

ISTITUTO NAZIONALE DI RICERCA METROLOGICA Repository Istituzionale

Species-specific detection of processed animal proteins in feed by Raman spectroscopy

This is the author's accepted version of the contribution published as:

Original

Species-specific detection of processed animal proteins in feed by Raman spectroscopy / Mandrile, Luisa; Amato, Giuseppina; Marchis, Daniela; Martra, Gianmario; Rossi, Andrea Mario. - In: FOOD CHEMISTRY. -ISSN 0308-8146. - 229:(2017), pp. 268-275-275. [10.1016/j.foodchem.2017.02.089]

Availability: This version is available at: 11696/57314 since: 2018-02-19T17:06:56Z

Publisher: Elsevier

Published DOI:10.1016/j.foodchem.2017.02.089

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

1 Species-specific detection of Processed Animal Proteins in

2	feed by Raman Spectroscopy
3	Luisa Mandrile ^{a,*} , Giuseppina Amato ^b , Daniela Marchis ^b , Gianmario Martra ^a
4	and Andrea Mario Rossi ^c
5	^a Department of Drug Science and Technology, Università degli Studi di Torino, Via Giuria 9, 10125, Torino, Italy
6	Lmandrile@inrim.it; gianmario.martra@unito.it
7	^b Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Torino, Italy
8	Giuseppina.Amato@izsto.it, Daniela.Marchis@izsto.it
9	^c Thermodynamic Division, Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce, 91 10135, Torino, Italy
10	a.rossi@inrim.it
11	*Corresponding author: Andrea Mario Rossi, tel +39 011 3919342; fax +39 011 346384; e-mail <u>a.rossi@inrim.it</u>
12	Abstract
13	The existing European Regulation (EC n° 51/2013) prohibits the use of animals meals in feedstuffs in order to
14	prevent Bovine Spongiform Encephalopathy infection and diffusion, however the legislation is rapidly moving
15	towards a partial lifting of the "feed ban" and the competent control organisms are urged to develop suitable
16	analytical methods able to avoid food safety incidents related to animal origin products. The limitations of the
17	official methods (i.e. light microscopy and Polymerase Chain Reaction) suggest exploring new analytic ways to
18	get reliable results in a short time. The combination of spectroscopic techniques with optical microscopy allows
19	the development of an individual particle method able to meet both selectivity and sensitivity requirements (0.1
20	%w/w). A spectroscopic method based on Fourier Transform micro-Raman spectroscopy coupled with
21	Discriminant Analysis is here presented. This approach could be very useful for in-situ applications, such as
22	customs inspections, since it drastically reduces time and costs of analysis.

keywords: PAPs, Raman spectroscopy, species identification, chemometrics

24

1. Introduction

25 The outbreak of bovine spongiform encephalopathy (BSE) urged the European Union to take several decisions in 26 order to avoid the transmission of its most probable causal agent through the food chain, which is a protein 27 residue called prion. It is generally accepted that the most likely route of infection of cattle with BSE is by 28 feeding cattle with infected processed animal proteins (PAPs). The commercially available PAPs appear as 29 grinded dry meals and consist into two main fractions: i) the lightweight fraction, including muscle fibers, hairs 30 and grease and ii) the heavy residual, containing the mineral fraction, bone fragments, tooth fragments, cartilage 31 etc. The two fractions can be easily separated through a sedimentation procedure using high density solvent such 32 as tetrachloroethylene. PAPs from different animal origin have peculiar features in terms of color and smell. 33 mammalian PAPs are characterized by a high fraction of hard bones fragments, typical for high-size animals' 34 skeleton structure. PAPs derived from swine slaughter processes has light ivory color, is very finely grinded and 35 the unsaturated fat content is higher with respect to ruminant PAPs. Poultry and fish meal are characterized by 36 darker color, pungent smell, rough grinding and the total fat content is mostly represented by saturated oils; the 37 bones fragments in this case are mainly soft bones tissues with high cartilaginous content.

