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With the purpose of revising World Meteorological Organization’s Commission for 
Instruments and Methods of Observation (WMO/CIMO) Guide #8 on weather stations 
siting, an experiment to evaluate metrologically the maximum influence of a paved road 
on 2-m air temperature measurements (“road siting effect”) has been designed, installed 
and run in Italy. It consists of a 100-m long array of seven measurement stations, at 
increasing distances from a local road, equipped with shielded Pt100 thermometers and 
ancillary sensors. Data coming from 1 year of observations has been analysed for daily 
climatological metrics, finding that the road mostly effects minimum temperatures, with 
average values of ~ 0.30±0.18 °C at a distance of 1 m; then, in order to quantify the 
instrumental effect on the measurement, data was filtered by applying a Generalized 
Additive Model, selecting only times when the effect is more intense (during nights, in 
presence of low winds coming from the road), and the road siting effect has been 
calculated by modelling the maximum temperature differences by using Extreme Values 
Analysis. The 1-year return value on 10-min measurements is 1.22±0.30 °C at 1 m from 
the road, with a gradual decline (~ 0.1 °C/m), while an extrapolation to 100-year return 
level gives a value of 1.71±0.79 °C with a decline rate of about 0.17 °C/m. This is a first 
step towards a redefinition of the weather station classification scheme of WMO/CIMO 
Guide #8, together with building and tree effects experiments which have been run in 
parallel with the road siting experiment here presented and which will be presented 
elsewhere. 
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1. Introduction 

 

Accurate air temperature measurements are crucial for understanding weather and climate. 

Forecasts require high-quality observations for model verification (Ebert et al., 2013) and surface 

observations are also essential for data assimilation in numerical weather prediction models in order 
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to determine the best initial state (Drusch and Viterbo, 2007). Within the context of climate 

monitoring, long-term undisturbed temperature records are of high value since they are scarce. 

Maintaining such long records is challenging both for technical and logistic reasons (Peterson et al., 

1998), and understanding the quantitative impact of disturbances in the near vicinity of the 

observational site is crucial for the interpretation of climate records. 

An often-discussed phenomenon related to temperature disturbances is the urban heat island 

effect. Earlier studies report that for individual stations the influence of urbanization is substantial 

(Koopmans et al., 2015). For instance, Heusinkveld et al., (2014) report that the weather station at 

Rotterdam airport overestimates the average nocturnal temperature by 0.7 °C due to a plume of 

warm air from the built environment and airport runway (NE to SW between 0.7 and 1.6 °C). 

There are two recognized ways in which artificial surfaces such as roads affect the local 

microclimate: first and foremost, asphalt has a greater heat capacity than the natural soil (Mahmood 

et al., 2014) as well as larger heat conductivity (Madjidi et al., 2013) and lower albedo (Lin et al., 

2010; Ibrahim et al., 2018), so it stores more solar energy during the day, leading to different cooling 

rates during nights (Oke, 1982); the other is due to the reduction of evapotranspiring surfaces (i.e., 

trees and grass) that raises air temperature (Arnfield, 2003). 

Climate monitoring revealed that the currently observed climate trend is asymmetric since the 

nocturnal temperatures appear to rise faster than the daytime temperatures (Karl et al., 1993; Vose 

et al., 2005; McNider et al., 2012; Cox et al., 2020). As such, the accurate monitoring of night-time 

air temperatures is crucial. Moreover, since the daytime boundary layer is characterised with high 

turbulence intensity, we expect that the small disturbances in the landscape have relatively little 

impact on the 2-m temperature record. On the contrary, in the nocturnal atmosphere turbulence is 

relatively weak and other physical processes such as fog, drainage flows, microfronts, and thermal 

radiation may trigger small-scale temperature differences. 

Measurements of Essential Climate Variables for climatological studies, in particular near-surface 

air temperature measurements, can be affected by local peculiarities of the site (Mahmood et al., 

2006; Runnalls and Oke, 2006; Pielke et al., 2007). Since data quality and representativeness are of 

paramount importance for these purposes, it is necessary to evaluate the effects of the site’s 

features, in terms of the presence of slopes, shades, vegetation, uneven or unrepresentative surface 

albedo, water bodies and man-made structures, in the measurement themselves. In fact, these 



micro-siting external factors can contribute, at a purely instrumental level, to biases that, especially 

if asymmetrical, could propagate to climate analysis if underestimated. 

In 1954 the World Meteorological Organization (WMO), with its Commission for Instruments and 

Methods of Observation (CIMO), implemented an operational document – the “WMO/CIMO Guide 

on Instruments and Methods #8”, cited in this work henceforth as “the Guide” (WMO, 2012) that 

adapted an internal procedure created by Météo-France – to provide meteorological stations with 

a qualitative evaluation of uncertainties associated to their measurements. 

Regarding near-surface air temperature, the Guide establishes a 5-class grading for meteorological 

stations, based on the presence of several possible sources of influence on the sensors themselves, 

such as 1) topography, 2) surface characteristics, 3) presence of shades, 4) presence and distance of 

physical obstacles as sources of heat (buildings, concrete surfaces, car parks, roads, trees, water 

bodies). 

The Guide considers stations as unaffected by the obstacles – and therefore “Class 1” if also the 

other requirements are met – when the minimum distance from any of the aforementioned 

obstacles is 100 m. Distances shorter than this arbitrary threshold correspond to lower quality 

classifications: a station is downgraded to “Class 2” if placed between 30 and 100 m from any 

obstacle; to “Class 3” between 10 and 30 m, to “Class 4” between 3 and 10 m, down to “Class 5” 

with distance less than 3 m. 

In the Guide, some of these classes are given estimates of “additional uncertainty” in temperature 

measurements. However, there is no clarification on the methodologies adopted to evaluate these 

uncertainties. The Guide itself states: «the classification is (occasionally) completed with an 

estimated uncertainty due to siting, which has to be added in the uncertainty budget of the 

measurement. This estimation originates from bibliographic studies and/or some comparative 

tests». The uncertainties given in the Guide are stated as 5 °C for Class 5, 2 °C for Class 4 and 1 °C 

for Class 3 sites (no indications for Classes 2 and 1), without regard for the type of obstacle and 

influence. 

The Guide is currently in the process of being overhauled by WMO, and it is already established that 

the siting classes will be related to uncertainties in the representativeness of the measurand, not of 

the instrument. The new classification will explicitly deal with climatology-grade sites, in that user 

requirements driven by OSCAR (Observing Systems Capability Analysis and Review Tool) 



contributing to the definition of the Measurement Quality Classification Scheme will define, among 

others, a top-level grade (Class A) dedicated to climatological studies. 

