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1Department of Physics, Columbia University, 538 West 120th Street, New York, NY 10027-5255, USA
2Quantum Chemistry Laboratory, Department of Chemistry,
University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland

(Dated: October 17, 2018)

Weakly bound molecules have physical properties without atomic analogues, even as the bond
length approaches dissociation. In particular, the internal symmetries of homonuclear diatomic
molecules result in formation of two-body superradiant and subradiant excited states. While su-
perradiance [1–3] has been demonstrated in a variety of systems, subradiance [4–6] is more elusive
due to the inherently weak interaction with the environment. Here we characterize the properties of
deeply subradiant molecular states with intrinsic quality factors exceeding 1013 via precise optical
spectroscopy with the longest molecule-light coherent interaction times to date. We find that two
competing effects limit the lifetimes of the subradiant molecules, with different asymptotic behav-
iors. The first is radiative decay via weak magnetic-dipole and electric-quadrupole interactions. We
prove that its rate increases quadratically with the bond length, confirming quantum mechanical
predictions. The second is nonradiative decay through weak gyroscopic predissociation, with a rate
proportional to the vibrational mode spacing and sensitive to short-range physics. This work bridges
the gap between atomic and molecular metrology based on lattice-clock techniques [7], yielding new
understanding of long-range interatomic interactions and placing ultracold molecules at the forefront
of precision measurements.

Simple molecules provide a wealth of opportunities for
precision measurements. Their richer internal structure
compared to atoms enables experiments that push the
boundaries in determinations of the electric dipole mo-
ment of the electron [8], the electron-to-proton mass ra-
tio and its variations [9, 10], and parity violation [11].
Diatomic molecules are moving to the forefront of many-
body science [12] and quantum chemistry [13], provid-
ing glimpses into fundamental laws [14]. However, this
attractive complexity of molecular structure has histor-
ically posed difficulties for manipulation and modeling
[15]. This work removes many of these barriers by em-
ploying techniques of optical lattice atomic clocks [16, 17]
to control the quantum states of weakly bound homonu-
clear diatomic strontium molecules, in particular by using
state-insensitive optical lattices [18] for molecular tran-
sitions with three types of optical transition moments.
We observe strongly forbidden optical transitions in this
asymptotic diatomic system, an ideal regime for study-
ing the breakdown of the ubiquitous dipole approxima-
tion where the size of the quantum particle is a signif-
icant fraction of the resonant wavelength. We explain
these observations with a state-of-the-art ab initio molec-
ular model [19] and asymptotic scaling laws. The results
prove that the quantum mechanical effect of subradiance
can be exploited for precision spectroscopy, and demon-
strate the promise of combining precise state control, co-
herent manipulation, and accurate ab initio calculations
with recently available ultracold molecular systems.

We create Sr2 molecules by photoassociation [20] from
an ultracold cloud of spinless strontium atoms, 88Sr, in
an optical lattice satisfying the Lamb-Dicke and resolved-
sideband conditions [21] (Methods). The weak optical

coupling of the ground 1S0 state to the excited 3P1

atomic state (22 µs lifetime [22]) in Sr atoms enables
spectroscopic resolution of molecular structure in the im-
mediate proximity to the 1S0 + 3P1 atomic threshold
without losses from photon scattering. This 689 nm
intercombination (spin-changing) transition is electric-
dipole (E1) allowed, where the photon couples states with
opposite parity. The magnetic dipole (M1) and electric
quadrupole (E2) transitions are strictly forbidden. Due
to quantum mechanical symmetrization, these higher-
order transitions become allowed in bound homonuclear
dimers, as illustrated in Fig. 1a. In the molecular
ground state with the asymptotic electronic wavefunc-
tion |X1Σ+

g 〉 ≈ |1S0〉|1S0〉, only gerade (even) symmetry
is possible, allowing optical E1 transitions only to unger-
ade (odd) excited molecular states. However, M1 and E2
transitions are possible from X1Σ+

g to gerade molecular
states such as those near the 1S0 + 3P1 threshold, since
these higher moments couple states of the same sym-
metry. Such transitions are very weak due to their spin-
and electric-dipole-forbidden nature. As a result, the ger-
ade molecular states are subradiant, while the ungerade
states are superradiant. That is, if the E1 atomic radia-
tive decay rate of 3P1 to 1S0 is Γ, then the equivalent
rates are approximately 2Γ and 0 for the superradiant
and subradiant molecular states. Asymptotically, these
states correspond to the superpositions 1√

2
(|1S0〉|3P1〉 −

|3P1〉|1S0〉) and 1√
2
(|1S0〉|3P1〉 + |3P1〉|1S0〉) of atomic

states, respectively. In this work, the subradiant states
belong to the excited 1g molecular potential (where “1”
refers to the total electronic angular momentum projec-
tion onto the molecular axis and “g” to the symmetry of
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FIG. 1: Optical transitions to superradiant and sub-
radiant molecular states. a, Electric dipole (E1), mag-
netic dipole (M1), and electric quadrupole (E2) transitions
in homonuclear diatomic molecules, from the gerade ground
state to ungerade or gerade excited states. b, Measurements
and predictions of E1, M1, and E2 oscillator strengths in the
weakly bound 88Sr2 molecule. All values are normalized to
the oscillator strength of an E1 transition to a superradiant
1u level. The error bars are standard errors of the mean of all
Q determinations. For the M1 transition to v′ = −2, the er-
ror bar was increased fourfold to reduce the difference between
direct and Rabi-frequency measurements to two standard de-
viations.

the electronic wavefunction), and couple to the ground
state only via the higher-order M1 and E2 transitions.
We probe optical transition strengths to the subradiant
molecular states to establish their asymptotic quadratic
dependence on R, the classical expectation value of the
bond length [23]. This behavior is in stark contrast to
the asymptotic E1 transition strengths of the superradi-
ant states which are constant with R.