38 The legislation about the prevention, control and eradication of BSEs evolved a lot during the past 15 years 39 through several EC regulations (Van Raamsdonk 2007). Particularly relevant are Regulation (EC) n° 999/2001 and 40 Regulation (EC) n° 1069/2009 (Animal by-products Regulation) which prohibits the feeding of terrestrial 41 animals of a given species other than fur animals with PAPs derived from the bodies or parts of bodies of 42 animals of the same species (ban of intra-species recycling). After the publication of the TSE Road Map II (rev. 43 10) in 2010, a lifting of the ban about the use of PAPs from non-ruminants in non-ruminant feed could be 44 considered, of course without lifting the existing prohibition on intra-species recycling. The most recent 45 European Regulation (UE) n°56/2013 highlights that the availability of effective and validated tests to 46 distinguish between PAP of different animal species should be a prerequisite of any possible reintroduction of 47 non-ruminant PAP to feed other non-ruminant cattle, as well as a careful analysis of the risks of relaxation, 48 regarding animal and public health. In other words the feed-ban lifting would turn into a revision of the present 49 legislation, only if validated and accredited analytical techniques to determine the species origin of PAP will be 50 available and if an efficient channeling of PAPs from different species will be in place.

51 In this concern, in 2012, the European Union Reference Laboratory for Animal Proteins in feedstuffs (EURLAP) 52 validated a new Polymerase Chain Reaction (PCR) method which is able to detect very low level of ruminant 53 material that may be present in feed and a validated method to detect porcine DNA is on the way. Official 54 methods for the detection of ruminant DNA and optical microscopy lay down in Regulation (EU) 51/2013. 55 Thanks to these official methods the feed-ban was partially lifted, and non-ruminant PAP are now allowed in 56 fish feed. The microscopy method is based on the recognition of morphological characteristics of bone 57 fragments, or other structures, e.g. muscle fibers, animal fur, teeth fragments, feathers etc. The fine image 58 analysis using 10X, 20X and 40X objective magnifications allows PAP from terrestrial to aquatic animals to be 59 distinguished in accordance with the osteocytes' *lacunae* morphology and bones peculiarities. Nevertheless, the 60 confusing features revealed between mammalian and poultry PAPs do not allow a correct discrimination of the 61 two classes using optical microscopy. On the other hand, PCR provides high sensitivity and specificity but it 62 does not reveal the nature of the DNA trace sources. This represents a problem since ruminant DNA is present 63 both in authorized (i.e. milk) and in not authorized (i.e. ruminant PAP) ingredients in feed. Another lack of the 64 official methodologies is that they do not allow the quantification of animal origin constituents in feed. Both 65 methods have a declared cut-off concentration around 0.1 % (w/w).

66 Other non-official methods, such as near-infrared spectroscopy (NIRS) (Murray, Aucott and Pike 2001;), near-67 infrared microscopy (NIRM) (Baeten et all 2005, Pavino et al 2009), liquid chromatography (LC) and olfactometry 68 techniques were tested for the detection of PAPs in literature. LC methods are based on the detection of specific 69 polypeptides. For example, carnosine is mainly present in mammals and anserine is mainly found in birds 70 (Schönherr 2002). On the other hand, LC methods are difficult to standardize, because polypeptides are usually 71 strongly denatured because of the high temperature treatments required by Annex IV of Regulation (EC) 72 142/2011. Olfactometry is based on the detection of volatile non-specific agents (Campagnoli et all 2004) and it 73 represents an interesting non-destructive and fast technique. Unfortunately, it turned out that the presence of fish 74 material could mask the detection of proteins of land animals, even at a contamination level of 5 g/kg. 75 Spectroscopic techniques are non-destructive methods that can be applied for *in situ* analysis in feed production 76 plants or in farms, but the too high detection limit did not allow their diffuse application in official control 77 laboratories yet. Anyway, the combination of spectroscopic techniques with optical microscopy could lead to an 78 individual particle method, and reach the sensitivity required. Near and mid infrared spectroscopy, as well as 79 Raman spectroscopy, are promising techniques because of their molecular specificity. The complex pattern of