The purpose of this work, carried out in the framework of project MeteoMet (Merlone et al., 2015, 

2018) is to deliver measured results to the WMO expert teams tasked to revising the Guide, by 

experimentally evaluating with metrological rigour maximum errors and uncertainties in near-

surface air temperature measurements in presence of obstacles. This paper focuses on the effect of 

the presence of a paved road, which in this case means “paved with asphalt”. Effects of nearby trees 

and buildings have also been studied within MeteoMet with identical experimental setups: results 

will be presented elsewhere. 

Very few literature works deal with the estimation of the influence of paved surfaces on 

measurements of air temperature. Kumamoto et al., (2013) describe a similar experiment with a 

much smaller frame in a closed environment; Bogren et al., (2001) focus on the stratification of air 

temperature at two distances from a road, while Delgado et al., (2007) focus on the effect of a road 

corridor inside a forest. On the theoretical side, Kinoshita, (2014) proposes a detailed physical model 

with predictions, using several road sizes. 

The paper is organized as follows. Section 2 presents the field experiment and the methods, in terms 

of data analysis and estimation of the uncertainties involved; Section 3 presents the results of the 

analysis; Section 4 presents a discussion of the results, along with comparison with literature works; 

Section 5 shows the conclusions. 

 

2. Methods 

 

Here we present the setup of the experiments for the evaluation of obstacles’ influence on 

temperature measurements. Design and realization have been carried out at the Italian Institute for 

Metrological Research (INRiM). 

Seven measurement stations, installed on masts at 1.5-2 m from the ground, constitute the 

experimental layout. The masts hosting the instruments have been arranged along a straight line, 

perpendicular to the influence factor (road, building wall, line of trees). The masts were installed 

respectively 1 m, 5 m, 10 m, 20 m, 30 m, 50 m and 100 m from the influence factor: this 



arrangement has been chosen to evaluate progressively the effect of the distance of the influence 

factor on instruments, in reference to a WMO class 1 site. Stations will be identified in the remainder 

of the paper with sequence numbers, starting from the obstacle: station #1 is the closest to the 

obstacle, while station #7 is the farthest away. 

Each measurement station carries specific instruments: Figure 1 shows a diagram of the stations 

and sensors setup including the distance from the influence factor and the positions of all sensors. 

Each measurement point features at least one shielded, actively ventilated Pt100 thermometer 

(station #1 holds two for redundancy). Some of the stations also feature instruments for ancillary 

measurements: two hygrometers, a pyranometer for the measurement of solar radiation and a 

sonic anemometer. Throughout the paper, the temperature sensors will be identified by the 

characters TE followed by a digit representing the station number: for instance, sensor TE5 identifies 

the temperature sensor hosted by station #5. All connections for the instruments (power lines, data 

wires etc.) were put in underground conduits. 

The experiment to evaluate the maximum effect of the presence of a paved road on 2-m air 

temperature measurements (henceforth, road siting effect – RSE) has been hosted by a private 

airfield (ICP Srl) in the town of Castelnuovo Don Bosco (45°01’34” N, 7°57’53” E), 40 km southeast 

of Turin, Italy (Figure 2). The instruments array was placed on a geologically uniform flat field 

covered by grass, representative of the typical vegetation of the region, kept sufficiently short by 

regular mowing, never ploughed nor artificially irrigated. Figure 3 shows the actual installation and 

the position of measurement points with respect to the road. 

The field around the sensor array was kept free of any obstacles – except the road, as the influence 

factor – for a radius of 100 m around each station. In particular, station #7 was placed according to 

WMO Class 1 and was considered as reference. On the opposite side of the road there were no 

obstacles as well for a radius of 100 m around station #1. Local road SP16 – the obstacle – was 

straight at the experiment location, paved with asphalt and 2-laned for a total width of 10 m, lightly 

trafficked (~2000 vehicles per day). The airfield building in the East is placed more than 100 m away 

from each sensor: contributions from it are likely to be excluded (Garcia Izquierdo et al., in prep), 

and would in any case be constant due to a similar distance between the building and each of the 

sensors. The field shows no slopes for the entire length of the sensors array and around them, while 

the road is separated from the field by a small ditch (covered during construction) and is 50 cm 

higher than the terrain: this was taken into account when installing the stations, by levelling the 



heights of sensor #1 (1.5 m) and the others (2 m), while fulfilling the prescription of the Guide in this 

regard. 

The experiment was carried out between September 2015 and November 2016. Subsequently, the 

layout was modified in order to evaluate instruments’ behaviour when subject to the same 

environmental conditions. All the sensors were therefore relocated in the same spot (chosen to be 

the station #5 at 30 m, for practical reasons) for 2 months (December 2016 – January 2017). 

Measurements from this exercise provided a relative “zero” reading between the sensors and 

contributed to the measurements’ uncertainty budget. This will be discussed in more detail in 

Section 2.2. 

The raw data is publicly available online at Zenodo.org, as 230 MB database files in ASCII format, 

containing 1.2 million 30-s observations in 15 million fields (Coppa et al., 2020). 

 

2.1 Measured parameters 
 

The installation is equipped with eight independent temperature sensors (Pt100), each one 

mounted in a separate Young 43502 mechanically ventilated radiation shield. Two redundant 

thermometers were installed on station #1 in order to assure the acquisition of the most valuable 

information through possible failures. The complete equipment is as follows: 

• Temperature sensors (TEi), connected to a customized Analog-to-Digital Converter MUX 

DAT-3014. Calibration has been performed at INRiM and is described below. 

• A pyranometer (XT5) Model Hukseflux LP02, measuring solar radiation and mounted on 

station #5. Manufacturer’s calibration has been assumed, with a final uncertainty less than 

0.9 %. 

• The wind sensor (ZT/ST5) is a Gill Wind sonic anemometer mounted 2.5 m above ground on 

top of station #5. Its uncertainty has been estimated by the manufacturer as ±1 % at 12 m/s. 

• Two hygrometers (UTi) model ETM-30 by Lombard & Marozzini, mounted inside multi-plate 

solar radiation shields close to the temperature sensors on stations #3 and #5. 

Manufacturer’s calibration is assumed, with a stated uncertainty of 0.5 %. 

