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KLTS: A rigorous method to compute the confidence intervals
for the clock noise variances from the Three-Cornered Hat

and Groslambert Covariance sufficient estimates
Éric Lantz1, Claudio E. Calosso2, Enrico Rubiola3, Vincent Giordano3, Christophe Fluhr4, Benoît Dubois4 and

François Vernotte3

Abstract—The three-cornered hat / Groslambert Covariance
methods are widely used to estimate the stability of each
individual clock in a set of three, but no method gives reliable
confidence intervals for large integration times.

We propose a new KLTS method which uses these estimators
to take into account the statistics of all the measurements between
the pairs of clocks in a Bayesian way. The resulting Cumulative
Density Function (CDF) yields confidence intervals for each clock
AVAR. This CDF provides also a stability estimator which is
always positive.

Checked by massive Monte-Carlo simulations, KLTS proves to
be perfectly reliable even for one degree of freedom. A example
of experimental measurement is given.

Keywords— Clock stability; Allan variance; three-cornered
hat; covariances; confidence interval; Bayesian analysis

I. INTRODUCTION

Although the three-cornered hat [1] and the Groslambert
Covariance (GCov) [2] methods are widely used to measure
the stability of each individual clock in a set of three, the only
methods which exist to compute error bars are limited to the
smallest integrations times, i.e. when the number of Equivalent
Degrees of Freedom (EDF) is high [3], [4], [5]. However,
there is no reliable methods to assess confidence intervals
over the estimates if their number of EDF is low, typically
5 or below. However, since this case occurs for the largest
integration times, it is an important issue for all applications
dealing with long term stability (e.g. time keeping).

Likewise, another problem frequently arises using the three-
cornered hat or the GCov method: negative variance estimates
can occur. Although this issue was already considered by
Premoli and Tavella [6], it would be useful to get a method
which could provide simultaneously a positive estimate as well
as its confidence interval.

In a previous paper, we performed a first Bayesian attempt
to estimate confidence intervals from the statistics of the three-
cornered estimates but we observed that this method was only
valid beyond 5 EDF [5]. We propose here a new method,
also based on Bayesian inversion, which uses the statistics of
the data themselves, instead of the statistics of the estimates.
Nevertheless, these statistics of the data can be computed
from the values of the estimates, since these estimates form

1Département d’Optique P.M. Duffieux, Femto-ST, UBFC, France,
eric.lantz@univ-fcomte.fr

2Physics Metrology Division, Istituto Nazionale di Ricerca Metrologica
INRiM, Torino, Italy

3Department of Time and Frequency, Femto-ST, Observatory THETA,
UBFC, France, francois.vernotte@obs-besancon.fr

4FEMTO Engineering, Besançon, France

∼
Clock B

Counter 1

TIC ∼

Clock A

Co
un

te
r 3

TI
C

∼

Clock C

Counter
2

TIC

Fig. 1. Layout of the clock measuring device.

a “sufficient statistics” [7] for the variance estimation. The
resulting Cumulative Density Function (CDF) yields the lower
and upper bounds of the 95 % confidence interval. On the other
hand, the CDF at 50 % provides a useful stability estimator
of the stability of each clock, i.e. the median value, which has
the advantage of always being positive.

The performances of this method have been checked by
using massive Monte-Carlo simulations. The principle of these
simulations is described in this paper and the comparisons
with the theoretical confidence intervals given by our new
method are discussed. Finally, this method will be applied to
the measurement of 3 Cryogenic Sapphire Oscillators (CSO).

II. STATEMENT OF THE PROBLEM

A. Clock comparisons

Let us consider 3 independent clocks: A, B and C. It is
possible to compare these clocks by pairs by using 3 Time
Interval Counter (TIC), as shown in Figure 1, and to estimate
the corresponding Allan variances (AVAR). Let us denote
ȳABk the kth frequency deviation sample between A and B
integrated over a duration τ and zABk = (ȳABk+1 − ȳABk).
For clocks A and B, the AVAR is

σ2
AB(τ) =

1

2
E
[
z2ABk

]
(1)

where E[·] stands for the mathematical expectation of the
quantity between the brackets. For the sake of concision of the
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notations, we will drop the dependence on τ in the following.
Since σ2