We have precisely quantified the optical transition os-
cillator strengths from X1Σ+

g to the subradiant states.
The 1g levels have vibrational quantum numbers v′ be-
tween −1 and −4 (counting from the continuum) and to-
tal angular momenta J ′ = 1, 2. The oscillator strengths
were measured via optical absorption spectra with areas
normalized by the probe light power P and pulse time τ .
For each transition, the experimentally obtained quan-
tity is Q ≡ B12/(cπ

2w2
0) = A/(τP ), where B12 is an

Einstein B coefficient, w0 is the waist of the probe beam,
and A is the Lorentzian area of the natural logarithm
of the absorption spectrum (Supplementary Information

J ′ = 1 J ′ = 3

v′ Eb γrad γpre γexp Eb γrad γpre γexp

-1 19.0420(38) 5.7 19.7 28.5(2.0) –

-2 316(1) 1.6 166 156.3(5.3) 193 1.7 819 <6E3

-3 1669(1) 0.8 555 525(30) 1438 0.9 3102 <13E3

-4 5168(1) 0.6 1243 1250(90) 4826 0.6 7033 <11E3

TABLE I: Measured and calculated contributions to
the subradiant state linewidths. The binding energies
Eb are in MHz and the widths are in Hz. The theory widths
are ab initio. The value and uncertainty for the v′ = −1,
J ′ = 1 binding energy come from extrapolating a peak-to-
shelf frequency difference [13] to zero magnetic field and probe
and lattice light powers.

(SI)). In Fig. 1b, the Q values for the M1 and E2 tran-
sitions (∆J = 1 and 2, respectively, all starting from a
J = 0 ground state) are normalized to the Q for an E1
transition near the same atomic threshold, giving ratios
of absorption oscillator strengths. We find M1 and E2
Q values that are 4-5 orders of magnitude suppressed

compared to E1, as expected from the Q ∼ π2

4

(
R
λ

)2
ra-

tio of the M1and E1 transition moments [23]. Alterna-
tively, oscillator strengths are proportional to the ratios
of the squares of the Rabi frequencies to P , which were
measured for M1 in the time domain by observing coher-
ent Rabi oscillations (SI). The two methods yield simi-
lar results. We performed ab initio calculations of these
doubly-forbidden transition strengths. The results shown
in Fig. 1b are in excellent agreement with measurements,
confirming the asymptotic divergence of the M1 and E2
transition moments with R. In the absence of this linear
growth, the oscillator strengths would be governed by the
rovibrational wavefunction overlaps (Franck-Condon fac-
tors), resulting in ratios different from our observations
by about an order of magnitude.

We have also measured the lifetimes of the subradi-
ant states. The long molecule-light coherence times en-
able optical Rabi oscillations as shown in Fig. 2a, with
the fringe decay times limited by the natural lifetimes of
the 1g states. The Rabi period was used to determine
the length of a π-pulse needed to excite the ground-state
molecules into subradiant states. After a variable wait
time, the molecules were returned to the ground state
and imaged via excitation to the 1S0 + 3P1 continuum
followed by spontaneous decay [20], as in the cartoon of
Fig. 2b. A typical exponential lifetime curve is shown
in Fig. 2b. While this approach was used for lifetime
measurements of the 1g states with v′ = −2,−3,−4, the
least-bound level allowed a simplified method. The spec-
trum in Fig. 2c shows two bound-free optical transitions
from v′ = −1 to atomic continua. The process at the
higher laser frequency corresponds to fragmentation via
the doubly-excited 3P1 +3P1 continuum and is harnessed
for direct lifetime measurements as depicted in Fig. 2d,
where a plot of the recovered atom number versus wait
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FIG. 2: Direct and spectroscopic measurements of
subradiant state lifetimes. For all states, J ′ = 1. a, Rabi
oscillations between ground and excited gerade molecules that
set the π-pulse lengths for lifetime measurements. b, Excited-
state population decay, fitted with an exponential curve. The
cartoon illustrates the four-step measurement sequence used
for all the gerade states but the least-bound one. c, The
least-bound gerade state is strongly coupled to the atomic
continuum due to its large bond length R ≈ 130 a0. The
optical transition to the 3P1 + 3P1 continuum corresponds to
the right-hand peak (or shelf [13]), and the 1S0 + 1S0 con-
tinuum to the left-hand oppositely facing peak. d, Lifetime
measurement of the least-bound state. The cartoon shows
the simplified measurement sequence, using the right peak in
Fig. 2c. The lower curve that was subtracted from the signal
shows spontaneous fragmentation to the 1S0 + 1S0 contin-
uum during the wait time. e-h, Optical spectra of the four
J ′ = 1 subradiant states, with their binding energies indicated
in Table I. Dashed red lines indicate lineshapes deduced from
direct lifetime measurements as in Fig. 2b,d. Only the nar-
rowest spectra are limited by technical broadening such as
laser linewidth.

time is shown with an exponential fit. Even without
an imaging pulse, some of the weakly-bound v′ = −1
molecules decay to ground-state atoms, and we subtract
this small contribution from the signal. All known sys-
tematic effects were controlled (Methods). The lifetime
results are presented in Table I.

