,φ) is the barrier’s height for the non-interacting

system. In this way dipolar interaction, a genuine collective ef-
fect, is accounted for by modifying the energy barrier of each
DWS, allowing one to treat the problem in the single-particle ap-
proximation, as for non-interacting particles. The loss of mathe-
matical rigor is more than compensated by an increase of physical
insight, as will become apparent in the following sections.

In general the product K0V determines the magnitude of
EBi(H,φ) at all angles and all magnetic field values (when φ = 0
and H → 0 the simple expression E 0

B = K0V applies). The intrin-
sic temperature dependence of magnetic parameters such as Ms

and K0 is often neglected in the literature. However, it has been
shown that the decrease of the magnitude of both quantities with
temperature plays an important role on the heating properties
of a system of nanoparticles [22]. Therefore, the temperature de-
pendence of both magnetization and magnetic anisotropy is taken
into account in the model. In particular, the magnetization is as-
sumed to change with temperature according to the data reported
elsewhere [76]. The Curie temperature of nanoparticles is taken
as TC = 856 K in agreement with available experimental data on
magnetite particles[77, 78, 79]. The anisotropy constant K0(T )
is assumed to follow a cubic power law appropriate for uniaxial
symmetry [80]:

Ke f f (T )
Ke f f (T0)

=
[ Ms(T )

Ms(T0)

]3
(5)

between room temperature (T0) and TC. This temperature de-
pendence law was actually measured in magnetic nanoparticles
containing Fe ions [81].

At each temperature, the rate equations give the occupancy
numbers of the two wells as functions of the applied field for
the subset of DWS making an angle φ with H. The hysteretic
magnetization of the subset is easily obtained [32, 30]; the
hysteresis loops for each φ angle are then summed up assuming
a uniform distribution of easy axes.

2.2 Heating Model

The evolution of temperature in a non-magnetic sample contain-
ing a fraction fV of magnetic NPs is studied by using a suitable
heat equation with internal generation and appropriate bound-
ary conditions. In this paper, a previously developed heating
model [22, 23] is adopted. We make use of the standard Fourier
equation in radial symmetry [22, 82, 83] with an internal power
source and boundary conditions simulating heat loss dominated
by forced convection.

Focusing on such a simple heat equation and simple sample
geometry allows one to clarify the role of dipolar interaction on
the thermal efficiency of an assembly of interacting particles in
comparison to the non-interacting case. In principle, the predic-
tions of the present approach can be improved by inserting the
power generated by interacting nanoparticles in one of the bio-
heat equations more accurately modeling how heat is generated,
transported and dissipated in a living body [84, 85]. However,
many poorly known parameters influence magnetic hyperthermia
in living bodies, including blood composition and density, non-
uniform blood flow, thermal interactions between blood vessels
and tissues, blood vessels significant for heat transfer in tissues,
tissue-blood perfusion rate [22]. Therefore, use of bioheat equa-
tions accounting for such a large set of biological parameters may
hinder understanding the effects of dipolar interactions, which is
our primary aim here.

In our model, the nanoparticles act as pointlike heat sources
evenly distributed in space throughout the sample, which is taken
as a macroscopic sphere of radius b = 0.01 m filled with a homo-
geneous medium (e.g., a biological simulant or tissue phantom)
where the particles are randomly distributed. The boundary con-
ditions simulate heat loss by forced convection at the sample’s
boundary, a common condition in living bodies [84].

Advantages and limits of this thermal model, with particular
reference to therapeutic use of magnetic hyperthermia, are dis-
cussed elsewhere [23]. Here, its main features are highlighted.

The temperature T (r, t) at a distance r≤ b from the center of the
sphere and at time t is found by numerically solving the Fourier
equation for a medium with uniform thermal conductivity and
thermal diffusivity:

∂ 2T (r, t)
∂ r2 +

2
r

∂T (r, t)
∂ r

+
We f f (T )

k
=

1
α

∂T (r,T )
∂ t

(6)

where T (r, t) is the local, instantaneous temperature inside
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the sphere, We f f (T ) is the effective heating power of evenly
dispersed particles, k and α are the thermal conductivity and
thermal diffusivity. Their values, k = 0.5 W/mK (applicable to
real phantoms [86, 87]) and α = 1.4× 10−7 m2/s, are taken as
constants; although this approximation is not appropriate to a
fine picture of real environments of interest in the therapeutic
practice, it has been chosen in order to emphasize the role on
heating played by the power released by magnetic NPs without
introducing effects of non-magnetic origin such as the changes of
the thermal properties of the medium. More precise results can
be easily obtained by using space- and temperature-dependent
thermal parameters.

Heat exchange at the sphere boundary occurs by convection
with a flowing fluid surrounding the sample [22]. In living bod-
ies, such a process occurs through tissue-blood perfusion [84].
The appropriate boundary condition is:

∂T (r, t)
∂ r

∣∣∣
b
=−h

k
T (b, t) (7)

where h is the convective heat transfer coefficient. The value
used in this work is h = 133 W/m2K, corresponding to a blood
perfusion coefficient typical of tumor tissues [88] (4 × 104

Wm−3K−1).

It should be remarked that effects arising from particle cluster-
ing or aggregation [45, 46, 47, 48, 89] are beyond the domain
of validity of these magnetic and thermal models, which refer to
particles almost evenly distributed in space. However, the spirit
and aim of the present work is to assess the role of dipolar in-
teraction from a fundamentalists’ viewpoint, which is better done
considering simpler, idealized systems characterized by a regular
arrangement and a high homogeneity of particles in space. Nev-
ertheless, the results presented in the following Sections may pro-
vide the framework for interpreting the high-frequency magnetic
properties measured in aggregated nanoparticles [45, 47, 48].

3 Results
When the dipolar energy term is switched on, the hysteresis loop
of a system of interacting particles turns out to markedly depend
on the mean interparticle distance d and therefore on the vol-
ume fraction of nanoparticles fV = V/d3. Notable effects on the
magnetic behavior and the heating efficiency of interacting par-
ticles are separately discussed in the following sections. In all
considered cases, the vertex field is kept in the range 100 - 200
Oe, compatible with the values used in the experimental practice
and compliant with the prescriptions introduced to avoid harm or
major discomfort to the patients [28].