AB = σ2
A +σ2

B , the three-cornered hat is based on the
following property:

TCHA =
1

2

(
σ2
AB − σ2

BC + σ2
CA

)
= σ2

A. (2)

On the other hand, the Groslambert covariance is based on
this other property:

GCovA =
1

2
E [zABk · zACk] = σ2

A. (3)

B. Measurement noise influence

Let us consider the layout of Figure 1:
• the clocks B and C are connected to the counter 1 which

is affected by a measurement noise {zN1k}
• the clocks C and A are connected to the counter 2 which

is affected by a measurement noise {zN2k}
• the clocks A and B are connected to the counter 3 which

is affected by a measurement noise {zN3k}.
We assume that these 3 measurement noises are uncorrelated.

The measurement given by the counter 3 is then the
sum of the clock noises plus the corresponding measure-
ment noise: z3k = zABk + zN3k. Its variance is σ2

3 =
1
2E
[
(zABk + zN3k)

2
]

= σ2
AB + σ2

N3. In the following, we
will call z1k, z2k and z3k the measurements.

The three-cornered hat becomes TCHA =
1
2

(
σ2
3 − σ2

1 + σ2
2

)
= σ2

A + 1
2

(
σ2
N3 − σ2

N1 + σ2
N2

)
. Let

us assume that the 3 counter measurement noises are of
the same level: σ2

N1 ≈ σ2
N2 ≈ σ2

N3 = σ2
N . Therefore

TCHA = σ2
A + σ2

N .
Contrariwise, the Groslambert covariance remains:

GCovA = 1
2E [(zABk + z3k) · (zACk + z2k)] = σ2

A.
Therefore, the only difference between these two ap-

proaches concerns the measurement noise due to the counters,
since the expectation of the GCov estimates is not sensitive
to this noise [4]. Note however that the variance of the GCov
estimates does include a measurement noise term.

C. Model parameters and estimates

The previously defined quantities σ2
A, σ2

AB , TCHA, GCovA,
σ2
1 , . . . are unknown real values. However, they can be

estimated by estimates which are random variables. In the
following, the symbol ·̂ stands for the estimate of the quantity
which is under the hat. We can then define the following
estimates:

σ̂2
3 =

1

2M

M∑
k=1

(zABk + z3k)
2

= σ̂2
A + σ̂2

B + σ̂2
N (4)

where M is the number of available consecutive zABk. Let us
call the σ̂2

1 , σ̂2
2 and σ̂2

3 the elementary estimates. Similarly,
T̂CHA = σ̂2

A + σ̂2
N and ĜCovA = σ̂2

A. Let us call the σ̂2
A, σ̂2

B

and σ̂2
C the final estimates.

Meanwhile, let us call the σ2
A, σ2

B and σ2
C the model

parameters.
The aim of this paper consists in calculating a confidence

interval over each model parameter σ2
A, σ2

B and σ2
C , from the

final and elementary estimates.

D. Estimation of the measurement noise by the closure rela-
tionship

The closure relationship is obtained by computing the sum
of the measurements of all counters for a given k:

zcls,k = z1k + z2k + z3k

= zBCk + zN1k + zCAk + zN2k + zABk + zN3k

= zN1k + zN2k + zN3k. (5)

since zABk = zBk − zAk. These 3 measurement noises being
uncorrelated and of equal level, the variance of the closure is:
σ2
cls = 1

2E
[
(zN1k + zN2k + zN3k)

2
]

= 3σ2
N .

This gives an efficient way to estimate the variance of the
measurement noise:

σ̂2
N =

1

6M

M∑
k=1

(zN1k + zN2k + zN3k)
2

=
1

3
σ̂2
cls. (6)

E. Bayesian inference

In Bayesian analysis, we have to consider the model
parameters ~Θ = (θ1, . . . , θm)T which have, in the model
world, m definite but unknown values, and the measurements
~X = (x1, . . . , xn)T which are n random variables. In our case,
the parameters are the 3 true σ2

A, σ2
B and σ2

C AVAR values of
the 3 clocks and the measurements are either the elementary
estimates σ̂2

1 , σ̂2
2 and σ̂2

3 (see the previous method described in
[5]) or directly the 3M measurements {zABk, zBCk, zACk}. In
the present method, we will compute the Probability Density
Function (PDF) of these 3M measurements, by using only
the measured values of the final and elementary estimates,
because these estimates form a sufficient statistics for the
measurements [7]. While using the same estimates as [5],
the present method computes only the gaussian PDF of the
measurements themselves, while [5] lay on the approximation
of the PDF of the estimators by a Gaussian law, inducing
errors for a low number of EDF.