Since the molecules are trapped in the Doppler-free

regime, their absorption linewidths can also yield life-
times. Unlike direct lifetime measurements in Fig. 2b,d,
this technique is sensitive to inhomogeneous broadening
from stray magnetic fields and the lattice. Therefore we
engineered state-insensitive optical lattices for molecular
transitions to the deeply subradiant states. The polar-
ization and wavelength were chosen to ensure light shifts
<∼ 1 Hz/mW, leading to inhomogeneous broadening < 50
Hz for 150 mW of lattice light power (SI and Fig. S1).
We nulled the ambient magnetic field to <∼ 20 mG by
using the linear Zeeman effect in Sr2, and applied a bias
field of 0.43 G with angle control of <∼ 2◦ to define the
quantization axis. The four resulting spectra for tran-
sitions from X1Σ+

g to v′ = −1,−2,−3,−4 are shown in
Fig. 2e-h, and are compared with lineshapes expected
from direct lifetime measurements. For the narrowest
lines, the spectroscopic method overestimates the widths
due to broadening caused by the intrinsic linewidth of
the probe laser (< 200 Hz), magnetic quenching (< 90
Hz, Fig. 4), and the finite probe pulse (< 50 Hz).

The radiative lifetimes of the 1g states were calculated
from the ab initio model by considering doubly-forbidden
M1 and E2 transitions to the ground state. The resulting
contributions to the γrad linewidths are in the range of
∼ 1-6 Hz (Table I). Any contributions from decay to
other states below the 1S0 + 3P1 asymptote, as well as
from black-body radiation [24], are negligible. Unlike
for atoms, the radiative lifetimes alone do not suffice to
explain the observations.

Nonradiative decay is a dominant contributor to the
subradiant lifetimes. As shown in Fig. 3a, the 1g
bound states can couple to the long-lived 1S0 + 3P0 con-
tinuum of the 0−g state. The nature of this coupling
is nonadiabatic Coriolis mixing [13, 19, 25] leading to
weak gyroscopic predissociation. An estimate of the
predissociation rate follows from the Fermi golden rule,
2πγpre ≈ 2π

h̄ |〈1g, v
′, J ′,m′|ĤR|0−g , E, J ′,m′〉|2, where ĤR

is the Coriolis interaction and |0−g , E, J ′,m′〉 are energy-
normalized continuum scattering states with energy E.
This coupling vanishes at long range due to different dis-
sociation thresholds of the 1g and 0−g potentials, but not
at short range (SI and Fig. S2). We calculated the pre-
dissociative linewidths from the ab initio model, which
was slightly tuned by scaling the 3Πg potential by 1.2%
to improve agreement with experiment. Moreover, we
can obtain accurate predissociative linewidth ratios with-
out precise knowledge of the short-range physics. The
amplitude of a bound-state rovibrational wavefunction

is ψv(R) ∝
(
∂Ev

∂v

)1/2
, where ∂Ev

∂v is the known vibra-

tional energy spacing [26] (SI). Thus γpre = p
(
∂Ev

∂v

)
E=Ev

,

where the parameter p can be related to the 1S0 + 3P1

inelastic collision cross section [25, 27]. The γpre values
were obtained both from ab initio theory and by fitting
p = 2.48× 10−7 to the measured 1g level linewidths.

The results of the lifetime measurements and calcula-



4

10 100

0

E
/7

cm
p1

.

p50

p100

p200

p150

100

50

102

101

100

N
at

ur
al

/li
ne

w
id

th
/7

H
z.

7a.

7b.

103

104

105

Bond/length/7R/a0.

Bond/length/7R/a0.

40 60 80 100 120 140

subradiant
superradiant

Predissociative/7theory/fit.

Predissociative/7theory/ab/initio.