80 vibrational peaks contains a lot of chemical information and it represents the sample's molecular fingerprint. A 81 spectroscopic approach based on Fourier Transform Raman spectroscopy (FT Raman) for detection of PAPs in 82 feeds is here presented. Moreover, a specific method based on the multivariate treatment of spectra for species 83 recognition is shown and the principal advantages and disadvantages of this method are addressed in this work. 84 In the big-data era modeling techniques are widely exploited to describe complex systems in many fields of 85 research and for different applications (Valipour, Singh 2016). The aim of this study is to demonstrate that a 86 multivariate classification models can provide a consistent tool for sample recognition, even if matrices are 87 complex as feedstuffs and PAPs are. The major advantages of the proposed method, with respect to the 88 established optical microscopy and PCR methods, are the reduction of time and costs of analysis, the automation 89 and the objectivity of results, because of the low operator-dependence of Raman spectroscopy. After setting the 90 classification model, a minimal time is required to operators to launch the Raman mapping analysis and no 91 highly qualified operators are needed. The combination of spectroscopic techniques with optical microscopy and 92 chemometrics permits to develop a highly sensitive and specific method. The molecular fingerprint collected 93 using vibrational spectroscopy represents one interesting way towards the species specific-method, strongly 94 required for the further European Regulations about intra-species recycling controls.

95 2. Material and Methods

96 2.1 Reagents and materials

97 Pure PAPs sample of category 3 (PAPs derived from animals suitable for human consumption) from four 98 different species (bovine, swine, poultry and fish) and a generic feed were provided by the Veterinary Medical 99 Research Institute for Piemonte, Liguria and the Valle D'Aosta (IZSTO). Tetrachloroethylene (specific gravity 100 1,62 g/cm³) was purchased from Nova Chimica (Milan, Italy). Conical glass separation funnels with a content of 101 250 ml with Teflon or ground glass stopcock at the cone base were used for sedimentation procedure. Stopcock 102 opening diameter ≥ 2 mm was used for sedimentation procedure. Laboratory press for tablets preparation with 103 dial indicator to enable reproduction of force settings (E-Z[™] Quick Table Top Press) was provided by 104 International Crystal Laboratories, and it was used to prepare ≈ 0.3 mm thick tablets.

105 2.2 Sample preparation

The material was carefully mixed to obtain a homogenized sample. Pure PAPs samples were already milled, whereas vegetal feed in pellets was grinded in a laboratory blender up to granulometry <0.5 mm. All reusable equipment was carefully cleaned before use to avoid laboratory cross-contamination. Separation funnel pieces and glassware were pre-washed manually and cleaned by using a brush with stiff synthetic hairs. A final cleaning of sieves with acetone and nitrogen flux was recommended.

For the calibration set construction pure PAPs were used. The method sensitivity was evaluated through standards meal samples with a known contaminant concentration. A commercial feed, previously tested with classical microscopy method to exclude PAP contamination, was fortified with known amount of PAPs, ranging from 0.1 to 10 % w/w. A reference sample spiked with PAP at 0.1 % w/w was prepared by the EURL-AP for inter laboratory study and provided by the Italian Reference Laboratory (IZSTo).

116 In accordance with Regulation (EU) 51/2013 extraction and preparation of the sediment, a portion of 3 g of pure 117 PAP (accuracy of 0.01 g) of the ground sub-sample was transferred into the separation funnel or conical 118 bottomed settling beaker and 50 ml of tetrachloroethylene were added. The mixture was vigorously shaken for at 119 least 30 s and at least 50 ml more of tetrachloroethylene were added cautiously while washing down the inside 120 surface of the funnel to remove any adhering particles. For the contaminated feed analysis 10 g of feed was used 121 and two aliquots of 50 ml of tetrachloroethylene for separation. Both resulting mixtures were left to stand for at 122 least 5 minutes before the sediment were separated off by opening the stopcock and dried on a paper filter. 123 Sediment fraction was about 10 % of the whole sample of pure PAP.