The Bayesian inversion lies on the distinction between two
issues:

• the direct problem, which consists, in the model world,
in calculating the Probability Density Function (PDF) of
the estimates knowing the model parameters p( ~X|~Θ);

• the inverse problem, which consists, in the experimenter
world, in calculating the PDF of the model parameters
knowing the estimates p(~Θ| ~X). This is the most precise
knowledge we can gain on these parameters after a
measurement.

The direct problem has been solved in [5] and the inverse
problem may be solved thanks to the Bayes theorem: p(~Θ| ~X) ∝ π(~Θ) · p( ~X|~Θ)∫

p(~Θ| ~X)d ~X = 1
(7)

where π(~Θ), called the prior, is the a priori probability of the
parameter ~Θ before any measurement.
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III. THE KLTS METHOD

In the following, in order to distinguish our previous method
described in [5] and this present method, we will call the
former the KLTG method, for “Karhunen-Loève Transform
with Gaussian approximation” method, and the latter the
KLTS method, for “Karhunen-Loève Transform using Suffi-
cient statistics” method.

A. Using the measurements z

The KLTS method lies on the use of the zABk, zBCk,zACk

measurements, which are Gaussian random variables (r.v),
instead of the σ̂2

1 , σ̂2
2 and σ̂2

3 elementary estimates, which
are a linear combination of χ2 r.v.. The main advantage of
this approach lies in the property of the Gaussian r.v. which
remains Gaussian when they are linearly combined.

However, these measurements are strongly correlated for
two reasons:

1) the zABk and zABk+1 are not independent (except in the
case of White FM and AVAR without overlapping);

2) for a given k, the zABk, zBCk and zCAk are not inde-
pendent (e.g. their sum is null if the measurement noise
is neglected).

We will postpone the treatment of the correlation between suc-
cessive measurements. We first treat the correlations between
the 3 measurements at a given time. Hence, let us assume
that the 3M measurements form M independent triplets,
successive realizations of 3 correlated Gaussian r.v. We aim
to determinate three linear combinations of these r.v. that are
independent each other:

wl,k = αl z1,k + βl z2,k + γl z3,k, l = 1, 2, 3 (8)

The solution of this problem is given by the Karhunen-
Loève (K.L.) transform: the 9 coefficients αl, βl, γl form
the eigenvectors of the rotation matrix which diagonalizes
the covariance matrix of the measurements, whose elements
are given by Eq.(1) and (3). Note that this matrix is
singular in the absence of measurement noise, because
zBCk = zACk− zABk: if the measurement noise is negligible,
a 2 by 2 matrix must be used instead of a a 3 by 3 matrix in
presence of measurement noise.

Now, since the wl,k are all independent, the PDF is easy
to calculate in the model world, by assuming definite values
for the true variances: p( ~W |~Θ) =

∏M
k=1

∏3
l=1 p(wl,k|~Θ).

To render more explicit this expression, let us introduce the
three K.L. variances Vl obtained by diagonalization of the
covariance matrix. All PDF are Gaussian and their product
can be written as:

p( ~W |~Θ) =

3∏
l=1

(
1

√
Vl

M
exp(−

∑M
k=1 w

2
l,k

2Vl
) (9)

B. Using the sufficient statistic properties of the estimates

In this equation, it is quite interesting to develop, using Eq.
(8), the numerator of the exponential argument, which is the
only term that depends on the actual measurements:

M∑
k=1

w2
l,k = 2M

[
α2
l σ̂

2
1 + β2

l σ̂
2
2 + γ2σ̂2

3 + 2αβGCovA

−2αγGCovB + 2βγGCovC ] . (10)

Eq (10) means that the only knowledge of the 6 elementary
or final estimates is sufficient to compute the PDF of the actual
set of 3N measurements. The number of estimates reduces to
2 in the absence of measurement noise (in this case, the final
estimates can be computed from the elementary ones).