Radiative/7theory/ab/initio.
1S0p

3P1/atomic/line/77.4/kHz./

0u

1g

1u
+
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subradiant states is gyroscopic predissociation sensitive to
short-range physics, as schematically shown here. b, Four
least-bound subradiant states of 88Sr2 with the lowest angu-
lar momentum J ′ = 1 are measured, covering the range of
bond lengths R ∼ 40-130 a0. The threshold between superra-
diant and subradiant behavior is marked, as well as measure-
ments of two representative superradiant states. Calculations
of subradiant widths include both radiative and nonradiative
contributions. The former scale as ∝ R2 (the line is ab initio
theory), and the latter as the vibrational energy spacing (the
line is theory fit to the data with a single scaling parame-
ter; ab initio theory points are also shown). The error bars
correspond to standard errors of the fitted exponential decay
rates (as in Fig. 2b,d) for subradiant states or the Lorentzian
widths (as in Fig. 2e-h) for superradiant states. For v′ = −4,
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two measurement techniques to account for a larger statistical
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FIG. 4: Magnetic-field tuning of subradiant lifetimes.
The long-range subradiant states have linewidths that are
highly tunable with small magnetic fields B. a, The four
linewidths of the transitions to J ′ = 1 are shown versus B
in the range of 0.2-11 G. The low-field values are distinct (as
in Fig. 3b), while at fields exceeding ∼ 3 G all widths in-
crease quadratically with magnetic field at rates of ∼ 300-500
Hz/G2. The hollow points are from direct lifetime measure-
ments, the filled points are spectroscopic linewidths, and the
dotted lines are drawn to guide the eye and indicate zero-field
widths. b-e, The broader widths of the J ′ = 2 partners de-
crease with applied field for v′ = −2,−3. All error bars are
standard errors of the fitted Lorentzian widths or exponential
decay rates.

tions are displayed in Fig. 3b, where the natural widths
are shown versus R. Note that our R/λ <∼ 0.01, which
is less than 0.5% of the range formerly explored with
trapped ions [4]. The four 1g subradiant states are
marked, as well as two typical nearby superradiant states
(from the 0+

u and 1u potentials). The predictions for
both nonradiative and radiative contributions are also
shown. The radiative contribution exhibits ∝ R2 asymp-
totic scaling. The nonradiative contribution shows a
change from roughly ∝ R−4 to ∝ R−2.5 scaling, reflect-
ing the shift of long-range interaction from a C6 to a
C3 character that occurs near R ∼ 80 a0 for the 1g
potential of Sr2 [22]. This scaling can be understood
from the LeRoy-Bernstein formula [28] relating the in-
verse density of states to the long-range Cn/R

n behavior

as ∂Ev

∂v ∝ E
(n+2)/(2n)
v ∝ R−(n+2)/2.

Table I summarizes the measurements and ab initio
calculations for the 1g levels. Moreover, we found that
the lifetimes of the subradiant states are tunable by or-
ders of magnitude with modest magnetic fields up to
∼ 10 G. Figure 4a shows the natural linewidths of the
four 1g states versus field strength. They broaden with
a quadratic coefficient of ∼ 300 Hz/G2 (or ∼ 500 Hz/G2
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for v′ = −2). This broadening could be qualitatively
explained via Zeeman mixing with nearby even-J ′ levels
that appear to be short-lived due to their more complex
mixing dynamics, which is further substantiated by the
narrowing trend of the J ′ = 2 widths as shown in Fig.
4b-e.

The Sr2 state with the narrowest natural linewidth
(v′ = −1) has a measured lifetime longer than that of
the atomic 3P1 state by an unprecedented factor of nearly
300, opening the door to ultrahigh-resolution molecular
metrology. Our precise determinations of the binding en-
ergies and Zeeman coefficients of molecular states in this
deeply subradiant regime (SI and Table S1) should allow
fine tuning of parameters in the ab initio molecular model
to reach agreement with measurements at the experi-
mental accuracy, which would be a major achievement
of quantum chemistry. Furthermore, Fig. 2c hints at the
intriguing possibility of using long-lived states for ultra-
cold molecule photodissociation [29]. The shown transi-
tion from the least-bound subradiant excited state to the
ground-state continuum should have an ultimate width
limited by the subradiant state lifetime, corresponding to
excess fragment energies of only a nanokelvin.

METHODS

88Sr atoms were laser-cooled in a two-stage magneto-
optical trap (MOT) and loaded into a one-dimensional
optical lattice with a depth of 30 µK and a wavelength
near 900 nm. The lattice was generated by a diode laser
and semiconductor tapered amplifier, where a diffrac-
tion grating removed any amplified spontaneous-emission
light. Atoms were photoassociated into 3 µK molecules
with a density of <∼ 1012/cm3, that were optically imaged
by a photodissociation pulse with a high spectral resolu-
tion [20]. The molecules can be selectively created in ei-
ther of the two least-bound vibrational levels (v = −1 or
−2) of the electronic ground state. They are distributed
among two rotational levels with the total angular mo-
mentum J = 0 or 2, which are well resolved spectroscop-
ically. These molecules near the 1S0 + 1S0 ground-state
atomic threshold are the starting point for probing elec-

tronically excited molecules near the 1S0 + 3P1 asymp-
tote. Narrow molecular transitions were induced with
a laser that was phase-locked to the narrow-linewidth
689 nm cooling laser. The trapping magnetic coils were
pulsed off during spectroscopy, and other sources of mag-
netic field gradients and noise were eliminated. For life-
time measurements, the following parameters were sys-
tematically controlled: lattice light power, molecule den-
sity by adjusting the photoassociation light pulse de-
tuning, magnetic field by adjusting current in a set of
Helmholtz coils, and probe light power (for spectroscopic
linewidth measurements). No systematic shifts of the
lifetime values were detected for the accessible densities
and lattice intensities, that were each varied by roughly
a factor of two. Magnetic fields quench the lifetimes as
in Fig. 4, so the ambient fields were carefully nulled.