3.1 Concentration-dependent Loop Area and Effective
Power

The effect of dipolar interaction on hysteresis loops is shown in
panels a− c of Figure 1 for a monodisperse system of 13 nm
nanoparticles at T0 = 300 K submitted to a harmonic magnetic

field of vertex HV = 200 Oe (15.915 kA/m) at the magnetizing
frequency f = 100 kHz.

In the panels, the anhysteretic curve of the system at equilib-
rium is also shown for comparison; this curve corresponds to
the cyclic magnetization measured in the limit of zero frequency.
The black dashed line in panel d illustrates the standard behavior
of the loop area AL as a function of fV . In general, the loop
area starts from a small positive value for fV → 0 (i.e., d → ∞),
increases up to a maximum (the corresponding loop is shown
in panel b), and finally goes to zero for large fV values. Note
that for small fV the loop is slightly wider than, but similar in
shape and slope to the equilibrium curve, whereas for high fV
(panel c), the loop is very far from the equilibrium curve and
its area disappears because the strong dipolar interaction makes
the overall energy barrier so high that the coercive field becomes
much larger than the vertex field. The central role played by the
ratio of the vertex field to the coercive field on the width of the
hysteresis loop was elucidated elsewhere [32]: when the coercive
field is much larger than the vertex field, magnetic hysteresis is
expected to disappear.

The functional dependence of the loop’s area on fV is rather
complex, neither it is simply related to the variation of typical
hysteretic parameters such as the coercive field HC and the
magnetic remanence Mr, as shown in panel d (curves in color).
The meaning of the two hysteretic parameters is recalled in
panel b. Although both quantities vary in a similar way with fV ,
their maxima occur at slightly different fV values. The loop’s
area depends not only on HC and Mr but also on the shape of
the loop and exhibits a complex behavior, being superimposed
to the HC( fV ) curve at low volume fraction and to the Mr( fV )
curve around its maximum and beyond. Comparison with the
corresponding equilibrium curves shows that a small loop area
can arise either from a loop which is narrow because it is close to
the equilibrium curve, as in panel a, or to a loop which is narrow
because the dipolar interaction is so strong that the vertex field
is well below the coercive field, as in panel c.

The presence of a maximum in the AL( fV ) curve is easily ex-
plained considering that the hysteresis loop is expected to be
widest when the typical time of jump across the DWS barrier τ

becomes roughly equal to the driving field period 1/ f [22]:

τ = τ0 exp
( EB

kBT

)
≈ 1

f
. (8)

In the present case the overall energy barrier EB is linearly de-
pendent on fV because of the presence of the dipolar energy term;
for simplicity, we take the expression for τ at H = 0, an approxi-
mation that holds when the vertex field is sufficiently small (i.e.,
well below the coercive field HC), as in the present case.

The condition expressed by Equation 8 is explained consider-
ing that when τ << 1/ f the population of the DWS is very close
to thermal equilibrium, so that the hysteresis loop is expected to
be narrow; on the contrary, when τ >> 1/ f the redistribution of
magnetic moments between the energy wells is almost suppressed
and a nearly anhysteretic curve (although not coincident with the
equilibrium curve) again results. Only when τ ≈ 1/ f the ongo-
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Fig. 1 Panels a - c: hysteresis loops for interacting and non-interacting particles of diameter D = 13 nm (red/green lines, respectively) at different
interparticle distance d. The meaning of magnetic remanence Mr and coercive field HC is recalled in panel b. Panel d: variation of the hysteretic
properties (reduced magnetic remanence Mr/Ms and coercive field HC) of interacting monodisperse particles with nanoparticle volume fraction fV ; the
behavior of the loop area AL is superimposed for comparison (dashed black line; labeled circles correspond to the loops shown in panels a - c.

ing effect of population redistribution keeps the DWS constantly
out of equilibrium during a driving field’s period, resulting in a
particularly wide loop.

The validity of such an explanation is verified in Figure 2. In
the left panel, the behavior of the room-temperature loop area
AL is reported as a function of fV for four monodisperse systems
characterized by different particle diameters and submitted to a
driving field with HV = 100 Oe (7.958 kA/m) and f = 1× 105

Hz. The AL( fV ) curves exhibit a bell-like shape, as already shown
in Figure 1; the position of the maximum is displaced towards
lower values of fV with increasing the particle diameter D. In the
same panel, the behavior of log10 τ at room temperature and for
the same diameters is also reported (oblique straight lines). The
common logarithm of τ depends linearly on EB and hence on fV :

log10 τ = 0.43429×
(

lnτ0 +
EB

kBT

)
= A+B fv. (9)

where A = 0.43429× ln(τ0 +
K0V
kBT ) and B = 0.43429× α

kBT M2
s (1−

|m0|(H=0)
2 ) (see Equation 4).

It can be observed that the maximum of each AL( fV ) curve is
always close to the value of fV when the corresponding log10 τ

line crosses the horizontal line log10(1/ f ) = log10(1×10−5) =−5.
For large particles (D = 16 nm) the AL( fV ) curve decreases for all
values of fV because the corresponding log10 τ line does not cross
the −5 line for any positive fV .