This result was expected: indeed, the variance estimates
form a sufficient statistics for the variance estimation, meaning
that the precise knowledge of the set of measurements ~X =
(x1, . . . , xn)T does not bring any new information beyond the
estimates. More precisely, the vector of estimates ~E forms a
sufficient statistics for ~Θ if p( ~X|~Θ) = f( ~E, ~Θ)g( ~X), where f
and g are two functions[7]. Indeed, we obtain after Bayesian
inversion: p(~Θ| ~X) ∝ π(~Θ) · p( ~X|~Θ) ∝ π(~Θ) · f( ~E, ~Θ). The
term g( ~X) appears as a constant that does not influence the
shape of p(~Θ| ~X), hence its value after normalization, because
~X is formed by actual measurements, with known values,
and the only random variable in the experimenter world is ~Θ.
However, it does not mean that only the PDF of the estimates
makes sense. We prove in this paper that the best way is
to use these estimates to compute the Gaussian PDF of the
data themselves, that remains Gaussian after applying the K.L.
transform.
Because of the only use of the estimates, the correlation
between successive data does no lead to more complexity.
Indeed, let be N the number of degrees of freedom corre-
sponding to a set of M measurements, with N < M . The
estimation of N has been reported in [8]. We have simply
to write Eq. (9) for N independent measurements by using
estimates computed on M correlated measurements, giving:

p( ~W |~Θ) =

3∏
l=1

(
1
√
Vl

N
exp(−

N
∑M

k=1 w
2
l,k

4MVl
) (11)

C. The KLTS algorithm

To compute p(~Θ| ~W ), we apply the same approach as in
[5]. To take into account all the a priori values of ~Θ, we use
a Monte-Carlo scheme with random sampling. This sampling
ensures the observance of the total ignorance a priori law:
the samples are chosen at random on a logarithmic scale,
independently for each variance. We work in the experimenter
point of view: we assume that two triplet of estimates, final and
elementary, have been calculated from the 3 ·M elementary
measurements These six numbers have six definite values that
will be used in the calculations detailed below. The different
steps of the calculation are performed in the same order as in
[5] (the common steps of the two methods are recalled here,
for sake of completeness):

• Choose at random a triplet of true variances, with a uni-
form probability on a logarithmic scale for each variance
and independence between the three variances.

• Calculate for this triplet the covariance matrix of the
measurements given by Eq. (1) and (3).
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• Calculate the eigenvectors and eigenvalues of this covari-
ance matrix

• Use these values to calculate the PDF given in Eq. (11),
using Eq. (10).

• Repeat 107 times the entire process.
• For each of the three variables, normalize the probability

densities by dividing by their sum (sum of 107 values) .
• Also for each of the three variables, sort the true variance

values and calculate the cumulative density function by
a partial sum on the associated normalized probability
densities.

• Determinate a confidence interval at 95% on each true
variance from the corresponding cumulative density func-
tions.

• Verify that the low limit of the confidence interval is
meaningfull. For a Gaussian distribution, 99.7% of data
are included in a confidence interval at ±3σ. If the
low limit of this ±3σ confidence interval (in logarithmic
scale) is smaller than the low limit of the a priori range
(here 10−5 ), we suspect (and have verified) that the low
limit of the smaller confidence interval calculated in the
preceding step will depend on the low limit of the a
priori range. If it occurs, we replace the low limit of
the confidence interval by 0.

Finally, we calculate the median value, i.e. the argument
giving the CDF equal to 0.5. This value, always positive, may
be an alternative estimate of the parameters.

IV. VALIDATION OF THE KLTS METHOD BY
MONTE-CARLO SIMULATIONS

A. Principle of the simulation

In order to validate the KLTS method, we have compared
its results to Monte-Carlo simulations.

The algorithm is as follows:

1) Select a target set of 3 final estimates (σ̂2
A, σ̂

2
B , σ̂

2
C) =

(A0, B0, C0). We call it “reference estimate set”.
2) Draw at random a parameter triplets (σ2

A, σ
2
B , σ

2
C).

3) Randomly draw 3N measurements {zABk, zBCk, zCAk}
according to (σ2

A, σ
2
B , σ

2
C).

4) Compute the final estimates
(
ĜCovA, ĜCovB , ĜCovC

)
from these measurements.