The ab initio potentials for the 3Πg (1S + 3P ), 3Σ+
g

(1S + 3P ), and 1Πg (1S + 1P ) electronic states (SI and
Fig. S2) were calculated using linear response theory
within the coupled-cluster singles and doubles frame-
work. The ground-state X1Σ+

g empirical potential was
used [30]. Excited-state potentials were fitted to analyti-
cal functions [19]. Spin-orbit couplings between the non-
relativistic states were fixed at their asymptotic values
related to the atomic fine structure. Rovibrational level
calculations were set up in the Hund’s case (a) framework
by including the 3Πg,

3Σ+
g , and 1Πg electronic states for

the 1g symmetry, and 3Πg and 3Σ+
g states for the 0−g sym-

metry. Diagonalization of the multisurface Hamiltonian
for a given J ′ was performed via the discrete variable
representation method.
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Supplementary information

Engineering state-insensitive optical lattices for narrow molecular transitions

An optical lattice trap contributes no light shift or inhomogeneous broadening if the polarizabilties of the initial
and final states for a transition are equal, α′ = α. In our measurements, we engineer such state-insensitive (“magic”)
lattices for particular transitions by experimentally controlling both polarizabilities.

For states with total spin quantum number J and azimuthal quantum number m trapped by a linearly polarized



6

lattice, the electric-dipole polarizability has the form [31]

α = α0(λ) + α2(λ)

(
3 cos2 θ − 1

2

)(
3m2 − J(J + 1)

J(2J − 1)

)
. (A.1)

Equation (A.1) emphasizes three experimentally accessible parameters: (i) the wavelength λ of the lattice light, (ii)
the angle θ of tilt between the directions of linear polarization for the lattice and of the quantization axis for the state,
and (iii) the choice of sublevel m. For θ = 0, it is equal to the standard “J representation” in terms of the scalar and
tensor polarizabilities α0 and α2, respectively [32]. Note that α2 = 0 if J < 1.

We experimentally control the angle θ for excited-state Sr2 molecules by applying a magnetic field Bz along the
z-axis, perpendicular to the tight-trapping x-axis. This field defines the quantization axis through the linear Zeeman
interaction. The angle θ is then set by a rotatable linear polarizer that controls the direction of the lattice polarization,
which lies in the yz-plane.
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Slope: 2.21(1) Hz/(mW nm)
Intercept: 910.7(2) nm

(a) (b)

FIG. 5: Polarization and wavelength tuning of the lattice light shift. The probed transition is from v = −2, J = 0,
m = 0 of X1Σ+

g to v′ = −4, J ′ = 1, m′ = 0 of 1g. a, The shift is controlled by varying the lattice polarization direction relative
to the quantum axis. b, The shift is controlled by varying the lattice wavelength, at the optimal polarization determined from
part (a). The vertical error bars are standard errors from least-squares fitting of the slope L of Eq. (A.2). The horizontal
error bars are instrumental uncertainties in setting the tilt angle. The uncertainties in parenthesis for fit parameters shown are
standard errors from least-squares fitting.

For transitions from a J = 0 ground state to an excited state with J ′, we may use Eq. (A.1) to introduce a lattice
light-shift coefficient

L =
1

h̄

∂∆AC

∂P
= L0(λ) + L2(λ)

[
3 cos2 θ − 1

] [
3(m′)2 − J ′(J ′ + 1)

]
, (A.2)

where ∆AC is the differential AC Stark shift, P is the lattice light power, and the coefficients L0 and L2 depend on
the choice of states. This form highlights the experimental control of lattice light shifts. To engineer a magic lattice
for the transition, it is sufficient to select m′, θ, and λ such that L = 0. A typical approach is sketched in Fig. 5.
After choosing m′, the tilt angle θ is adjusted to minimize L, and the wavelength λ is adjusted until L = 0. A similar
approach was used to engineer a magic lattice for the 1S0–3P1 E1 transition of 88Sr [33], for which θ = π/2 and
λ = 914(1) nm. For M1 transitions to 1g states with J ′ = 1, we engineered magic lattices for m′ = 0 with θ = 0 and
λ a few nm below 914 nm. For E1 transitions to 0+

u and 1u states with J ′ = 1, we engineered nearly magic lattices
for m′ = 0 with θ = π/2 but with λ within 30 nm of the magic wavelength, because of laser limitations. In this case,
|α′/α− 1| <∼ 3%. For the narrowest E2 transition to a 1g state with J ′ = 2, we engineered a nearly magic lattice for
m′ = ±2 and θ = 0.

AC Stark shifts also contribute to inhomogeneous broadening of spectra in the optical lattice. This broadening was
estimated from measurements of the lattice light shift as ∂Γlat/∂P ≈ 0.3|L| for our nearly magic lattice, where Γlat

is the lattice contribution to the linewidth of a transition. The factor of ∼ 0.3 comes from measurements of narrow
transitions where the lattice uncertainty dominates the observed width [34].
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Transition strength measurements and calculations

We measure a signal S that is proportional to the number nJ of ground-state Sr2 (v = −1 or −2; J = 0 or 2)
within a sampled volume of the optical lattice. Prior to measurement, we apply a laser pulse with duration τ and
power P along the lattice axis. Depending on the laser-frequency detuning from resonance, δ, this laser pulse may
induce absorption for a particular Sr2 transition. Our goal is to extract the strength of the transition probed by the
laser pulse by analyzing S(δ), which is roughly a Lorentzian dip with a constant background.