All measurements are taken simultaneously every 10 s, while once every 30 s the average of the 

measurements is calculated and stored into the database; wind measurements are averaged 



vectorially. Uncertainties are provided as prescribed by the GUM (Guide to the expression of 

Uncertainties in Metrology, BIPM and Joint Committee For Guides In Metrology, 2008). Given the 

non-Gaussian nature of some of the distributions mentioned, a coverage factor 𝑘𝑘 = 1 is adopted 

throughout the paper (coverage factor coincides with σ for Gaussian distributions). The total 

expanded uncertainty is then provided with coverage factor 𝑘𝑘 = 2, representing 95 % significance. 

The calibration of Pt100 thermometers (without shield) was carried out at INRiM laboratories, while 

manufacturers’ calibration is assumed for the other sensors. This will not affect the metrological 

evaluation since they generate only auxiliary data. 

Before calibration, the Pt100 thermometers were thermally cycled between -20 °C and 50 °C in 

order to evaluate the repeatability of the instruments. The thermometers, inserted in glass tubes, 

were calibrated in a very stable and homogeneous liquid bath, by comparison with a standard 

resistance thermometer calibrated at the fixed points of the ITS-90. The thermometers were 

calibrated at six temperature points: -20 °C, 0 °C, 20 °C, 30 °C, 40 °C and 50 °C to include all possible 

environmental conditions of the sites. The final calibration uncertainty was evaluated as 0.005 °C. 

During in-field operation, though, the sensors work in very different environmental conditions: 

radiation, wind, turbulence, all introduce an uncertainty contribution in the measurements, in 

addition to the calibration uncertainty. This is the total measurement uncertainty that needs to be 

evaluated and taken into account. 

These are parts of the two-step process of this metrological investigation, the first being sensor 

calibration – which establishes traceability to the SI – while the second is the evaluation of 

measurement uncertainties – being performed during the co-location phase of the sensors – and 

their reduction due to the relative analysis performed (Section 2.3). 

 

2.2 Measurement uncertainty evaluation 
 

After the completion of the main field experiment, stations have been rearranged as close as 

possible in order to evaluate possible differences in thermal behaviour and response under the 

same environmental conditions (Figure 4). 

Data was averaged every 10 min, with wind speed and directions averaged vectorially. Several 

considerations led to this choice: 



- First, 10-min averaged data is much more frequently used for atmospheric science analysis 

because it reduces turbulence and boundary-layer issues (Lin and Hubbard, 2008; WMO, 

2012). In this way, temperature spikes are smoothed and only significant ∆𝑇𝑇𝑖𝑖  can be 

examined. 

- Second, the averaging made it easier to perform data analysis in terms of manipulation and 

subsequent filtering. 

All differences ∆𝑇𝑇𝑇𝑇𝑖𝑖 = 𝑇𝑇𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑇𝑇7 , (being 𝑇𝑇𝑇𝑇7  the temperature recorded by TE7 and 𝑇𝑇𝑇𝑇𝑖𝑖  the 

temperature recorded by other sensors TEi during this phase of the experiment) have been 

computed: for the sake of clarity, only ∆𝑇𝑇𝑇𝑇1 is plotted in Figure 5. Distributions of all the ∆𝑇𝑇𝑇𝑇𝑖𝑖 are 

shown in Figure 6, along with their values (blue dashed lines). The average differences are peaked 

at 0 °C, with differences in any case less than 0.06 °C, confirming that all the sensors are measuring 

the same measurand. These average differences have been subtracted from all the values recorded 

during the main phase of the experiment, in order to realign the readings of all the instruments. 

Figure 5 also shows short-scale ∆𝑇𝑇𝑇𝑇𝑖𝑖 up to ±1.5 °C, which are likely caused by turbulence and 

transient behaviour of the local atmosphere, or occasional shading of the sensor by other elements 

of the array. As the measurement uncertainty stage was performed to compute the ∆𝑇𝑇𝑇𝑇𝑖𝑖  averages 

during the whole 2-month period, these spikes do not alter significantly the results. However, spikes 

could affect measurements during the main experiment, by altering or masking the RSE: as it will be 

shown in Section 2.4.2, these spike events were filtered out and discarded from the analysis. 

The standard deviations of the ∆𝑇𝑇𝑇𝑇𝑖𝑖 are here assumed as measurement uncertainties. Despite being 

an oversimplification, this exercise provided an indication of the sensors’ relative behaviour in a 

real-world situation, under uniform environmental conditions. A more thorough method would 

have required several more months of acquisition, in order to cover a more extended range of 

temperatures and environmental conditions, and a separate uncertainty evaluation for all the 

quantities of influence, which was out of the scope of this work. The standard deviation values 

calculated during this stage will be taken into account during the whole uncertainty budget 

evaluation, and are shown in Table 1 along with the other identified sources of uncertainty. 

 

2.3 Uncertainty budget 
 



Measurements are accompanied by a metrological investigation that take into account as many 

aspects of the experiment as possible, ranging from sensor issues to uncertainties due to quantities 

of influence. Currently, a complete quantitative evaluation of the uncertainty associated to a near 

surface air temperature measurement by means of contact thermometers is a challenging problem, 

discussed within both BIPM and WMO working groups and expert teams, with no immediate and 

comprehensive solution. Many influencing quantities, different typologies of sensors and solar 

shields, dynamics, calibration methods, siting and environmental conditions generate a multitude 

of contributions to the overall measurement uncertainty budget. The RSE experiment has been 

designed to minimize such uncertainty contributions by featuring measurement conditions as 

uniform, constant and equal as possible for all sensors, as well as relying on relative measurements, 

thus allowing to cancel some absolute uncertainty contributions. This is part of the two-step process 

of this metrological investigation mentioned in Section 2.1. 

In Table 1, the uncertainty budget for all the temperature measurement points is shown. According 

to the definitions given by the GUM, uncertainties are listed in the Table by their nature: statistical 

(type A) and non-statistical (type B). Type A uncertainties taken into account are the measurement 

one, derived by the exercise described in Section 2.2, and the RSE one, for different return levels 

(see Section 3.1). Type B uncertainty derives solely from the calibration of the Pt100. 

Constant maintenance guaranteed that all measuring points (thermometers and associated shields) 

were kept in same working conditions. Checks were made to presence of dirt, insects, orientation, 

fan speed, etc., about weekly all along the experiment. This, together with the measurement 

uncertainty evaluation stage of the experiment, ensured that the relative differences are effectively 

related to different air temperatures values. 