5) If this final estimate set is close to the reference estimate
set within 10 %, the corresponding parameter triplet
(σ2

A, σ
2
B , σ

2
C) is kept, otherwise it is thrown.

6) Go to Step 2).

Each simulation run stops when 10,000 achievements have
been obtained.

This ensemble of 10,000 parameter triplets giving
(σ̂2

A, σ̂
2
B , σ̂

2
C) = (A0, B0, C0) is then compared to the con-

fidence interval obtained by the KLTS method.
Thanks to the sufficient statistic properties of the estimates,

it turns out that any 3N measurement set providing the
given estimates leads to the same statistical distribution of the
parameter triplet.

TABLE I
COMPARISON OF THE CONFIDENCE INTERVALS AS WELL AS THE MEDIAN

ESTIMATES (50 %) OBTAINED BY THE MONTE-CARLO SIMULATIONS
(EMPIRICAL), BY THE KLTG METHOD OF [5] AND BY THE NEW KLTS

METHOD. THE (A0, B0, C0) ESTIMATE TRIPLET IS (−0.5, 1, 1) AND THE
NUMBER OF EDF IS 1.

Bounds σ̂2
A = −0.5 σ̂2

B = σ̂2
C = 1

Emp. 2.5 % 1.78 · 10−5 (2.5 %) 3.0 · 10−5 (2.5 %)
50 % 0.192 (50.0 %) 0.90 (50.0 %)
95 % 27.5 (95.0 %) 76 (95.0 %)

97.5 % 92 (97.5 %) 182 (97.5 %)
KLTG 2.5 % 1.36 · 10−5 (1.52 %) 1.23 · 10−4 (5.31 %)

50 % 5.5 · 10−3 (28.7 %) 0.42 (37.0 %)
95 % 0.83 (68.8 %) 3.23 (70.4 %)

97.5 % 1.38 (75.0 %) 5.3 (76.3 %)
KLTS 2.5 % 1.67 · 10−5 (2.59 %) 2.86 · 10−5 (2.37 %)

50 % 0.200 (50.6 %) 0.90 (49.8 %)
95 % 35 (95.5 %) 90 (95.3 %)

97.5 % 98 (97.8 %) 208 (97.6 %)

B. Results and discussion

We will focus this study only on the efficiency of the
method, i.e. its ability to fit the true confidence intervals, and
not on the behavior of the confidence intervals versus different
parameters. More details on this latter subject may be found
in [5].

This validation way checks the efficiency of the KLTS
method by using several processes.

1) Influence of the EDF: In order to compare the confi-
dence interval given by several other methods, we chose to
set the final estimate values to σ̂2

A = σ̂2
B = σ̂2

C = 1 and
to vary the number of EDF. The results given by previous
methods, a simple Gaussian approximation [4], the Ekstrom-
Koppang method (EK) [3] and the KLTG method [5] are
plotted in Figure 2-A. All these confidence intervals fit pretty
well the empirical error bars obtained by 10,000 Monte-Carlo
simulations above 200 EDF. Between 50 and 200 EDF, EK and
KLTG remain usable but only KLTG fits quite well between
5 and 50 EDF. Finally, below 5 EDF, none of these methods
are satisfactory.

The new KLTS method is compared to KLTG in Figure 2-
B. The KLTG confidence intervals fit pretty well the empirical
error bars even for 2 EDF. The same is true for the median
estimates which correspond perfectly to the empirical median
values at the center of the error bars.

However, this comparison is limited to 2 EDF because
the set σ̂2

A = σ̂2
B = σ̂2

C = 1 is impossible for 1 EDF
without measurement noise. It was demonstrated that, if the
measurement noise is negligible, and this is always the case
when there is only 1 EDF, the 3rd final estimate is totally
determined by the other 2 ones [5]. For this reason, we set
σ̂2
B = σ̂2

C = 1 which leads to σ̂2
A = −0.5. Table I compares

the confidence interval obtained by KLTG and KLTS to the
empirical bounds given by 10,000 Monte-Carlo simulations.