124 2.3 Scanning electron microscopy and EDX

Scanning Electron Microscopy images of bone fragments were collected using Inspect F (FEI, Hillsboro, Oregon), acceleration potential used was 10 kV. Samples were covered with 10 nm of Au/Pd alloy using sputtering technology. Energy-dispersive X-ray spectroscopy was performed using Inspect F (FEI, Hillsboro, Oregon), as well.

129 2.4 Raman measurement

130 Thin self-consistent tablets for Raman analysis were prepared using a laboratory press. This method is very rapid 131 and safe in comparison with microscope glasses preparation since solvents and drying time are avoided. This is a 132 very useful condition for Raman imaging, as in flat tablets all fragments lied exactly at the same distance from 133 the laser source, and each spectrum of a Raman map can be collected in suitable focus conditions. In this way 134 focus was set only once before the Raman mapping analysis. Raman spectroscopy analysis was performed with a 135 NXR FT-Raman Module Nicolet SeriesTM (Thermo Fischer Scientific, Waltham, USA) equipped with an 136 InGaAs detector. The laser power of 0.8 W was used for the calibration set collection, whereas 0.3 W was used 137 for the Raman mapping of contaminated feed samples. Raman spectra collection was optimized using 1064 nm 138 excitation laser mounted on a Fourier Transform Raman instrument to minimize the fluorescence phenomena in 139 competition with Raman signal. The wavenumbers range considered was $200 \text{ cm}^{-1} - 4000 \text{ cm}^{-1}$. A resolution of 8 140 cm⁻¹ was applied, and 256 scans were collected for each map point to obtain a S/N ratio higher than 10. For rapid 141 screening tests fast Raman mapping was performed with 1 mm diameter laser spot (instead of 50 µm) and 64 142 scansions for each map point, instead of 256.

143 2.5 Calibration procedures

The row Raman spectra were treated for chemometric analysis by TQ AnalystTM 8.0 software. A preliminary correlation test was performed to attest a correlation between the spectroscopic features (variables) and the belonging class (responses). Then a consistent data set was collected so that the total variability of the system is described; then the discriminant analysis (DA) method was applied, to obtain a robust classification model. All calibrated models were validated through an external validation procedure by new test set.

149 3. Results and Discussion

150 3.1 Optical end electronic microscopy

The limits of the official optical method for identifying PAPs in feedstuffs suggest exploring new analytic ways to get more information from samples with simple and quick techniques. The heterogeneity of the matrices and the low limit of detection required by the legislation into force (0.1 %), represent the most challenge in setting an easy and fast method of analysis. In this study a "bottom up" approach was carried out in order to hit the target. First, pure analytes (i.e. the PAPs from different animal species) were analyzed, to prove that Raman technique was able to characterize the PAPs with high specificity. Interferences of feed materials of vegetal origin were ignored at first.

158 The fraction of sedimented PAPs in TCE can represent variable percentage of the whole sample weight 159 depending on the species (for instance, processed bovine proteins have a higher sedimentable fraction compared 160 to processed swine proteins). The most part of sediment contains bone fragments as demonstrated by and EDX analysis (Energy-dispersive X-ray spectroscopy), which revealed the typical composition of mineral biological
tissue containing Ca, P, Na, O, H.

163 The optical identification of animal fragments in the sediment fraction is based on the systematic observation of 164 fragments lied on a microscope glass using 10X, 20X and 40X objectives. Optical images collected in 165 transmission mode of fish and terrestrial animal bone's fragments are shown in Fig. 1. In the optical images 166 osteocytes lacunae can be easily identified as well as the lacunae ramification. The shape and size of the 167 osteocytes' lacunae and their ramifications are the most specific features for the discrimination of PAPs of 168 aquatic and terrestrial animals. Bone fragments are stained with red alizarin dye to facilitate the identification, as 169 suggested in the official procedure. However, this recognition can be lead only by well-trained operators and, in 170 any case with some level of uncertainty.