The right panel refers to a monodisperse system of nanopar-
ticles with D = 13 nm at room temperature and shows that the
condition expressed by Equation 8 retains its validity over a wide
range of frequencies (1 to 500 kHz): the maxima of the AL( fV )
curves always occur very close to the intersections between the
log10 τ line (oblique straight line) and the horizontal straight lines
corresponding to the values of log10(1/ f )). The fV values inves-
tigated here are compatible with the requirement that no col-
lective effects arising from dipolar interaction should be present
in the system; as a matter of fact, the strong interaction regime
where the present model is certainly not applicable can be de-
fined by the condition E(max)

D >> K0V [90]; for instance, if one

takes E(max)
D . 3K0V as the condition for applying the model, this

implies fV < 3K0
αM2

s
' 0.49.
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Fig. 2 Panel a: area of hysteresis loops at 100 kHz as a function of volume fraction for monodisperse systems characterized by different nanoparticle
diameters (bell-like curves); oblique straight lines: behavior of the common logarithm of the typical time of jump across the barrier for the considered
diameters; horizontal line: common logarithm of the inverse of magnetizing frequency. Panel b: loop area of 13 nm-particles as a function of volume
fraction for different driving-field frequencies (bell-like curves); oblique straight line: behavior of the common logarithm of the typical time of jump across
the barrier; horizontal lines in color: values of log10(1/ f ) for the considered frequencies. Panel c: behavior of the maximum loop’s area A(Max)

L as a
function of the particle volume at different driving-field frequencies. The maxima of the AL( fV ) curves for D = 16 nm at 100 kHz and for D = 15 and 16
nm at 500 kHz would occur at negative values of fV .
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3.2 Properties of Maximum Loop Area

Although the bell-shaped behavior of the AL( fV )) curve cannot be
represented by a simple analytical function, Eq. 8 can be used
to obtain the following rule-of-thumb expression which predicts
with good approximation the concentration corresponding to the
maximum value AMAX

L for a given particle size D at the frequency
f :

f (Max)
V =

1
αM2

s

[6kBT
πD3 ln(1/τ0 f )−K0

]
. (10)

When the right-hand term becomes less than zero, AMAX
L is at fV =

0 (corresponding to the non-interacting system).
When the condition 10 is fulfilled, the evolving magnetization

of the system derived from the rate equations has magnitude pro-
portional to the volume of the particles, so that the maximum
loop area, obtained plotting M(t) against H(t), is proportional to
V at all frequencies, as shown in panel c of Figure 2 and discussed
in the Electronic Supplementary Information, where a simple an-
alytic explanation is given.
Note that such a peculiar behavior is only observed around fV =

f (Max)
V , i.e., when the the loop’s area is largest. This can be ex-

plained considering that in these conditions, i.e. when τ = 1/ f
(see Equation 8 ), the natural process of redistribution of the
population between the two wells is triggered by the periodic
modulation of the height of the total energy barrier produced by
the magnetic (Zeeman) energy term EZ = −µH(t) = −MsV H(t).
When the typical relaxation time of the system, τ, becomes equal
to the modulation’s period, the redistribution process is most ef-
fectively driven: a larger V results in a stronger triggering effect
and a larger magnetization M(t) (i.e., a larger loop’s area), as
discussed in the Electronic Supplementary Information.

The variation of loop area with the volume fraction of nanopar-
ticles has two important consequences:
a) the Specific Loss Power of interacting NPs, defined as
WSLP = ( f/ρNP)AL where ρNP is the mass density of magnetic
material [29] is not a constant parameter and cannot be con-
sidered as a sort of label attached to a specific type of magnetic
NPs, as often presumed [27]; instead, it is a function of how
many particles are contained in the host medium; some examples
of the behavior of WSLP with fV are given in the Electronic
Supplementary Information for different values of HV ;
b) the power released by interacting particles evenly dispersed in
a non-magnetic medium is no longer proportional to the volume
fraction, as in the case of non-interacting particles.

As a consequence, an optimum volume fraction of particles ex-
ists, as illustrated in the left panel of Figure 3, where the effective
power density We f f released at room temperature by a fraction fV
of particles is shown for some typical nanoparticle diameters.

The effective power density is defined as:

We f f ( fV ) = fV ×AL( fV ) f (11)

where AL( fV ) f is the power released by a single particle. In
all cases, a maximum of We f f ( fV ) is observed, whose position
and height strongly depend on D. In particular, the maximum

height of We f f markedly decreases with increasing D. Although in
this example the system containing the particles with D = 13 nm
gives the best absolute heating performance, the position of the
maximum is displaced to a particle concentration which would be
too high in biomedical applications [25, 91, 92]. When fV is in
the range of values suitable for clinical treatments ( fV ≤ 0.02) the
effective power can be a non-monotonic function of D, as shown
in the right panel of Figure 3 for two volume fractions ( fV = 0.01
and 0.02) under the same conditions as in the left panel. In both
cases, the diameter giving the highest We f f at room temperature
turns out to be D = 15 nm.

3.3 Effects of Dipolar Interaction on Heating Curves

An example of the temperature variation resulting in a spherical
sample of radius b = 0.01 m is shown in panel a of Figure 4,
where the increment above room temperature ∆T = T − T0 is
shown as a function of time for three values of fV (full lines). The
particles have diameter D = 16 nm and are submitted to a field
of vertex HV = 100 Oe (7.958 kA/m) and frequency f = 1× 105

Hz. In this case, as well as in all other cases discussed in the
present paper, the temperature evolution with time is evaluated
at a distance r = b/2 from the center of the sphere.

The presence of the dipolar term changes not only the
steady-state temperature with respect to the non-interacting case
(dashed lines of corresponding color), but also the time needed
to reach the steady state and the shape of the ∆T (t) curves. When
particles are non-interacting, the steady-state temperature is pro-
portional to the volume fraction fV , and is therefore largest for
the smallest interparticle distance (here, d = 25 nm). On the
contrary, when the interaction is present, the sample is virtually
not heated at all for the highest particle concentration (red line,
d = 25 nm), because the dipolar term in the energy barrier of the
DWS becomes so large that the loop area is nearly zero for the
reasons already explained in Section 3.2. On the other hand, the
final temperatures attained by more dilute interacting nanopar-
ticles (blue and green lines) are higher than the ones obtained
when the nanoparticles do not interact.
Therefore, dipolar interactions act to either improve or reduce
the heating power efficiency of an assembly of nanoparticles, de-
pending on their average distance, i.e., their volume fraction.
For each value of fV the shape of the ∆T (t) curves is strictly
related to the evolution of the loop’s area AL and of the effec-
tive power We f f with temperature, as discussed in detail else-
where [22]. A concise analysis of this point can be found in the
Electronic Supplementary Information. The heating curve corre-
sponding to fV = 0.05 and d = 35 nm (full green line in panel a) is
particularly representative of the effect of the dipolar interaction
term and deserves an in-depth analysis. The evolution of temper-
ature above T0, shown in panel a for both interacting and non-
interacting particles is juxtaposed against the temperature behav-
ior of the effective power released by interacting/non-interacting
NPs (full/dashed lines in panel b, where the temperature is dis-
played on the vertical axis, on the same scale as in panel a).
It is apparent that around T = T0, the power released by non-

8 | 1–22



Fig. 3 Panel a: effective power released at 100 kHz as a function of particle volume fraction for different particle diameters. Panel b: effective power
released at 100 kHz as a function of diameter for two volume fractions in the range used in hyperthermia applications.