Unlike the results of KLTG, the KLTS bounds as well as
the median estimate show a good agreement with the empirical
bounds and median. However, because of the very low level
of the 2.5 % bounds, they should be considered as equal to
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A.

10-3

10-2

10-1

10+0

10+1

10+2

 10  100  10002

σ
A2

EDF ν

KLTG 95 % confidence interval
Ekstrom Koppang 95 % confidence interval

Gaussian approximation
Empirical confidence interval

B.

10-3

10-2

10-1

10+0

10+1

10+2

 10  100  10002

σ
A2

EDF ν

KLTG 95 % confidence interval
KLTG median estimate

KLTS 95 % confidence interval
KLTS median estimate

Empirical confidence interval

Fig. 2. Estimation of the 95 % confidence interval for a set of clocks with
equal final estimates (σ̂2

A = σ̂2
B = σ̂2

C = 1) versus the EDF number.
The graph above (A) shows the results obtained from previous methods and
the graph below (B) presents the results of the KLTS method (green area)
compared to the KLTG (red area). The reference is given by the blue error
bars which were obtained by massive Monte-Carlo simulations (see algorithm
§IV-A).

0. In these conditions, KLTS gives fully reliable 95 % upper
limits (95.7 % for σ2

A, 95.6 % for σ2
B and σ2

C).
2) Influence of the disparity of the 3 final estimates:

Figure 3 displays the evolution of the confidence interval of
all parameters versus the final estimates σ̂2

A which varies from
0.01 to 100 whereas the other 2 ones are set to σ̂2

B = σ̂2
C = 1

and the EDF number is 2. On the log-log plot as well as on
the linear plot, the agreement between the error bars and the
KLTS confidence intervals is excellent.

3) Influence of the measurement noise: The main advantage
of GCov over the three-cornered hat relies in its rejection
of the measurement noise. Since the measurement noise is
directly addressed by KLTS, e.g. to solve equation (10), it is
of importance to study its influence on the confidence intervals.
This influence is shown on Figure 4 where the final estimates
are set to (σ̂2

A = σ̂2
B = σ̂2

C = 1), the number of EDF is 100
and the variance of the measurement noise σ2

N varies from
0.01 to 50. Despite slight discrepancies between the confidence

A.

10-5

10-4

10-3

10-2

10-1

10+0

10+1

10+2

10+3

10+4

 0.01  0.1  1  10  100

σ
P2

σ̂A
2

σA
2 theoretical 95 % c. i.

σA
2 empirical 95 % c. i.

σB,C
2    theoretical 95 % c. i.

σB,C
2    empirical 95 % c. i.

B.

10-2

10-1

10+0

10+1

10+2

10+3

-0.5  0  0.5  1  1.5  2  2.5  3

σ
P2

σ̂A
2

σA
2 theoretical 95 % c. i.

σA
2 empirical 95 % c. i.

σB,C
2    theoretical 95 % c. i.

σB,C
2    empirical 95 % c. i.

Fig. 3. Estimation of the 95 % confidence intervals for 2 clocks with equal
final estimates (σ̂2

B = σ̂2
C = 1) versus the final estimate of the other clock

(−0.5 ≤ σ̂2
A ≤ 100). The number of EDF is 2. The graph above (A) shows

the results obtained from positive final estimates on a log-log plot whereas
the graph below (B) uses a linear scale in order to display also the results
obtained from negative final estimates. The error bars, red for σ2

A and green
for σ2

B and σ2
C , were obtained by massive Monte-Carlo simulations.

intervals and the error bars obtained from the Monte-Carlo
simulations, the agreement is quite good. The main differences
appear for 1 < σ2

N < 10 when the 2.5 % bound decreases
drastically. This effect is also visible for the median estimate
which seems to decrease at a different rate for the theoretical
and the empirical median estimates. A very small discrepancy
is also visible for the upper bound at σ2

N = 7, 10 and 20.
It is also very interesting to notice that for a large number

of EDF, KLTG and KLTS give quite exactly the same results.
4) Discussion: KLTS vs KLTG: KLTS is undoubtedly a

rigorous approach which does not rely on approximations or
simplifying assumptions. As a consequence, it provides very
relevant confidence intervals even for very low EDF, including
the limit case of 1 EDF (see Table I). The almost perfect
agreement between the confidence intervals given by KLTS
and obtained by the Monte Carlo simulations in Figures 2 to
4 clearly demonstrates this. The only slight differences can
be attributed to the way of computing the PDF by numerical
integration.
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10-5