We perform transition strength measurements from J = 0 such that there is a unique sublevel m = 0, but the
procedure described below also applies to J = 2. During the laser pulse, the ground-state population n0(t) evolves as

d

dt
n0(t) = −Γ0(δ)n0(t), (A.3)

where Γ0(δ) is the absorption rate per molecule. After a pulse of duration τ , the population is

n0(τ) = n0(0) exp[−Γ0(δ)τ ]. (A.4)

The measured signal is S0(δ) ∝ n0(τ), which far off-resonance we can denote with the shorthand S0(∞) ∝ n0(0), such
that

S0(δ)

S0(∞)
= exp[−Γ0(δ)τ ]. (A.5)

We represent the transition strength by the quantity

Q = − 1

τP

∫
ln

[
S0(δ)

S0(∞)

]
dδ =

1

P

∫
Γ0(δ)dδ, (A.6)

because it is proportional to both an Einstein B coefficient and an absorption oscillator strength as explained below.
No adjustments are made to account for the quantum numbers m,J,m′, or J ′ in computing Q. In practice, we find
Q by fitting a plot of lnS0(δ) with a Lorentzian of area A, which then gives Q = A/(τP ). The default experimental
units are MHz/(ms·µW). For both E1 and M1 transitions the area under one peak (J = 0,m = 0 to J ′ = 1,m′ = 0)
was calculated. For E2 transitions, the areas under two peaks (J = 0,m = 0 to J ′ = 2,m′ = ±1) were summed.
In all cases the probe laser light propagated along the tight-confinement x-axis of the lattice, perpendicular to the
quantization z-axis set by an applied magnetic field. For E1 and E2 transitions, the probe light was linearly polarized
along ẑ, and for M1, along ŷ. Area-preserving broadening mechanisms such as slightly state-sensitive optical lattice
or magnetic-field variations do not affect Q, unlike area-changing mechanisms like power broadening. Thus, care was
taken to avoid power broadening.

The rate in Eq. (A.3) is [35]

Γ0(δ) =
W12(δ)

N1
≡ 1

N1

∫
w12(ω)dω = B12

∫
g(ω)ρ(ω)dω, (A.7)

where W12 is an induced absorption rate, N1 is the number of ground-state molecules, ρ(ω) is the probe laser energy
density per angular frequency at δ, B12 is the Einstein B coefficient of induced absorption, and g(ω) is a normalized
lineshape function satisfying

∫
g(ω)dω = 1. For narrow-linewidth lasers, Eq. (A.7) becomes

Γ0(δ) = B12g(2πδ)I/c, (A.8)

where for a probe beam waist w0 and electric field amplitude E, the irradiance

I =
cε0E

2

2
=

2P

πw2
0

. (A.9)

Then ∫
Γ0(δ)dδ =

B12I

2πc
, (A.10)

and the quantity Q we report is

Q =

(
1

c π2w2
0

)
B12 =

(
1

c π2w2
0

)(
πe2

2ε0meh̄ω21

)
f12, (A.11)
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where me and e are the mass and charge of an electron and ω21 is the resonant angular frequency of the transition,
which is nearly the same for all transitions considered. As shown, this quantity is proportional to both B12 and
the dimensionless absorption oscillator strength f12 for the transition under study. The oscillator strength and the
associated dipole and quadrupole operators are conventionally defined as in Ref. [36] and references therein. For
calculations, the operators are transformed into the molecular body-fixed frame. Figure 1b in the manuscript is a
plot of Q values for the various studied transitions, each normalized by the Q for one particular E1 transition.

Alternatively, Q is related to Rabi frequency ωR as follows. Consider a two-level system |1〉 and |2〉 coupled by a
time-dependent perturbation

Ĥint(t) = Ĥ0 cos(ωt). (A.12)

For an E1 transition, Ĥ0 = −d̂ ·E0, where d̂ is an electric dipole moment operator; for M1, Ĥ0 = −µ̂ ·B0, where µ̂ is a
magnetic dipole moment operator; for E2, Ĥ0 = −(1/6)Q̂ij∇iEj , were Q̂ij is an electric quadrupole moment operator.
If the frequency ω = ω21, then the population oscillates between the levels at the on-resonance Rabi frequency

ωR = |〈1|Ĥ0|2〉|/h̄. (A.13)

This Rabi frequency is related to the quantity Q we report as

Q =
1

4

(
ω2
R

P

)
(A.14)

and can be measured via Rabi oscillations. Equation (A.14) follows from Eqs. (A.9, A.10, A.11) and
∫

Γ0(δ)dδ =
(1/N1)

∫
W12(δ)dδ = (1/N1)W12(ω21)Γ/4 = ω2

R/4, where Γ is the transition linewidth, the last two steps follow Chs. 4
& 5 of Ref. [37], and we assumed a Lorentzian form of W12(δ) and a narrow-linewidth laser. Alternatively, Eq. (A.14)
may be derived for E1 transitions as in Ref. [35]. Note that the factor of 1/4 depends on the conventions used to
define w0 and P . We confirmed this relationship for the M1 strengths that are plotted in Fig. 1b of the manuscript.