Fig. 4 Panel a: temperature increments ∆T in a sample containing monodisperse nanoparticles (D = 16 nm) as functions of time for three values of the
interparticle distance (full/dashed lines: interacting/ non-interacting particles). Panel b: effective power We f f and temperature increment for d = 35 nm.
Panel c: effect of interparticle distance on the steady-state temperature ∆TSS in a sample containing interacting / non-interacting particles (full / open
symbols, respectively)
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Fig. 5 Left panel: effective power as a function of temperature for different particle diameters ( fV = 0.01). Right panel: corresponding temperature
increments as functions of time in samples containing the same volume fraction.

interacting particles is much higher than the one of the interact-
ing system: this explains the higher initial slope of the ∆T (t) curve
(dashed green line in panel a); as a consequence, the temperature
where the effective power associated to the non-interacting sys-
tem reaches its maximum value (∆T ≈ 25 K, i.e., T ≈ 325 K) is
quickly overcome, and the subsequent reduction in We f f ensures
that the steady-state temperature is quickly attained by the sam-
ple.
On the contrary, the higher energy barrier EB of the interact-
ing system brings about a significant displacement of the whole
We f f (∆T ) curve towards higher temperatures (the maximum be-
ing now located at ∆T = 85 K). The effective power at T = T0 is
now much lower than in the non-interacting case, but it is still
nonzero; this gives rise to a much slower initial increase of tem-
perature with respect to the noninteracting case; however, the
effective power keeps increasing with temperature, so that the
steady state is not attained before the sample enters a tempera-
ture region where the slope of the We f f (∆T ) curve becomes much
steeper: this circumstance is reflected in the abrupt change of
slope of the ∆T (t) curve, corresponding to a much stronger heat-
ing effect; the steady state is finally reached at a higher tempera-
ture, when the maximum value of We f f has been overcome. This
explains both the higher final temperature and the much longer
time needed to attain the steady state in the interacting case.

As a study case, the role played by dipolar interaction has been
investigated in detail for monodisperse particles with D = 16

nm by increasing the interparticle distance in very small steps,
as shown in panel c of Figure 4, where the steady-state tem-
perature increment in the sample is reported as a function of d
(full/open symbols refer to interacting/non-interacting particles,
respectively). Whilst in the non-interacting case the steady-state
temperature is a monotonically decreasing function, a remark-
ably more complex functional dependence is observed when the
dipolar interaction is switched on. For sufficiently small d, the in-
teraction is so strong that sample heating is completely inhibited,
as already remarked. A very sharp transition from the no-heating
to the strong heating regime is observed around a well-defined
interparticle distance (in the present case, d ' 30 nm). When
the strong heating regime is set up, the steady-state temperature
suddenly becomes much higher than when particles do not inter-
act. The transition is not only characterized by a discontinuity
of the steady-state temperature but also by a dramatic slowing
down of the time needed to reach the steady state, as further dis-
cussed in the Appendix. Finally, when d is increased above 30
nm, the temperatures attained by the sample containing interact-
ing NPs smoothly approach from above the ones corresponding to
the non-interacting case.

Similar arguments help understanding the role played by
nanoparticle size on the heating efficiency of the same volume
fraction of particles ( fV = 0.01), reported in Figure 5. The details
of the heating curves reported in the right panel are explained by
considering the temperature behavior of the effective power We f f
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shown in the left panel. For instance, the low heating efficiency
of particles with D = 13 nm arises because of the monotonically
decreasing trend of the corresponding We f f (T ) curve; similarly,
the higher slope and lower steady-state temperature of the heat-
ing curve for D = 15 nm (green line) with respect to the one for
D= 16 nm (blue line) are explained by the different values of We f f

at T = T0 (vertical dashed line in the left panel) and the different
positions of the maximum of We f f . The horizontal displacement
of the We f f curves for different particle sizes is explained by the
analysis reported in the Electronic Supplementary Information.

The results highlighted in this Section help to explain why the
role of dipolar interaction on the heating efficiency of magnetic
NPs is still debated and many contradictory views exist. Although
in many works it is concluded that dipolar interaction reduces the
heating performance of nanoparticles [41, 42, 43, 38, 44, 39],
in other cases dipole-dipole interaction is shown to enhance this
property instead [37, 38, 39]. In fact, the existence of an optimal
particle density for magnetic hyperthermia was either inferred or
invoked [49, 39, 38, 61, 93, 94]. The rate equation approach
and the proposed dipolar-energy model naturally explain differ-
ent experimental results or views within a single framework. The
model predicts that the effective power at room temperature -
which controls the initial slope of the ∆T (t) curves - can be either
enhanced or reduced by dipole-dipole interaction with respect
to the non-interacting case, and the volume fraction fV governs
whether the dipole-dipole interaction has beneficial o detrimental
effects in the heating process. On the other hand, the steady-state
temperature of a sample is a quantity not only critically depen-
dent on We f f (T ) and therefore on fV , but also on the details of
the intrinsic temperature variation of the magnetic properties of
nanoparticles.

3.4 Effective Cut-off Length of Dipolar Interaction

The existence of a finite cut-off length of dipole-dipole interaction
in nanoparticle assemblies has been inferred from numerical sim-
ulations [95, 96, 43] and measurements [97, 98]. In particular,
it has been suggested that the effect of interactions is quickly re-
duced with increasing interparticle distance and becomes almost
negligible for separations exceeding about three particle diame-
ters. These conclusions were drawn from the study of nearly-
equilibrium magnetic properties, such as FC/ZFC curves, ac sus-
ceptibility and quasi-static hysteresis loops.