171 Fig.1

172 More accurate information about bone fragments morphology is collected by Scanning Electron Microscopy to 173 investigate fine structural differences among different animal species. Unfortunately, after the grinding process 174 bone fragments show a damaged structure; SEM images of bone fragments permit to identify the structural 175 components of bones described in literature. In particular the most common building blocks of bones such as 176 collagen fibrils, mineral plates, un-mineralized matrix, non-fibrillar organic material (mostly made of 177 proteoglycans and glycoproteins) can be identified using SEM. (Thurner et all 2006 a; Thurner et all 2006 b). For 178 example, SEM images of bone fragments from different species shown in Fig. 2a represent fibrils coated with a 179 large amount of non-fibrillar organic material. In Figure 2b osteocytes lacunae can be identified with a good 180 perception of their 3D structure.

181 Fig.2

182 Unfortunately SEM images do not reveal to be more informative than optical microscopy in this domain. It is not 183 possible to identify very characteristic structures that could be univocally associated to one animal species. All 184 PAPs samples analyzed with SEM presented fragments with similar morphologies and it was not possible to 185 identify some very specific indicator that allows a certain classification of bones from different animal species. 186 Even if it is not excluded that an accurate study using powerful images analysis techniques could provide some 187 interesting results in the future. However, neither recognition software, nor complete libraries are now available 188 about bones fragments using SEM. What is more, it seems to be worthless to use such an expensive technique 189 for morphological analysis, the procedure is time consuming and unsuitable for automation. Therefore, even if

- 190 well trained operators could perform the microscopic official methods rather easily, it is not possible to indicate
- 191 SEM as a robust method for animal species recognition in feed.
- 192 3.2 Raman characterization of meat and bone meals

193 Automatic spectrometer coupled with microscopy technology could represent a valuable tool for implementing 194 the existing methodology. In this way morphological information provided by the microscope and chemical 195 information provided by Raman spectroscopy could be merged in order to obtain the best recognition of animal 196 fragments and their species of origin. Raman characterization of the two separated fractions (i.e. sediment and 197 flotate) revealed that the chemical nature and optical and physical features of the flotate fraction make it difficult 198 to collect Raman spectra. Fluorescence phenomena and the huge heterogeneity of samples would represent a 199 great limitation for a possible routine Raman analysis for PAPs. Otherwise, the sediment resulted to be more 200 suitable for Raman characterization. Sediment fraction of PAPs was particularly resistant to laser power, 201 therefore 0.8 W laser power was set for pure PAPs analysis; this permits to reach S/N ratio out of 15 with 256 202 scansions. Random variability of spectra of different fragments of the same PAP sample involved only the 203 background intensity of the entire spectra; no differences, neither in mutual intensity of peaks nor in peaks' 204 shape were recorded. A normalization procedure of spectra revealed that spectra of the same species perfectly 205 overlapped. Signals can be assigned to bone and meat chemical components. In fig. 3 a model spectrum of PAP 206 is shown with the attribution of the Raman bands to the corresponding chemical functional groups (Socrates 207 2001). The attention was focused on the band at 960 cm⁻¹ due to hydroxyapatite compound (Figueiredo, Gamelas 208 and. Martins 2014) which is characteristic for bone's fragments. This signal is suitable as reference signal and it 209 could be successfully used as an "alert signal" during screening analyses. The presence of such peak could 210 therefore represent the very first warning about a PAP contamination in the sample.