The following is a list of actual uncertainty sources that, given the relative nature of the 

measurements performed, have been reduced or eliminated from the total budget: 

• Sensor drift: Temperature sensors, as well as many other kinds of electrical measurement 

systems, can change their properties over time. This has been evaluated by repeating 

calibration at the end of the experiment: no sensor showed a drift larger than 0.01 °C, which 

is compensated by relative measurements. 

• Shield ageing and solar radiation: By comparing shields of different age, Lopardo et al., 

(2014) showed an uncertainty as large as 1.6 °C over a 5-year lifespan due to shield 

degradation. In the present work, however, all the shields were new, employed for the same 



amount of time and exposed to the same homogeneous environmental conditions, causing 

a similar level of dirtiness. Any potential error induced by shield ageing is shared by all the 

stations, cancelling out during the calculation of temperature differences. 

• Sensor self-heating: Many literature works deal with the self-heating evaluation of a 

platinum resistor in high-quality laboratory measurements (Batagelj et al., 2003; Coppa and 

Merlone, 2016), but very few are directed towards the same evaluation for meteorological 

measurements (Pavlasek et al., 2020). The latter, investigating common meteorological 

temperature sensors, found temperature uncertainties due to self-heating up to 0.2 °C: in 

our case, all the were sensors identical and powered by the same datalogger, so self-heating 

do not alter the relative readings among them. 

• Surface features: Changes in surface reflectivity can affect sensors, which are shielded 

against direct sun radiation but not against radiation reflected from the ground (Musacchio 

et al., 2019). Throughout the duration of the experiment, field grass has been kept as short 

as recommended by the Guide; also, no asymmetric or inhomogeneous variations in surface 

reflectivity have been detected. 

• Datalogger contribution: Modern temperature resistors (such as Pt100 used in this study) 

measure the resistance of a platinum wire run by an electric current, which is then 

digitalised, converted into temperature and stored in a datalogger. This process introduces 

other uncertainties, related to the electronics, the resolution and the accuracy of the 

resistance measurement. In this work, all the thermometers are read using the same 

datalogger, so the uncertainty introduced is compensated in the relative analysis. 

 

2.4 Data analysis 
 

The 10-min averaged dataset consists in ~48000 records over a 1-year period. Temperature 

differences ∆𝑇𝑇𝑖𝑖 = 𝑇𝑇𝑖𝑖 − 𝑇𝑇7, analogous to the ∆𝑇𝑇𝑇𝑇𝑖𝑖 calculated during the previous stage, have been 

computed: the complete profile of ∆𝑇𝑇1 is shown in Figure 7, while all the distributions are plotted in 

Figure 8. As it can be seen from the plot, all distributions are skewed towards positive values, with 

mean values decreasing from ∆𝑇𝑇1 to ∆𝑇𝑇6, as it can be expected in a case of a distance-dependent 

warming effect. Mean value of ∆𝑇𝑇5  is higher than ∆𝑇𝑇4  (by ~0.01 °C), possibly due to central 

processing unit on mast #5 heating up local air. 



Data has been processed for other, more common for climatological studies, metrics. In Figure 9, 

∆𝑇𝑇𝑖𝑖  distributions calculated at daily maximum, average and minimum temperatures are plotted. 

Minima seem to be most affected, with ∆𝑇𝑇1 values up to ~0.9 °C and an average value of 0.3 °C, 

while maxima ∆𝑇𝑇1 show values up to ~ 0.8 °C with an average value of 0.12°C. Maxima and averages 

seem to be affected only up to ~10 m, while effects on minima appear to reach as far as 50 m; 

uncertainties on maxima make their distributions even compatible with a flat one, i.e. no RSE at all. 

These calculations have been performed by using the 10-min dataset, since many recent “first-

order” climatological stations are able to acquire data at this interval (WMO, 2018), and taking the 

values in the period before the full hour. In order to maintain backward compatibility with older 

stations, which record maxima and minima only and evaluate the average as (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) 2⁄ , this 

calculation has also been computed, resulting in slightly higher average ∆𝑇𝑇𝑖𝑖  and larger standard 

deviations, as noted e.g. by Bernhardt et al., (2018). Results of both methods, in terms of mean 

biases and standard deviations, are listed in Table 2. 

This straightforward approach, which gives hints on the magnitude of the RSE on metrics relevant 

for climatological studies, may not tell the whole story. For instance, this analysis does not take into 

account the RSE on shorter timescales, which may be of interest for other applications. Moreover, 

climatological metrics lead to an evaluation of a bias, which was out of the scope of the experiment 

since the beginning. Given that a bias must be used to correct data in other installations, it would 

need an accurate evaluation of the relationships between it and all the influencing quantities, which 

would require a more sophisticated experiment, much more time, and several different transects in 

order to disentangle the effects of road widths, different traffic, local microclimate, etc. As a matter 

of fact, the uncertainty evaluation on such biases, at the current level of knowledge, would be 

basically impossible. From a data analysis point of view, this brings in also other effects not strictly 

related to the RSE, e.g. errors related to fast temperature transients; in fact, each sensor responds 

with a different time constant to the temperature rise produced by a fast and strong variation in 

radiation (Kowal et al., 2020). On the other hand, daily averages on a filtered dataset would yield 

inconsistent results given the non-continuous and non-homogeneous nature of the dataset. 

In order to better understand this effect, and help us to focus on the combination of parameters 

that could maximize the ∆𝑇𝑇𝑖𝑖 (and ∆𝑇𝑇1 in particular), a statistical semi-parametric GAM (Generalized 

Additive Model) was developed. 

 



2.4.1 The Generalized Additive Model 
 

Since linearity is not a good assumption on the relationships between ∆𝑇𝑇𝑖𝑖 and the other relevant 

variables, a semi-parametric GAM (Hastie and Tibshirani, 1986; Bertaccini et al., 2012) was 

implemented on ∆𝑇𝑇1, as an extension of a standard linear model, in order to drop the linearity 

assumption: 

𝐸𝐸(∆𝑇𝑇1) = 𝑓𝑓0(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑓𝑓1(RAD, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑓𝑓2(WS, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑓𝑓3(WD, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

+ 𝑓𝑓4(RH, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 

Season was included as parametric part, to try and separate relevant effects due to different 

temperature, and length-of-day effects; solar radiation (RAD), wind speed (WS), wind direction (WD) 

and relative humidity (RH) were included as smooth thin plate regression splines (Wood, 2003), 

evaluated simultaneously through Generalized Cross-Validation (Quarello, 2017) using R package 

“mgcv” (Wood, 2011, 2017). In the model, linear effects are described with estimated coefficient 

values and non-linear effects are presented graphically in Figure 10 as smooth functions with 95 % 

confidence band, along with marginal distributions of ancillary measurements. Given the 

computationally demanding nature of GAM analysis, results here presented only involved ∆𝑇𝑇1 to 

evaluate the strongest signal, assuming the same behaviour for all other ∆𝑇𝑇𝑖𝑖 . The analysis gave 

similar results, but with a weaker signal, also on ∆𝑇𝑇2. For the same reason data has been treated as 

independent, so confidence bands in the plot must be taken just as an indication. 