In calculations of oscillator strengths and radiative decay rates, we employed the following asymptotic forms for
the non-vanishing components of the M1 and E2 transition moments between the X1Σ+

g and 1g electronic states [23],

〈X1Σ+
g |µ̂x/y|1g〉 ≈

µB√
2h̄
R〈1S0|p̂x/y|3P1〉, (A.15)

〈X1Σ+
g |Q̂xz/yz|1g〉 ≈

1√
2
R〈1S0|r̂x/y|3P1〉. (A.16)

The growth of these transition moments with the bond length R is explicit in Eqs. (A.15,A.16). Note that for E1
transitions to the 1u and 0+

u states, the long-range moment is constant with R,

〈X1Σ+
g |r̂|1u/0+

u 〉 ≈
√

2〈1S0|r̂|3P1〉. (A.17)

Calculations of predissociative contributions to subradiant state lifetimes

The main mechanism responsible for the finite lifetimes of the 1g states is nonradiative decay (predissociation).
The predissociation takes place via nonadiabatic coupling with states of the 0−g electronic potential which correlates
with the 1S0 + 3P0 asymptote. The coupling Hamiltonian is of the form

ĤR = − h̄2

2µR2
(Ĵ+ĵ− + Ĵ−ĵ+), (A.18)

where ĵ = L̂ + Ŝ, and Ĵ , ĵ, L̂ and Ŝ are the operators for the total angular momentum, total electronic angular
momentum, and electronic orbital and spin angular momenta, respectively.

Predissociation widths were calculated from the Fermi golden rule,

Γpre =
2π

h̄
|〈1g, v′, J ′,m′|ĤR|0−g , E, J ′,m′〉|2, (A.19)

where |0−g , E, J ′,m′〉 is the energy-normalized continuum wavefunction with energy E matching that of the bound
level v′. We study subradiant states just below the atomic threshold, so it is reasonable to first analyze the asymptotic
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FIG. 6: Potential energy curves for the 3Σ+
g , 3Πg, and 1Πg states of Sr2. This Hund’s case (a) picture is helpful for

analyzing short-range behavior.

behavior of the coupling via ĤR. The nonadiabatic coupling in Eq. (A.19) vanishes at large interatomic separations
because of the different thresholds of the 0−g and 1g electronic potentials, leading to

〈1g|ĵ±|0−g 〉 ≈ 〈3P1|ĵ±|3P0〉 = 0. (A.20)

However, the nonadiabatic coupling does not vanish at short interatomic separations. To analyze the short-range
behavior, it is convenient to use the Hund’s case (a) basis rather than (c). In this picture, the 1g state is mainly
a mixture of 3Πg and 3Σ+

g electronic states, with a small contribution from 1Πg. The 0−g state is comprised of the
3Πg and 3Σ+

g states. At short range, 3Σ+
g is strongly repulsive and the 3Πg component dominates, as shown in Fig.

6. Thus the nonadiabatic coupling from Eqs. (A.18, A.19) will be dominated by the following Coriolis interaction
involving the 3Πg electronic components,

〈1g, v′, J ′,m′|ĤR|0−g , E, J ′,m′〉 ≈ −〈3Πg,|Ω|=1, v
′, J ′,m′| h̄

2

2µR2

[
Ĵ+Ŝ− + Ĵ−Ŝ+

]
|3Πg,|Ω|=0, E, J

′,m′〉. (A.21)

The explicit proportionality to R−2 in Eq. (A.21) disappears after integration over the spatial coordinate, while the
integral over the electronic spin and rotational degrees of freedom can be evaluated analytically,

〈3Πg,|Ω|=1, J
′,m′|Ĵ+Ŝ− + Ĵ−Ŝ+|3Πg,|Ω|=0, J

′,m′〉 =
√

2J ′(J ′ + 1). (A.22)

We have calculated predissociation rates for weakly bound subradiant states with J ′ = 1 and J ′ = 3, assuming
Eq. (A.21) and that the Coriolis coupling is only relevant at short interatomic distances where the 3Πg and 3Σ+

g

potentials are significantly different. Due to the strong oscillating character of rovibrational wavefunctions at short
range, the calculations of matrix elements in Eq. (A.19) are difficult to converge. The main contribution to this integral
comes from the range near the inner turning points of the rovibrational wavefunctions. To accurately reproduce the
experimental linewidths without any modification of the Sr2 potentials, we require a better knowledge of the short-
range potentials than is currently available. Therefore, to improve agreement of the theoretical and experimental
linewidths for the 1g J

′ = 1 levels, we scaled the 3Πg ab initio potential by 1.2%.
While it is challenging to obtain accurate ab initio values of the predisocciation linewidths, we can readily reproduce

the width ratios for weakly bound levels by using concepts from quantum defect theory to account for short-range
effects. A rovibrational wavefunction can be represented as [26]

ψv(R) =

(
∂Ev
∂v

)1/2

E=Ev

(
2µ

πh̄2

)1/2

αv(R, k) sin(βv(R, k)), (A.23)
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where ∂Ev