211 Fig 3.

- The spectra profile was very similar for all tested species. Differences among species are basically in shape,mutual intensity and baseline trend of spectra as it can be noticed in the Fig 3b.
- 214 3.3 Multivariate data treatment and classification

215 Since spectra of different PAPs look very similar, a monovariate analysis of a single Raman peak can not lead to 216 any significant result. Contributions of both the organic and the inorganic components result in a characteristic pattern of spectroscopic signals, which can be interpreted only through a multivariate approach. Calibration procedure requested the preliminary collection of a training set made of about 80 samples spectra; than discriminant analysis method was applied to obtain a classification model.

220 No consistent separation was achieved when all species (bovine, swine, fish, and poultry) were considered 221 contemporarily. Unfortunately, any optimization such as mathematical pretreatment and variable selection was 222 straightforward for a classification model composed of four classes. The test set validation failed for 25% of 223 validation spectra in the best case, therefore the simultaneous classification of all species was excluded and a two 224 steps procedure was developed. Taking into account preliminary observation made on the data set, a two class 225 model was developed: initial separation of mammals (i.e. bovine and swine) from non-mammals (i.e. fish and 226 poultry) animals was set, in accordance with visible spectra similarity. Appreciable improvements in 227 classification model were obtained by setting a model composed of two classes: i) mammals (bovine and swine) 228 and ii) non mammals (fish and poultry) (Fig. 4a). The obtained DA model was calculated considering 10 229 principal components, which correspond to a cumulative explained variance of 95 %. All spectra were treated by 230 standard normal variate (SNV) for minimizing pathlength differences. The method underwent two different 231 validation tests: leave-one-out cross validation as an internal validation procedure provided fully correct 232 answers. Then external validation test was performed using an external test set. Also in this case no incorrect 233 classification was obtained.

234 A second classification step was then added to recognize the single species. Other two dual class models were 235 optimized to discriminate bovine from swine meal (Fig 4b) and fish from poultry meal (Fig 4c) using a similar 236 strategy. Fish/poultry separation model gave satisfying results; 8 PCs were used, corresponding to a cumulative 237 explained variance of 97 % and 0% of misclassified during external validation were obtained. Otherwise, 238 bovine/swine model resulted to be harder to be optimized, as the variability between swine and bovine spectra 239 was slighter. Anyway 0% misclassified of validation samples were obtained using 6 PCs which show a 240 cumulative explained variance of 94%. Thus, a two steps procedure for an exhaustive specific recognition of 241 animal origin of PAPs was implemented and validated for pure PAPs samples.

242 Fig. 4

243 3.4 Set up of the innovative analytical methodology

In order to test the applicability of the proposed analytical method for the identification of PAPs in feeding stuff an analytical procedure was developed and assessed. The micro Raman method proposed was built on the basis of official optical microscopy method, and paves the way to a possible automation of the procedure, implementing an automatic preliminary scan using Raman imaging. A procedure scheme of the whole innovative analytical method is shown in Figure 5. The automatic Raman imaging enables the operator to manage his working time in a more efficient way, leaving to the instrument the commitment of scanning the samples looking for the animal fragments. Moreover, a species- specific analysis could be carried out.

251 Figure 5.

252 Since high quality spectra collection would require a few minutes and the area to be analyzed is about 0.5 cm², 253 the time of analysis would be too long for routine applications. Therefore, the analytical method was split into 254 two phases: i) screening step, by fast Raman mapping of the whole tablet's area with 500 µm step-size, 1 mm 255 laser spot and 64 scansions for each map point, as mentioned in M&M section, for preliminary suspect 256 fragments identification; ii) a more accurate spectrum collection, suitable for species recognition. After 257 collection, the screening map was profiled according to the Raman intensity at 960 cm⁻¹, which represents a 258 specific peak for bones. This peak is usually intense, sharp and visible even in fast spectra collection. A color 259 scale related to 960 cm⁻¹ intensity was associated to the x-y position on the map, to recognize suspect fragments 260 (Fig. 6). After the entire map collection the operator was requested to lead the laser spot on those alert points, 261 using the powered sample stage, and collects new high quality spectra for species identification.