Figure 10a shows the relation between solar radiation and the expected values of ∆𝑇𝑇1. An increase 

in solar radiation is associated with a decrease in average temperature difference, as already noted 

by e.g. Bogren et al., (2001) and Leeper et al., (2019). The explanation of this phenomenon is not 

straightforward: one factor could be that higher solar radiation values may result in more 

turbulence, which mixes away contrasts among measurement points in the array; another factor 

can be the different release rates of heat by asphalt and grass, as noted by (Oke, 1982), which warms 

up air above the road faster. Moreover, heating could be masked during the day by the larger effect 

due to direct solar radiation on the instruments. While it is true that thermometers are shielded 

from solar radiation, it is also well known that shields do not totally cancel this influence (Erell et al., 

2005). 

Wind speed (Figure 10b) appears to be inversely related to the temperature difference, as for 

example shown also by Bogren et al., (2001). Low wind speeds can cause warm air from the road to 



stay close to it for longer times: this can cause the sensors to measure higher temperatures with 

respect to farthest sensors, which receive relatively cooler air from the grass around them. 

Moreover, in case of high wind, turbulent mixing of heat to higher atmospheric layers makes its 

influence on temperature lower at 2 m above ground, where the sensors are placed. This effect is 

steep up to 1 m/s, then its magnitude decreases more slowly, flattening out beyond 2 m/s. 

Wind direction appears to have a positive contribution in average temperature difference, in all 

seasons (Figure 10c). The maxima shown at 250° are due to the winds coming from the left side of 

the array. For geometrical reasons, winds coming from this direction encounter a larger asphalted 

area, air passing over it is heated up more, and this in turn heats up the sensor close to the road 

more than the farthest ones, increasing ∆𝑇𝑇1. 

A simple wind rose plot (Figure 11) shows that the prevailing winds come from the NW, i.e. from 

the road. Winds faster than 2 m/s are extremely rare in the site, and they are virtually non-existent 

from the prevailing direction. 

The estimated relative humidity smooth functions, in Figure 10d, show a rather flat behaviour: at 

values lower than 25 % – not shown in the plot – they tend to decrease but with lower statistical 

significance due to scarcity of data, and the fact that below that value the hygrometer readings tend 

to be less reliable. 

 

2.4.2 Data filtering 
 

The model described in the previous Section was successful in narrowing down the huge amount of 

data. It suggests that the RSE should be largest during nocturnal (Rad → 0 W/m2) periods of low-

speed winds coming from the road. Relative humidity appears to marginally affect the expected ∆𝑇𝑇1 

and was not considered for the analysis. 

The 10-min-averaged dataset was therefore filtered for zero solar radiation, wind speed below 

0.5 m/s, on a 120°-wide angle centred on the road. 

An additional filtering was performed on the 10-min dataset, in order to remove residual fast 

transients in temperature like those introduced by some föhn wind events, which are not so rare in 

the region (Cassardo et al., 2007). This was performed by smoothing the time series with a running 

mean and removing all the instances where the local derivative of the temperature function was 



greater (in absolute value) than a certain value (in this case 0.05 °C was chosen: this depends heavily 

on the smoothing performed earlier). Finally, only two or more consecutive observations were kept 

in the final dataset, in order to leave out residual spikes and retain observations at least 20 min long. 

Thus, the filtered working dataset consisted in ~1300 records (2.7 % of the 10-min averaged 

dataset), whose distributions are represented in Figure 12 and in Table 3 as main statistics summary. 

 

3. Results 
 

In order to associate confidence intervals to such rare events as maxima of ∆𝑇𝑇𝑖𝑖, it is necessary to 

model the distribution of a sizeable number of them. For this reason, in order to perform a 

consistent and robust statistical analysis on such rare events, an Extreme Value Analysis (EVA, Fisher 

and Tippett, 1928; Gumbel, 1958) was applied. 

 

3.1 Extreme Values Analysis 
 

According to the EVA, observations lying above a sufficiently high threshold h can be modelled after 

a Generalized Pareto Distribution (GPD), whose cumulative distribution function assumes this 

analytical form: 

𝐺𝐺𝜉𝜉,𝜎𝜎(𝑥𝑥) = �1 − �1 +
𝜉𝜉𝜉𝜉
𝜎𝜎 �

−1 𝜉𝜉⁄

    𝜉𝜉 ≠ 0

1 − 𝑒𝑒−𝑥𝑥 𝜎𝜎⁄                    𝜉𝜉 = 0
 

where σ is called “scale parameter” and ξ is called “shape parameter”. 

This “Peaks Over Threshold” (POT) analysis allows for fitting the extreme data, calculating the 

probabilities of an excess occurring within a given period of time (“return period”) and associate a 

confidence interval to the extreme values (Goda, 1988). One of the most critical steps of this analysis 

is the choice of the threshold h. Several diagnostics have been developed to help during this process, 

like the mean residual life plot and the threshold stability plot (Coles, 2001), but simpler rules of 

thumb are also used, like choosing the p largest out of the total n observations: commonly used are 

𝑝𝑝 = √𝑛𝑛 , 𝑝𝑝 = 𝑛𝑛2 3⁄ log(log(𝑛𝑛))⁄  and the 90th percentile (Scarrott and MacDonald, 2012). In fact, 

when choosing a threshold with one of the available methods, the user must take into account the 



number of exceedances left for the analysis: if it is too large, too few values will be left to model the 

distribution tail correctly as the variance is likely to be large due to only very extreme observations 

remaining. On the other hand, choosing a threshold too low, too many exceedances will remain 

giving a high bias (Coles, 2001). 

After the choice of thresholds and a declustering process, a GPD can be fitted to the remaining 

excesses, providing values for the parameters ξ and σ (Table 4). The usual way to visualize the results 

of the fitting is via the return level plots (Figure 13). In the plots, each dot represents a measured 

excess over the threshold, and the data is fitted with GPD’s (red lines). The 68 % confidence 

intervals, represented as grey bands, are calculated via the delta method (Doob, 1935). Return 

period is strictly related to the probability of each return level (longer period corresponds to lower 

probability). All these calculations are performed using R package “extRemes” (Gilleland and Katz, 

2016), selecting “GP” (Generalized Pareto) as the fit type. 