In the present paper dynamic, largely off–equilibrium magnetic
properties are investigated, so that it becomes possible to ex-
tend the knowledge about the cut-off length to the high-frequency
regime.

In the present model the non-interacting case corresponds to
the limit d → ∞. In fact, the shape of the loop of an interacting
system becomes gradually more similar to the one of the non-
interacting system when d is increased. In order to quantify this
effect, the following quantity is defined:

Σ =
1

Ms

√
n

∑
i=1

(
M(INT )

i −M(N.I.)
i

)2
, (12)

where the summation is extended to n selected values of

the magnetization on a single closed loop, M(INT )
i being the

magnetization of the interacting system for a given field Hi and
M(N.I.)

i the corresponding magnetization of the non-interacting
system, with i = 1,2,3 ...n− 1,n (in this work, n has been fixed
to 1000). A graphical example of the procedure is given in the
Electronic Supplementary Information. Basically, the quantity Σ

can be likened to a dimensionless standard deviation having the
property Σ→ 0 for d→ ∞. The behavior of Σ as a function of the
interparticle distance normalized to the particle diameter (d/D)
is reported in panel a of Figure 6 for a monodisperse system of
interacting particles with D = 13 nm. It can be observed that
the Σ

(
d/D

)
curves are markedly affected by the driving-field

frequency. The maximum value of Σ is found when d→ D and is
of the order of 5 at all frequencies.

An effective cut-off length (λ) of dipole-dipole interaction can
be defined as the distance d = λ such that Σ≤ 0.1. This condition
corresponds to an almost perfect superposition of the loops of
interacting and non-interacting NPs. The behavior of the ratio
λ/D as a function of the driving frequency is shown in panel b of
Figure 6. Interestingly, the cut-off length turns out to be constant
and of the order of three particle diameters up to about 1× 104

Hz, whilst for higher frequencies it increases almost linearly in
the semi log graph. The low-frequency value of λ/D resulting
from the present model is therefore in excellent agreement with
the values emerging from the analysis of quasi-static effects [95,
96, 43, 97, 98].

3.5 Effect of Frequency on the Cut-off Length of Dipolar In-
teraction

The increase of the normalized cut-off length λ/D at high fre-
quencies (panel b of Figure 6) can be explained through an in-
depth analysis of the characteristic times involved in the rate-
equation formalism.
In the time-frequency diagram sketched in the left panel of Figure
7 the two oblique straight lines represent:

- one half of the period, i.e., the time 1
2 f taken by the magnetic

field to reverse its sign (upper line);
- a time much shorter than the reversal time, such that the driv-
ing field can be considered as a constant; here we conventionally
take one hundredth of the reversal time, i.e., 1

200 f (lower line).
These lines divide the time-frequency plane in three regions de-
picted with different patterns and labeled as temperature-driven
(below the 1

200 f line), field-driven (above the 1
2 f line), and par-

tially field-driven (in between). The meaning of these regions is
easily explained: when the spontaneous time of jump between
the two energy wells is greater than 1

2 f , it is the applied field that
drives the redistribution of the DWS population, while the tem-
perature plays a negligible role; on the contrary, the condition
τ < 1

200 f indicates that the temperature is so high that the redis-
tribution between energy wells is much faster than the evolution
of the magnetic field. Of course, the transition from one regime to
the other one is not sharp, and an intermediate region exists. To
be specific, let us consider the typical time of jump across the bar-
rier (τ = τ0 exp

(
EB/kBT

)
) for an assembly of monodisperse NPs
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Fig. 6 Panel a: measure of the effect of interaction on the loop shape (Σ ) as a function of interparticle distance normalized to the particle diameter at
different magnetizing frequencies. Panel b: effective cut-off length of dipole-dipole interaction λ (normalized to the particle diameter) as a function of
frequency. Panel c: proportionality between Σ and the total barrier height EB at large interparticle distances.
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Fig. 7 Panel a: time-frequency diagram used to define the different regimes of the dynamical response of interacting and non-interacting particles to
an ac driving field of fixed amplitude (see text). Panel b: effect of driving-field frequency on the difference in shape between hysteresis loops and the
corresponding equilibrium curves for 13 nm-nanoparticles in non-interacting and interacting conditions (black and red curves, respectively).

at the temperature T :
- when τ falls in the temperature-driven region, the changes in
the occupation numbers between the two wells are so fast that
the two populations of the DWS are always equal to the equilib-
rium values [32]; in other words, the system is at equilibrium and
the magnetization follows a Langevin-like curve with no hystere-
sis [34];
- on the contrary, in the field-driven region the spontaneous pro-
cess of reordering is so slow that the occupancy numbers of the
two wells remain virtually constant during each period, and the
magnetization is modified only because of the rotation of the
magnetic moments by effect of the applied field. In other words,
the assembly of NPs behaves as a blocked system, and a large hys-
teresis is expected;
- in the intermediate region some change of the occupation num-
bers still takes places: in fact, the periodic change in barrier
height triggered by the field [32] somewhat favors the population
redistribution. An intermediate magnetic hysteresis is expected.
Some representative values of τ for interacting NPs with D = 13
nm at T0 = 300 K are reported in the diagram (horizontal lines in
color). The values of τ, obtained from Equation 8 for H =0, differ
because of the different interparticle distance; the lowest line (in
black) corresponds to the non-interacting system and is labeled
τN.I.. An increase of d results in a smaller energy barrier and in a
lower τ-line in the diagram. For simplicity, the extreme cases only
(τ20nm and τN.I.) will be discussed in detail.