∂v is the vibrational spacing (alternatively, ∂v
∂Ev

is the density of states per unit energy), and αv(R, k) and
βv(R, k) are the quantum amplitude and phase of the state v. The αv(R, k) and βv(R, k) functions depend on the
local wavenumber k(R) =

√
2[Ev − V (R)]µ/h̄. For different weakly bound levels, αv(R, k) and βv(R, k) are nearly

the same at short range, so the Ψv′ wavefunctions differ only due to their local vibrational spacing. The wavefunctions
|0−g , E, J ′,m′〉 are nearly identical for all v′ due to the large scattering energy E. Thus, the matrix elements Γpre(v′, J ′)
from Eq. (A.19) differ only due to the vibrational spacing factor. Therefore, the predissociation rates can be written
as

Γpre(v) = p

(
∂Ev
∂v

)
E=Ev

, (A.24)

where the primes were dropped, and p is the only free parameter quantifying the overlap between the scattering and
bound rovibrational wavefunctions.

We can calculate ∂Ev

∂v by numerical differentiation of the measured bound energies, and then fit the single parameter
p to the measured widths as plotted in Fig. 3 of the manusript. The linear dependence of the width on the vibrational
spacing near the asymptote, predicted in Ref. [25], is thus confirmed. From the LeRoy-Bernstein formula [28] we can
relate the vibrational spacing near the asymptote to the bond length by assuming interatomic interaction of the form
Cn/R

n,

∂Ev
∂v
∝ E

n+2
2n
v ∝ R−

n+2
2 . (A.25)

Thus the predissociation rate should scale ∝ 1/R2.5 for the C3/R
3 interaction and ∝ 1/R4 for the C6/R

6 interaction.
For the Sr2 1g state, the C3-C6 crossover occurs near v′ = −2, and our predissociation measurements are directly
sensitive to it.

Zeeman effect in subradiant states

We have measured and calculated the linear and quadratic Zeeman-shift coefficients of the least-bound subradiant
1g states with J ′ = 1, 3. The results are shown in Table II. We parameterize linear and higher-order Zeeman shifts
as [13]

∆Eb ≈ gµBm′B + qµBB
2 (A.26)

over a range of ±2 G of the magnetic field B, where q = q(v′, J ′,m′) depend on m′ while g = g(v′, J ′) do not. Note
that as defined, the binding energies are negative, so that positive shifts make molecules less bound. For ideal Hund’s
case (c) 1g states at the intercombination-line asymptote, the linear shifts [13] should have g ≈ (gatomic)/[J ′(J ′+1)] =
3/4, 1/8 for J ′ = 1, 3.

Comparison between the predicted and measured coefficients shows excellent agreement. Zeeman shift measure-
ments are critical for refining the molecular model, since the linear coefficients constrain nonadiabatic Coriolis mixing
between molecular states and the quadratic coefficients are highly sensitive to binding energies. Table II reveals
nearly ideal Hund’s case (c) shifts for J ′ = 1, while for J ′ = 2 the nonadiabatic contributions are large. This may be
explained by Coriolis mixing of the 1g potential with 0+

g (Fig. 3a in the manuscript). Such mixing is not possible for
odd J ′, since in Sr2 molecules the permutational symmetry permits only even-J ′ levels for the 0+

g potential.
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J ′ v′ Eth Eexp gth gexp |m′| qth qexp

1 -1 19.3 19.0420(38) 0.750 0.749(1) 0 -0.0865 -0.086(2)

1 -0.0465 -0.046(2)

1 -2 315 316(1) 0.750 0.744(2) 0 -0.0189 -0.0192(3)

1 -0.0112 -0.014(2)

1 -3 1651 1669(1) 0.750 0.747(1) 0 -0.00815 -0.00817(6)

1 -0.00543 -0.0062(4)

1 -4 5057 5168(1) 0.750 0.747(1) 0 -0.00543 -0.00547(4)

1 -0.00364 -0.00472(5)

2 -1 7.2 7(1) 0.429 0.426(1) 0 0.0288 0.030(1)

1 0.0112 0.014(1)

2 -0.0404 -0.039(2)

2 -2 266 270(1) 0.347 0.3480(4) 0 0.00736 0.0102(1)

1 0.00364 0.004(1)

2 -0.00729 -0.009(1)

2 -3 1536 1581(1) 0.312 0.308(2) 0 0.00307

1 0.00157 0.001(5)

2 -0.00300 -0.001(2)

2 -4 4866 5035(1) 0.304 0.293(1) 0 0.0193

1 0.00093 -0.001(1)

2 -0.00214 -0.004(1)

3 -1 185 193(1) 0.125

3 -2 1401 1438(1) 0.125

3 -3 4684 4826(1) 0.125

TABLE II: Predicted and measured Zeeman shifts for 1g subradiant states of Sr2. Coefficients up to the second order
are included. The binding energies E are in MHz, the linear g-factors are unitless, and the quadratic shift coefficients q are in
G−1. The g and q uncertainties are standard errors from least-squares fitting of spectroscopic peak positions versus magnetic
field, and include the estimated inaccuracy of the applied magnetic field. The value and uncertainty for the v′ = −1, J ′ = 1
binding energy come from extrapolating a peak-to-shelf frequency difference [13] to zero magnetic field and probe and lattice
light powers.
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