Figure 14 shows the values of the ∆𝑇𝑇𝑖𝑖 maxima as calculated by the EVA, for three different return 

periods (1, 10 and 100 years), with error bars representing the 68 % uncertainty of the GPD fit at 

each distance. These intervals are then used as an uncertainty component in the overall budget 

shown in Table 1, which reports the complete budget for each of the three return periods, while the 

RSE values for the three return periods are tabulated in Table 5. 

As expected, all the return values show a decreasing trend from the road. The 1-year return level 

goes from 1.25 °C at 1 m from the road, decreases sharply to 1 °C at 5 m then more slowly until 

0.6 °C at 50 m. The rate of temperature decrease is roughly 0.1 °C every 10 m. Uncertainties are of 

the order of ~0.1 °C. 

The 10- and 100-year return values show very similar trends, but uncertainties grow substantially, 

up to ~0.4 °C at 100-year return level. Both return values show a more linear behaviour: the 10-year 

level extrapolation shows a maximum ∆𝑇𝑇1 of 1.5 °C, going down to 1.3 °C at 20 m, then reaching 

0.75 °C at 50 m; maximum difference values for the 100-year return level are around 1.7 °C then 

again down to 0.85 °C at 50 m. 

 

4. Discussion 
 



While this experiment was not intended to provide a final answer to the evaluation of RSE, given 

that larger, more or less trafficked, differently oriented roads in different environments could yield 

different results, we think that a local 2-laned road with light traffic, at mid-latitudes, may represent 

a sizeable fraction of the roads that can be found in the area, thus providing a reasonable 

representativeness for the chosen site. Moreover, this kind of roads is the most expected to be 

found near WMO stations, since those are often located in relatively rural regions. In fact, within 

the local large area presented by the Guide as representative of a site (100-1000 km2), the majority 

of roads are very similar to the one featured in this experiment: a little more elevated than the 

surrounding land, with a ditch nearby, both to prevent accumulation of water and to drain it 

properly. In this sense, these features can be regarded as representative and concur in generating 

the RSE. 

Calibration of air temperature sensors is still an open issue in temperature metrology. There is 

currently no universally agreed-upon procedure for calibration of air temperature sensors directly 

in air so, in order to maintain traceability to the SI, a liquid bath calibration was necessary. The 

necessity to devise and code a metrological procedure for calibration in air is in fact included in the 

BIPM Consultative Committee on Thermometry, as a key objective of the roadmap up to 2027. There 

is currently a EURAMET project called ATM –led by INRiM – to research into the best calibration 

method in air, including radiative and convective analysis. The implication is that calibration of air 

sensors in liquid considerably underestimates uncertainties: for this reason, the co-location 

measurements mentioned in Section 2.2 were necessary in order to provide more realistic 

uncertainties, while retaining traceability to SI through conventional liquid bath calibration. 

In terms of data analysis, in this work GAM was successfully used to isolate the largest effect on ∆𝑇𝑇𝑖𝑖 

by each of the quantities of influence: while in principle a similar approach could be used to explore 

the interactions between these predictors, we think that such an analysis would go outside the 

scope of this work. Indeed, an experiment to study the interaction between predictors would be 

interesting, but would have to feature different instruments and most probably a different location: 

analyse the interaction of wind and radiation in a place where wind is almost always absent would 

have very little significance. 

The other statistical technique employed in this work, EVA, has proven able to provide reliable 

estimates of extreme events probabilities, such as the maximum temperature differences (within 



given time frames) measured between one reference point and any other point affected by a heat 

source. 

As already mentioned in Section 3.1, the choice of thresholds is a rather delicate one. However, by 

trying with different values at very small steps, we noted that choosing a threshold too large 

suddenly yields return level values with extremely large uncertainties, so that these mistakes are 

easy to spot; on the other hand, choosing a threshold too low changes the overall fit very little, 

usually by flattening (for shorter distances from the road) or steepening (for longer distances) the 

weighted fits in Figure 14. 

We note from the return level plots (Figure 13) that they do not represent the maximum possible 

∆𝑇𝑇𝑖𝑖: they just give an indication of them in a given period of time. However, the shape parameter ξ 

determines the boundedness of GPD: a value 𝜉𝜉 < 0  leads to a bounded right tail, that is 𝑥𝑥 ∈

[0,−𝜎𝜎 𝜉𝜉⁄ ] + ℎ (Shevchenko, 2011). As a matter of fact, in our case all fits returned negative ξ values, 

so it is theoretically possible to compute asymptotic fits for all ∆𝑇𝑇𝑖𝑖 maxima. The exercise seems to 

have little value though, given that all the confidence intervals of ξ include zero, resulting in 

unbounded asymptotic uncertainties. 

At the beginning of the experiment there was no guarantee that a maximum distance of 100 m 

would be sufficient for the evaluation of RSE. It was chosen because it is the current reference 

distance adopted by the Guide: adding measurement stations farther away would have made the 

task of finding the site even harder, with an unclear outcome in usefulness. In order to evaluate the 

possibility of RSE even on Class-1 compliant sites, trends reported in Figure 14 have been 

extrapolated to 100 m by means of a weighted linear fit: in all cases, the trends are compatible, 

within the uncertainties, to ∆𝑇𝑇7 = 0 ℃, meaning no RSE. 

 

4.1 Comparison with literature 
 

As mentioned in the introduction, very few literature works dealt with RSE on temperature 

measurements, at least with the kind of metrological depth required for the characterization of 

measurements for climatological studies. Some works on effects of advected heat on temperature 

measurements do exist in literature (Bassett et al., 2016, 2017), but they tend to refer to larger 



scales and to compare urban and rural settings, rather than study the phenomenon per se in 

comparison to an unbiased setting. 

Delgado et al., (2007), among others, studied a similar but different issue: the road edge effect, i.e. 

the effect of the presence of a narrow corridor due to a road on a pre-existent wooded area. This 

coalesces very different issues – the effects of roads and trees on air temperature measurements– 

which in our works were kept separate, as well as others like different solar illumination and the 

wind canyon effect. Given that the cited work employed low-quality instruments like unshielded 

thermocouples and a measurement time of only 1 h, a direct comparison with our findings seems 

difficult. The authors find that the road edge effect vanishes merely few meters within the forest, 

which is likely due to the constant shadow of the trees, which prevents accumulation and 

subsequent gradual release of heat by the soil. Voldan (2016, private communication) found that an 

expanse of trees acts as a thermal capacitor, capable of effectively levelling the thermal gradients 

due to external factors. 