Let us consider the non-interacting case first: at low frequencies
the τN.I. line is well inside the temperature-driven region and en-
ters the intermediate region at about f = 2× 104 Hz. As a con-
sequence, the non-interacting system is predicted to be at equi-
librium (anhysteretic magnetization), up to about f = 2×104 Hz,
while for higher frequencies the loop is expected to gradually de-
part from the equilibrium curve. This can be checked in the right
panel of Figure 7, where the quantity ΣN.I.−EQ is plotted against
frequency (black symbols). This quantity is defined by analogy
with Equation 12 as:

ΣN.I.−EQ =
1

Ms

√
n

∑
i=1

(
M(N.I.)

i −M(EQ)
i

)2
, (13)

and measures how far the loop of the non-interacting system is
from the equilibrium magnetization. As expected, the quantity
ΣN.I.−EQ is exactly zero at low frequencies and begins to increase
when τN.I. intersects the 1

200 f line in the diagram, indicating the
onset of a hysteretic behavior.

On the other hand, the τ20nm line is much closer to the top of
the diagram, so that it always lies inside the partially-field driven
and the field-driven regions. As a consequence, one expects a
nonzero hysteresis at all frequencies and an increase of the loop
width when the τ20nm line enters the field-driven region. This
can be checked in the right panel of Figure 7, where the quantity
Σ20nm−EQ (whose definition and meaning are obvious) is plotted

1–22 | 13



Fig. 8 Left panel: effect of interparticle distance on the loop area for polydisperse particles characterized by distribution density functions peaked at D
= 14 nm; the p(D) curves are shown in the inset. Right panel: effect of particle size distribution on the shape of the We f f ( fV ) curves.

against frequency (red symbols).
The diagram of Figure 7 explains the increase observed in the
normalized cut-off length λ/D above about 1× 104 Hz, shown
in panel b of Figure 6. Let us suppose that the interparticle dis-
tance d is continuously varied from D to infinity. At low frequen-
cies ( f ≤ 1× 104 Hz), a rather small value of d (approximately,
d ≥ 2D) is sufficient to bring down the τ-line well inside the
temperature-driven region; therefore the loop becomes soon co-
incident with the anhysteretic equilibrium curve and the quantity
Σ quickly drops to zero. A small, frequency-independent value of
λ/D is therefore predicted and observed (see Figure 6, panel b).
It should be remarked that in the low frequency region the system
is always at or very close to equilibrium, so that the agreement of
our estimate of the λ/D ratio with the values given in the litera-
ture [95, 96, 43, 97, 98] is not unexpected.
On the contrary, in the high frequency limit ( f ≥ 5× 105 Hz)
the system is always either inside the field-driven or the par-
tially field-driven region; as a consequence, the loops mainly obey
to the general laws ruling hysteretic effects in blocked particles.
In that case, the coercive field HC of the loop is proportional to
the maximum energy barrier Emax

B = E 0
B +Emax

D = E 0
B +αM2

s V 2/d3

(see Equations 2 and 4). As a consequence, the hysteresis loops
of an interacting system is wider than the one of the noninter-
acting system, while the two loops are almost the same along
the vertical axis. Therefore, the difference in shape measured
by the quantity Σ defined in Equation 12 is expected to be basi-
cally dominated by the difference between their coercive fields,
i.e., Σ ∼

(
HINT

C −HN.I.
C
)
. On the other hand, the latter quantity

is proportional to the difference between energy barriers, i.e.,(
HINT

C −HN.I.
C
)
∼Emax

D ∼ d−3 . It is therefore expected that Σ∼ d−3

at large interparticle distances. This functional dependence is ac-

curately verified in panel c of Figure 6 for f = 100 kHz. The
different behavior of Σ on d at high frequencies brings about a
larger value of the effective cut-off length λ .

3.6 Effect of Size Distribution

When polydisperse nanoparticles are exploited in magnetic hy-
perthermia, the distribution of sizes should be kept as nar-
row as possible in order not only to optimize the heat out-
put [99, 100, 29] but also to achieve optimum clinical out-
comes [101, 102, 103, 104]. The rate-equation approach can be
straightforwardly extended to treat polydisperse systems. Assum-
ing a known particle-size distribution density p(D) and a random
distribution in space of particles of different size, separated by a
mean center-to-center distance d, the overall energy barriers EBi

(i = 1,2) of particles of given volume V whose easy axis makes an
angle φ with the magnetic field is now:

EBi(H,φ) = E 0
Bi(H,φ)+ED =

= E 0
Bi(H,φ)+αM2

s
V 2

V
(1−

|m0|
2

) fV

(14)

where V and V 2 are the average values of particle volume and
of its square, and use has been done of the relation fV = V/d3.
The dipolar energy is given by Equation 2 with the substitution
µ2 → µ2 = M2

s V 2 . In Equation 14, |m0| is the absolute value
of the average reduced magnetization of non-interacting particles
with random easy axes, distributed in size according to the p(D)

function. The loops obtained solving the rate equations for each
value of φ and D are first summed over φ and finally summed up
using p(D) as weight function.
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Two Gaussian distributions, both centered at D0 = 14.5 nm
and with standard deviation σD = 0.63 nm and 1.26 nm have
been tested, together with a box-like distribution also centered
at D = D0 and extending from 13 to 16 nm (whose standard
deviation is σD =

√
3/2 ≈ 0.87). The results for the monodis-

perse system characterized by a delta-like distribution function
p(D) ∼ δ (D−D0) nm are reported for comparison. The p(D)

functions are drawn in the inset of the left panel of Figure 8; in
all cases, the contributions from particles with diameters smaller
than 13 nm or larger than 16 nm are negligible. In the same
panel, the behavior of the room-temperature loop area AL (for
HV = 100 Oe (7.958 kA/m), f = 1×105 Hz) is reported as a func-
tion of the interparticle distance d. The loop area becomes in-
creasingly less structured and less influenced by the interparticle
distance when the width of the weight function increases.