262 Fig. 6

263 The method sensitivity was tested using a reference sample contaminated with PAP at 0.1% w/w which is the 264 currently accepted limit of detection (LOD). The reference sample was prepared by the EURL-AP for an inter 265 laboratory study and provided by IZSTo. The proposed Raman imaging method allowed the identification of 266 PAPs up to 0.1 % the method was set as a reiterative method. The sample can be declared "PAP-free" after six 267 Raman map collections. The low resistance of sediments to high laser power used for species-specific calibration 268 models and the interferences due to feed matrices during the high specific spectra collection may affect the 269 results. Nevertheless, these two issues did not lead to any mislead when the screening map was acquired with 0.3 270 W laser power and for PAP's fragments of dimensions upper then 100 µm.

271 4. Conclusions

272 In this work a method to identify the presence of PAPs in feed was developed and validated, as well as a species-273 specific analysis for the classification of PAPs found in contaminated feed. The suitability of Raman 274 spectroscopy for the automatic identification of PAPs contamination in feed up to the existing LOD was 275 demonstrated. The most sources of error of this work were related to the meal granulometry and matrix 276 heterogeneity which made it difficult to reach very low sensitivity. These drawbacks could be solved adding at 277 the top of the analytical procedure a grinding, homogenization and sifting step to obtain a more suitable powder 278 for accurate contamination analysis. The validated Raman method is supposed to represent a semi-automatic 279 screening method for intra-species recycling control, to support optical microscopy official method. All the 280 analyses carried out in this study allows us to conclude that the combination of the sensitivity to molecular 281 structure of Raman spectroscopy with optical microscopy can result in an effective method for the detection of 282 PAP fragments in feedstuffs in a green-chemistry view. This method provides not operator dependent and time 283 effective response. Indeed, after setting the classification model, a minimal time is required to operators to 284 launch the sediment Raman mapping analysis and no high-qualified operators are needed. With this respect, 285 future perspectives of this work are the revalidation of the proposed methodology directly in the control 286 organisms' laboratories and inter-laboratory comparison studies to attest the wide scale reproducibility of the 287 Raman methodology for the detection of animal origin contamination in feed. Moreover, in the future a similar 288 analytical approach will be tested to promote a green analytical method also for new feed components such as 289 insect meals. This automatic approach could be very useful for on-site applications, such as product official 290 controls at the EU borders, as well as for custom inspections. In particular, avoiding sample delivery to a trained 291 laboratory, time and costs of analysis would be drastically reduced.

292 Acknowledgements

293 The present research was found by "Ricerca Corrente 2013" project; id number IZS PLV 08 /13 RC

294 References

M.M. Figueiredo, J.A.F. Gamelas and A.G. Martins, Characterization of Bone and Bone-Based Graft Materials Using FTIR
 Spectroscopy, Infrared Spectroscopy - Life and Biomedical Sciences, Prof. Theophanides Theophile (Ed.), ISBN: 978-953 51-0538-1 (2012)

V. Baeten, C. Von Holst, A. Garrido, J. Vancutsem, A. Renier Michotte, P. Dardenne, "Detection of banned meat and bone meal in feedstuffs by near-infrared microscopic analysis of the dense sediment fraction." *Anal. Bioanal. Chem.* 382, 149–157 (2005)

A. Campagnoli, L. Pinotti, G. Tognon, F. Cheli, A. Baldi, V. Dell'Orto "Potential application of electronic nose in processed animal proteins (PAP) detection in feeding stuffs Biotechnol." *Agron. Soc. Environ.*, **8** (4), pp. 253–255 (2004)