Bogren et al., (2001) measured temperatures at different heights above a road and few meters in 

the surroundings and found that the largest difference between them was around 1.1 °C at 2.5 m of 

height, a value compatible to our findings, considering that the nature of “surroundings” and the 

distance are never explicitly mentioned. 

A more directly relatable work was performed by Kumamoto et al., (2013). Their reference 

thermometer is placed 10 m from the road, so the measured differences are lower, the sensors 

were placed at different heights (0.5, 1.5 and 2.5 m), and all the comparisons are performed with 

respect to the temperature of the road itself. In their paper, they both used short (10 s) and long 

timescales (10 min), focusing more on the interaction with the ancillary measurements than the 

evaluation of the largest event. Moreover, no uncertainty evaluation is performed. For these 

reasons, only a cautious comparison can be made between their differences at 10 m and the 

difference between ∆𝑇𝑇1 and ∆𝑇𝑇3 calculated by EVA in our work: findings are similar and of the order 

of 0.25 °C. 

It is also useful to compare the results of the present work with theoretical predictions made by 

Kinoshita, (2014) for ∆𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , defined as the maximum value of daily ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 . The simulation 

computed featuring a 10-m-wide road shows a similar ∆𝑇𝑇 profile to the one shown in Figure 14a, 

with a similar value of 1.1 °C for ∆𝑇𝑇1, a steeper descent up to a distance of 20 m and lower ∆𝑇𝑇 values 

thereafter. This discrepancy can be due to a number of assumptions made during the simulation – 



for instance a fixed temperature difference between the road surface and the grass, which of course 

depends on the nature of the soil and the kind of asphalt used, and the simulation being based on 

cloudless days only – that were, beside a simplification, also tailored for the atmospheric and 

geographic particularities of the Japanese environment and may not represent the actual features 

of a different site. Considering all these aspects, the results of Kinoshita seem comparable. 

Results can be compared to the uncertainties stated in the Guide for classes 3 through 5. The Guide 

provides much larger errors: compare the 5 °C values for class 5 to the 1.25 °C value found in this 

work; 2 °C from the Guide for class 4 to 1 °C in this work. It must be noted that the current 

classification mixes up many different contributions to each class – presence of obstacles, terrain 

with a slope or untrimmed grass, shades etc. It is likely that combinations of different issues and 

obstacles for a given station can raise the uncertainty on the air temperature measurement up to 

values closer to the ones given in the Guide, at least for some of the current classes. 

 

5. Conclusions 

 

In the framework of project MeteoMet 2, an experiment dedicated to the evaluation of near surface 

air temperature uncertainty in measurements due to the presence of a road has been presented. 

An array of seven measurement points, at increasing distances from a road, has been built and the 

8 Pt100 thermometers, 2 hygrometers, 1 radiation meter and 1 anemometer have acquired data 

every 30 s for 1 year. At the end of the main experiment, a rearrangement of the whole array in just 

one measurement point has been performed to evaluate the behaviour of the temperature sensors 

in the same environmental conditions and evaluate measurement uncertainties. 

A Generalized Additive Model (GAM) was developed to explore the relationships between the 

quantities of influence and the temperature differences between stations.; the model results 

indicated a way to effectively reduce the amount of data to analyse, focusing only on data recorded 

during nights, with low-speed winds coming from the road, when the effect was found to be 

maximum. 

An Extreme Values Analysis (EVA) has then been carried out. By fitting the extreme ∆𝑇𝑇𝑖𝑖  over a 

threshold, return levels – and their uncertainties – at different return periods are obtained. The 

analysis revealed a rate of error decrease of ~0.1 °C every 10 m for a return period of 1 year, rising 



to 0.17 °C for a return period of 100 years, which can be easily parametrized and taken into account 

in the general frame of completing the evaluation of measurement uncertainties in near-surface 

temperatures. Mean temperature differences are evaluated as less than 0.2 °C in the vicinity of the 

road. 

By providing a metrological evaluation of uncertainties, these results show how the current 

classification could be improved, together with other effects evaluated within project MeteoMet 2 

– which will be presented elsewhere. These results suggest that particular sources of influence to 

air temperature measurements can and must be investigated, in order to provide a more robust 

evaluation of the uncertainties. Similar experiments can be set up to evaluate the influence of other 

parameters cited in the Guide – bodies of water, terrain slopes – and even different properties of 

already investigated ones – roads of different widths, or with less/more intense traffic, in different 

climates. All these findings could be than parametrized and the future Guide could provide users 

with a much finer evaluation of thermal uncertainties, with the goal of providing much higher quality 

data for all meteorological and climatological studies. The main goal of this work was to provide a 

better evaluation of the maximum uncertainties related to the presence of a road on temperature 

measurements. The idea is to associate to any station, and therefore to any time series – either for 

meteorological or climatological studies – a metadata with quantified uncertainties on how reliable 

these measurements are, so that this information can be added to the models that are used for 

weather forecasts or the analysis of climatic trends. 
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Figure 1. Layout of the road experiment. For each measurement point, at the specified distance from the 
obstacle, position, number and nature of the instruments installed are also indicated. 
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Figure 2. Google Earth snapshot (© Google, 2017) of the experimental site. Visible in the picture are the 
paved road, the experiment array, the grassy airstrip and the main airfield building. In order to maintain the 

prescribed distance to the building in the East and the wooded area in the West, the array could not be 
positioned perpendicular to the road: an angle of ~75° was chosen instead. For this reason, the nominal 

distances of the sensors to the road are to be reduced by 1-sin(75°)≅3.4%. 
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Figure 3. All the measurement stations in their definitive configuration. The picture was taken right after the 
end of the installation works: the barren land along the line of the array, due to earthworks, was naturally 
restored to its grassy status after few weeks, and data acquired during this recovery phase was excluded 

from the analysis. 
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Figure 4. The sensors' configuration during the measurements uncertainties evaluation stage. A
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Figure 5. Temperature differences recorded during the measurement uncertainty evaluation stage of the 
experiment. For clarity, only ∆T1 has been plotted. 
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Figure 6. Distributions of ∆Tai during co-location of the measurement stations. Blue vertical dashed lines 
represent distributions’ means. 
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Figure 7. Temperature differences recorded during the main experiment. Again, for clarity, only ∆T1 has 
been plotted. 
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Figure 8. Distributions of ∆Ti recorded during the main experiment. Blue vertical dashed lines represent 
distributions’ means. 