The panel to the right shows the behavior of the effective
power We f f as a function of fV in all examined cases. In
size-distributed systems, the particle volume fraction is defined
as fV = 〈V 〉/d3, where 〈V 〉 is the average volume of the particles.
Again, the curves become broader and less structured with
increasing fV ; moreover. the maximum effective power is
displaced towards higher volume fractions for larger σD values.
The heating performance of a polydisperse nanoparticle system
can be strongly influenced by the standard deviation of nanopar-
ticle sizes. In Figure 9, the two upper frames of panel a show that
the standard deviation of the particle distribution influences the
temperature behavior of the effective power We f f in markedly
different ways, depending on the interparticle distance.
For large d values (such as in the left frame, where the results
for d = 50 nm are shown) the polydispersity has no marked
effects: the We f f (T ) curves are just increasingly smoothed with
increasing σD, while keeping the same overall behavior; as a
consequence, the corresponding heating curves for all considered
p(D) distributions, shown in the four frames of panel b (dashed-
dotted blue lines) are just weakly modified by the width of the
distribution function.
On the contrary, when the role of dipolar interactions becomes
more important, i.e., for smaller d values (as in the right frame
of panel a, for d = 20 nm) a much stronger effect on the shape
of the We f f (T ) curves is observed. In particular, the value of
We f f at T = T0 increases from nearly zero in the monodisperse
case to a substantial value for the flat distribution. This has
important consequences on the shape and magnitude of the
corresponding heating curves, displayed in panel b (full red
curves in the four frames). As already discussed in Section 3.3,
necessary conditions for a quick, effective heating of the host
medium are a high value of We f f at T = T0 and a non-decreasing
effective power just above T0: both conditions are simultaneously
fulfilled by the Gaussian distribution with σD = 1.26 and by the
flat distribution. Polydisperse NP systems characterized by the
two largest values of σD values give therefore rise to a strong
increase of temperature.
On the contrary, the monodisperse system is not able to effec-
tively heat the sample, because the region of maximum We f f is
displaced to an exceedingly high temperature whilst the effective
power at room temperature (and just above) is negligible.

As a consequence, the heating curve of polydisperse, interacting
NPs can be markedly influenced by the type and width of the size
distribution function. It should be explicitly remarked that when
the interaction is strong enough, the highest thermal efficiency
is not necessarily associated to monodisperse NPs, as usually
believed, but to polydisperse particles with a proper width of the
size distribution function.

Taking into account a size distribution of particles makes the
model more realistic; however, other inhomogeneities related to
a non-uniform distribution of particles in space exist in real sys-
tems, such as concentration fluctuations, clusters or aggregates
of particles [89, 105]. The power released by nanoparticles has
been experimentally found to be very sensitive to aggregation ef-
fects, because of the onset of strong interparticle interactions (ei-
ther dipolar or contact) which give rise to cooperative magnetic
phenomena [45, 46, 47, 48]. This important aspect should be
more properly addressed having clarified the role of dipolar in-
teraction in simpler, less interacting systems as the ones studied
in the present work.

4 Conclusions
Rate equations were applied to describe the effect of dipole-dipole
interaction on the hysteretic properties of magnetite NPs submit-
ted to a cyclic radio-frequency driving field, in the typical operat-
ing conditions of magnetic hyperthermia treatments.
In a mean-field approach, the interaction was pictured by an en-
hancement of the energy barrier of each nanoparticle viewed as a
double-well system. The relative simplicity of the method allows
one to explain the results in terms of the magnetic properties of
nanoparticles and of the kinetics of classical double wells.
Using rate equations not only allows one to grasp the funda-
mental processes governing the production of heat by evenly dis-
tributed magnetic nanoparticles, but is also instrumental to pre-
dict which values of the parameters ensure the widest loop’s area
and/or the highest power released to a host medium.
The power released to a host material by a set of interacting NPs
with random easy axes turns out to be strongly dependent on the
mean interparticle distance, i.e., on the volume fraction of par-
ticles fV . At fixed temperature, the effective power We f f turns
out to be a definitely non-monotonic function of fV , displaying a
sharp maximum whose position depends on the particle diame-
ter. Such a maximum exists because the hysteresis loop is widest
when the typical time of jump across the barrier (whose height
is linearly dependent on the volume fraction of interacting NPs)
becomes roughly equal to the driving field’s period.
The following guidelines are intended to serve as indicators of the
uses of magnetite particles as pointlike heaters: if one is inter-
ested in optimizing the heating performance for laboratory uses,
the best choice is to deal with high concentrations (typically, up to
30%) of small particles (< D >≈ 13 nm); however, if much lower
concentrations are required (� 1%, as in biomedicine), the best
effect is obtained using slightly larger particles ( < D >≈ 15 nm).
Moreover, smaller (D . 11 nm) or larger (D & 18 nm) particles
evenly distributed in a medium are rather ineffective as heaters,
because the areas of their minor loops become vanishingly small.
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Fig. 9 Panels a: effect of particle size distribution on the We f f (T ) curves for weakly interacting (left side) and strongly interacting (right side) particles
distributed in size according to the four distribution density functions shown in the inset of Figure 8. Panels b: time evolution of the temperature
increment in samples containing particles distributed in size according to the same distribution densities.
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These results clearly indicate how sensitive to particle size the
generated power can be.
Dipolar interaction plays a complex role on the heating process in
a host material containing a fraction of almost evenly dispersed
nanoparticles, resulting in temperature-time curves which can be
markedly different in magnitude and shape with respect to the
ones obtained in the non-interacting case.
Magnetically-induced heating of a sample containing magnetite
particles was investigated by using a simple heat equation in
spherical geometry, with a boundary condition mimicking the pro-
cess of dissipation in living tissues where the heat generated by a
distributed source is mainly removed through tissue-blood perfu-
sion.
It was shown that an optimal particle density for magnetic hyper-
thermia exists, and that dipole-dipole interaction may have either
a beneficial or a detrimental effect on the heating process with
respect to the non-interacting case, in dependence of the volume
fraction of particles. Typically, a strong dipolar interaction (corre-
sponding to a short interparticle distance and a high fV ) hinders
the dynamics of redistribution of the population between the two
wells of the DWS. This results in a narrow hysteresis loop and
low heating efficiency with respect to the non-interacting case. In
a study case, an exceedingly sharp transition between substan-
tially different heating regimes (no heating vs. strong heating)
was shown to occur in a monodisperse system above a critical in-
terparticle distance. Correspondingly, a dramatic slowing down
of the time required by the sample to reach the steady state was
observed. It should be remarked that the present approach can-
not take into consideration the emergence of collective magnetic
states in the system, possibly arising in highly concentrated sys-
tems, which are however expected to reduce the magnetic re-
sponse and therefore the heating performance of interacting NPs
more than our mean-field model can predict.