- 303 304 I. Murray, L.S. Aucott and I.H. Pike, "Use of discriminant analysis on visible and near infrared reflectance spectra to detect adulteration of fish meal with meat-and-bone meal." *J. Near Infrared Spectrosc.*, **9**, 297-311 (2001)
- 305 D. Pavino, S. Squadrone, M. Cocchi, G. Martra, D. Marchis, M.C. Abete, *Food Chemistry* 121 (2010) 826–831 doi:10.1016/j.foodchem.2009.12.092
- 307 308 J. Schönherr, "Analysis of products of animal origin in feeds by determination of carnosine and related dipeptides by highperformance liquid chromatography" *J. Agric. Food Chem.*, **50**, pp. 1945–1950 (2002)
- 309 George Socrates, Infrared and Raman Characteristic Group Frequencies, Third edition WILEY ed. 2001
- P.J. Thurner, B. Erickson, Z. Schriock, J. Langan, J.Scott, M. Zhao, J. C. Weaver, G. E. Fantner, P. Turner, J.s H. Kindt, G. Schitter, D. E. Morse, P. K. Hansma, "High-Speed Photography of the Development of Microdamage in Trabecular Bone During Compression" *Journal of Materials Research*, (2006)
- P. Thurner, B. Erickson, Z. Schriock, J.C. Weaver, G.E. Fantner, G. Schitter, J.H. Kindt, P. Turner, D.E. Morse, P.K. Hansma, "High Speed Photography of Compressed Human Trabecular Bone Correlates Whitening to Microscopic Damage", American Control Conference 2006
- L.W.D. van Raamsdonk, C. von Holst, V. Baeten, G. Berben, A. Boix, J. de Jong, New developments in the detection and identification of processed animal proteins in feeds, *Animal Feed Science and Technology*, 133, Issues 1-2, Pages 63–83 (2007)
- 319 320 M. Valipour, V. P. Singh 2016, B. Maheshwari et al. (eds.), Balanced Urban Development: Options and Strategies for Liveable Cities, Water Science and Technology, Library 72, DOI 10.1007/978-3-319-28112-4_18
- 321 COMMISSIO REGULATION (EU) No 56/2013. URL <u>http://eur-lex.europa.eu/legal-</u> content/EN/TXT/PDF/?uri=CELEX:32013R0056&qid=1477574827733&from=EN. Accessed 27.10.2016
- 323 Validation study of a real-time PCR method developed by TNO Triskelion bv for the detection of ruminant DNA in feedingstuffs. URL <u>http://eurl.craw.eu/index.php?page=24&id=10</u>. Accessed 27.10.2016
- 325 COMMISSION REGULATION (UE) 51/2013. URL <u>http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013R0051&rid=2</u>. Accessed 27.10.2016
- 327
328REGULATION (EC) No 1774/2002 of THE EUROPEAN PARLIAMENT AND OF THE COUNCIL. URL http://eur-lex.europa.eu/LexUriServ/Lex
- 329 <u>http://hansmalab.physics.ucsb.edu/afmbone.html</u>. Accessed 27.10.2016
- 330
- **331** FIGURE LEGENDS
- **Figure 1** a,b) terrestrial bone; c) fish bone; d) fish cartilage images. All images are purchased by IZSTO.
- **Figure 2** a) Bovine (fibrils coated by non-fibrillar organic material); b) fish (osteocyte holes); c) poultry
- 334 (pressure fracture in bone tissue); d) swine bones fragment.
- 335 Figure 3- a) typical Raman spectrum of PAP sediment with the characteristic signals assignments. The
- 336 hydroxyapatite peak, relevant for further analysis is highlighted in a rectangular box. b) FT-Raman spectra of
- 337 PAPs from swine, bovine, fish and poultry compared, the scale is normalized.
- **Figure 4** scores plot of optimized separation models for a) bovine-swine vs. fish-poultry; b) swine vs. bovine;
- c) fish vs. poultry.

- Figure 5– Analytical method scheme of identification and recognition of PAPs in feedstuffs.
- **341** Figure 6– Raman mapping of feed tablet contaminated at 0.1 % with bovine PAP.

- . . .

Figure 3 Click here to download high resolution image

Figure 4 Click here to download high resolution image

Figure 6 Click here to download high resolution image