319x179mm (600 x 600 DPI) 

A
cc

ep
te

d 
A

rti
cl

e



 

Figure 9. Distributions of ∆Ti calculated at daily maximum, average and minimum temperatures. 
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Figure 10. Graphic representation of GAM results. The four quadrants represent the influence of radiation, 
wind speed, humidity and wind direction respectively (clockwise, from top left). Humidity values lower than 
25 %, not reliable as per the manufacturer’s specs, are cropped out the plot. On top of each panel, marginal 

density plots of the ancillary data are represented. 
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Figure 11. A windrose plot of the site. The red line represents the measurement stations’ alignment. 
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Figure 12. Distributions of ∆Ti from filtered data, and their means. 

319x179mm (600 x 600 DPI) 

A
cc

ep
te

d 
A

rti
cl

e



Peer Review Only

 

Figure 13. Return level plots of ∆Ti excesses over threshold. The red solid lines are the Generalized Pareto 
distribution fits, while the shaded bands represent the 68 % confidence levels. 
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Figure 14. Plot of ∆Ti maxima as calculated by the Extreme Values Analysis for 1-year, 10-year and 100-
year return periods. Points represent the return level values, at different distances from the road, of the 
Generalized Pareto fits, with error bars representing the 68 % uncertainty of the GPD fit. The dot-dashed 
lines represent a weighted linear fit, extrapolated to 100 m, with 68 % confidence bands shown in grey. 
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Table 1. Uncertainty budget, listing all contributions to total uncertainty considered during the study, with normal (k=1) and 1 

extended (k=2) coverage. The calculations are truncated to the second digit so discrepancies may arise. 2 

 3 

 1 m 5 m  10 m 20 m 30 m 50 m 

Type A       

Measurement 0.10 0.11 0.10 0.06 0.09 0.08 

Road siting effect (1 year) 0.11 0.10 0.10 0.09 0.08 0.08 

Road siting effect (10 

years) 

0.23 0.23 0.21 0.18 0.16 0.17 

Road siting effect (100 

years) 

0.38 0.41 0.37 0.30 0.26 0.29 
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 4 

  5 

Type B       

Calibration 0.005 0.005 0.005 0.005 0.005 0.005 

Total (1-year) 

(k=1) 

0.15 0.15 0.14 0.11 0.12 0.11 

Extended (1-year) 

(k=2) 

0.30 0.30 0.28 0.22 0.24 0.22 

Total (10-year) 

(k=1) 

0.25 0.26 0.23 0.19 0.18 0.19 

Extended (10-year) 

(k=2) 

0.50 0.51 0.46 0.38 0.37 0.38 

Total (100-year) 

(k=1) 

0.39 0.42 0.38 0.31 0.27 0.30 

Extended (100-year) 

(k=2) 

0.79 0.85 0.77 0.61 0.55 0.60 
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Table 2. Statistical indices of ∆𝑇1 computed at daily maximum, average and minimum temperatures.  6 

 From maxima and minima only From hourly data 

Max Avg Min Max Avg Min 

mean sd mean sd mean sd mean sd mean sd mean sd 

∆𝑻𝟏 0.16 0.23 0.23 0.16 0.31 0.22 0.12 0.21 0.19 0.10 0.29 0.24 

∆𝑻𝟐 0.16 0.18 0.16 0.14 0.16 0.18 0.12 0.16 0.12 0.08 0.17 0.20 

∆𝑻𝟑 0.11 0.14 0.14 0.12 0.16 0.18 0.10 0.14 0.11 0.08 0.17 0.20 

∆𝑻𝟒 -0.03 0.10 0.06 0.09 0.14 0.17 -0.01 0.11 0.08 0.07 0.18 0.18 

∆𝑻𝟓 0.05 0.10 0.07 0.09 0.09 0.15 0.04 0.12 0.07 0.06 0.10 0.17 

∆𝑻𝟔 0.01 0.09 0.04 0.08 0.07 0.13 0.00 0.11 0.05 0.05 0.09 0.13 
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Table 3. Summary statistics of the filtered working dataset of Figure 13. 9 

 ∆𝑻𝟏 ∆𝑻𝟐 ∆𝑻𝟑 ∆𝑻𝟒 ∆𝑻𝟓 ∆𝑻𝟔 

Minimum -0.212 -0.377 -0.332 -0.256 -0.381 -0.414 

1st quartile 0.030 0.013 -0.001 0.028 -0.007 0.000 

Median 0.123 0.082 0.071 0.091 0.046 0.041 

Mean 0.175 0.117 0.105 0.124 0.067 0.056 

3rd quartile 0.273 0.200 0.185 0.187 0.129 0.105 

Maximum 1.416 1.216 1.241 1.120 0.880 0.598 
 10 
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Table 4. Results of GPD fits, in term of scale (s) and shape (xi) parameters, along with their uncertainties. 12 

 Threshold 
value (h) 

Scale 
parameter (σ) 

Uncertainty on σ 
(𝒖𝝈) 

Shape 
parameter (ξ) 

Uncertainty on ξ 
(𝒖𝝃) 

∆𝑻𝟏 0.50 0.214 0.036 -0.108 0.114 

∆𝑻𝟐 0.40 0.170 0.030 -0.059 0.117 

∆𝑻𝟑 0.38 0.178 0.031 -0.070 0.108 

∆𝑻𝟒 0.38 0.171 0.030 -0.104 0.113 

∆𝑻𝟓 0.35 0.161 0.037 -0.173 0.159 

∆𝑻𝟔 0.20 0.119 0.023 -0.113 0.156 
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Table 5. Return level values, complete with fit uncertainties, for three different return periods. 15 

 1 year 10 year 100 year 

 value u value u value u 

∆𝑻𝟏 1.22 0.11 1.49 0.23 1.71 0.38 

∆𝑻𝟐 1.00 0.10 1.29 0.23 1.54 0.41 

∆𝑻𝟑 0.99 0.10 1.28 0.21 1.52 0.37 

∆𝑻𝟒 0.93 0.09 1.17 0.18 1.35 0.30 

∆𝑻𝟓 0.77 0.08 0.93 0.16 1.05 0.26 

∆𝑻𝟔 0.60 0.08 0.75 0.17 0.87 0.29 
 16 
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