A frequency-dependent cut-off length of dipolar interactions
was quantitatively determined by seeking the interparticle dis-
tance at which the shape of the hysteresis loop of interacting par-
ticles does no longer appreciably differ from the one obtained in
the non-interacting case.

Below about 10 kHz the cut-off length is independent of fre-
quency and close to the values found in the literature in quasi-
static conditions (≈ 3 interparticle distances), whereas above 10
kHz it steadily increases and attains a value of about 6 interpar-
ticle distances around 1 MHz. The effect is explained by con-
sidering the interplay between the driving field’s half-period and
the typical time of jump across the barrier. At room temperature
and at low frequencies ( f 6 10 kHz) the effect of dipolar inter-
actions was shown to vanish much more rapidly than in the high
frequency region ( f > 100 kHz) where the nanoparticles are con-
tinuously forced to stay away from equilibrium.

Finally, the distribution of particle sizes was investigated in
polydisperse systems characterized by different distribution
densities. The results were compared with the monodisperse
case. The heating curves are affected, to a larger or lesser extent,
by the presence of a distribution of particle sizes. In particular,
for large interparticle distances (i.e., low interaction) the changes
in shape and magnitude of the heating curves with respect to the

monodisperse case are negligible; however, when the particles
are closer to each other the changes can be much stronger and
dependent on the width of the nanoparticle distribution density.
Interacting particles distributed in size can heat a sample more
efficiently that the same fraction of monodisperse particles.

These results have been obtained under the simplifying condi-
tion that magnetite nanoparticles are almost evenly distributed
in space. Although this may be the best option in some practi-
cal applications, it is well known that in many cases, either by
chance or by deliberate action, the distribution of nanoparticles is
inhomogeneous in space. A non-uniform particle distribution re-
sults in a variety of magnetic and thermal properties dominated
by strong interparticle interactions. The present model should
therefore be regarded as a first step towards a complete under-
standing of the effects of dipole-dipole interaction, providing the
conceptual basis for modeling more complex phenomena in inho-
mogeneous systems of particles.

Appendix
The study case considered in Section 3.3 helps clarify the role
played by dipolar interaction and its non-trivial effects on the
heating curves. In this example, monodisperse particles of
diameter D = 16 nm, submitted to a driving field of frequency
100 kHz and amplitude HV = 100 Oe (7.958 kA/m), are thought
of as evenly placed in the sample at a variable interparticle
distance d.
The onset of the strong heating regime is very sharp, as shown
in panel c of Figure 4. In correspondence of the transition from
the no-haeting to the strong heating regime, the time taken
by the sample temperature to reach the steady state displays a
characteristic anomaly.

The time evolution of the temperature increment in the sam-
ple (at r = b/2) is reported in panel a of Figure 10 for selected
values of d. The steady state is assumed to be attained when the
relative variation between the numerical solution of the Fourier
equation at the discretized time ti and the one at time ti−1, i.e., the

quantity ∆T/T =
[
(T (ti)−T (ti−1)

]
/T (ti) becomes less than a very

small prefixed value (in the present case, less than 2×10−8). This
condition defines a timeout time tout , which is a dramatic function
of the interparticle distance; this is shown in panel a, where the
lines representing the time evolution of ∆T change from full to
dashed (the change marks the onset of the steady state). The
slowing down of the process is particularly apparent in panel b,
where tout is reported as a function of the interparticle distance;
the peak occurs at the distance where the switch from the two
heating regimes takes place (see panel c of Figure 4).

When d is small, the heating curves shown in panel a of Figure
10 display no particular anomalies, retaining the standard shape
characterized by a downward curvature. However, the timeout
time grows with increasing d, indicating that the steady state is
reached with even greater difficulty. In fact, the effective power
released by the NPs increases with temperature by effect of the
typical bell-like shape of the We f f (T ) curve, which can be seen in
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Fig. 10 Left panel: time evolution of the temperature increment for interparticle distances near to the no-heating to strong heating transition, for the
parameter values reported on top of panels; the timeout time is marked on each curve by the change from full to dashed line. Right panel: timeout time
as a function of interparticle distance, emphasizing the slowing-down effect for d ' 30 nm.

panel b of Figure 4 (full green line). As a consequence, a tradeoff
between input power and losses becomes increasingly difficult to
achieve.

Two quantities play a key role in determining the shape
of the heating curves: the relative increment of the effec-
tive power between consecutive times ∆We f f /We f f =

[
(We f f (ti)−

We f f (ti−1)
]
/We f f (ti) and the relative increment of temperature

∆T/T . In the left panel of Figure 11, the two quantities are
plotted as functions of temperature in the interval 15-35 K (the
temperature-time curve in the same interval is reported in the
right panel for comparison).
∆We f f /We f f is initially positive but lower than ∆T/T ; then the two
rates become nearly coincident (and always positive, although
very small). In this region the temperature keeps slowly increas-
ing without reaching the steady state.
Above ∆T ≈ 25 K the quantity ∆We f f /We f f ) becomes greater than
∆T/T .

In this case, a positive feedback is established (any small in-
crement of temperature brings about a larger increase of the ef-
fective power which boosts the temperature increment), and the
curvature of ∆T (t) changes of sign; the temperature keeps grow-
ing at such a high rate that an almost vertical increase is observed
in the temperature vs. time graph. This anomalous behavior is
observed until the peak of the We f f (T ) curve is overcome: only
there will the steady state be finally attained. Similar arguments
apply to all curves calculated for d > 30 nm, where however the
time needed by the sample to reach the region where the vertical

rise of temperature occurs is significantly reduced.
Although the present example describes a very idealized case,

it helps understand the complexity of effects produced by the in-
terplay between dipole-dipole interaction and the non-monotonic
behavior of the We f f (T ) curve.
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Fig. 11 Left panel: behavior of elative increments ∆We f f /We f f , ∆T/T with temperature (see text) in the 10-40 K interval for the parameter values
reported on top of the panels. Right panel: ∆T (t) curve in the same temperature interval.
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