10-4

10-3

10-2

10-1

10+0

10+1

 0.01  0.1  1  10 50

σ
A2

σN
2

KLTG 95 % confidence interval
KLTG median estimate
KLTS 95 % confidence interval
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Fig. 4. Estimation of the 95 % confidence intervals for a set of clocks with
equal noise measurements (σ̂2

A = σ̂2
B = σ̂2

C = 1) versus the measurement
noise level (0.01 ≤ σ̂2

N ≤ 50). The number of EDF is 100. The results
obtained by the KLTS method (green area) may be compared to the ones
obtained by KLTG (red area). The blue error bars were obtained by massive
Monte-Carlo simulations.

However, in the PDF computation of KLTS, the product (11)
of the elementary probabilities of each data becomes extremely
small when the number of data becomes large, and the result of
(11) can be wrongly truncated to 0 even in double precisison.
As a consequence, the use of KLTS must be reserved for cases
where the number of EDFs does not exceed one hundred.

On the other hand, KLTG relies on a Gaussian approxima-
tion of the estimates [5] which can be assumed only for high
EDF. Unlike KLTS, KLTG must be reserved for high EDFs.
Figure 4 shows that KLTG and KLTS provide almost the same
results for 100 EDFs and these results are in perfect agreement
with the Monte-Carlo simulations. KLTG is then a very good
substitute to KLTS above 100 EDFs.

C. Application to a set of real clocks

These methods were applied to the assess confidence in-
tervals for the GCov measurements of a set of 3 Cryogenic
Sapphire Oscillators designed and made in FEMTO-ST. These
measurements were carried out by the Tracking DDS designed
and made in INRIM (for more details, see [9]). Figure 5 of
the present paper presents the same measurements as the ones
plotted in Figure 11 (below) of [9] but we have added the 95 %
confidence intervals obtained by using KLTS (below 100 EDF,
i.e. τ > 5000 s) and KLTG (above 100 EDF, i.e. τ < 5000 s).

As expected, the confidence intervals are pretty tight around
the estimates for low τ values whereas they extend downward
for high τ values. The lower bounds tend toward 0 above τ =
2 000 s for CSO A, above τ = 20 000 s for CSO C and above
τ = 100 000 s for CSO C. In these cases, only an upper limit
of the stability of the clock may be assessed. Obviously, the
less stable clocks have the smallest confidence intervals and
we can see these intervals increasing or decreasing regarding
the relative positions of the other CSOs. For instance, A is the
most stable clock between 500 s and 30 000 s but becomes the
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10+0 10+1 10+2 10+3 10+4 10+5

AD
EV

 σ
A(
τ

)

Integration time τ [s]

A 95 %
B 95 %
C 95 %
A GCov estimates
B GCov
C GCov
A median estimates
B median
C median
Measurement noise

Fig. 5. GCov measurements of a set of 3 Cryogenic Sapphire Oscillators of
FEMTO-ST. The 95 % confidence intervals (2 σ) are represented by colored
areas. The brown line shows the measurement noise obtained from the closure.
The linear frequency drifts of the CSO have been removed.

less stable clock around 105 s, as a consequence, the lower
bound of its confidence interval increases drastically from ∼
0 to ∼ 2 · 10−16.

The median estimates remain generally close to the GCov
estimates. However, when the lower bound of a clock tend
toward 0, the median estimate decreases significantly and
becomes far lower than the GCov estimate when this latter
exists, i. e. when it is positive. Nevertheless, there is still a
positive median estimate even when the GCov estimate is
negative (e.g. C above τ = 30 000 s). It should be kept in
mind that in such a case the estimate is of little value, the
important information being the upper limit of the confidence
interval. It may be notice that the relevance of the median
estimates could be improved by using a more stringent prior
π(~Θ) in Eq. (7), i.e. a prior based on a perfectly objective a
priori knowledge of the range in which the parameters can
vary. To stay in the most general case, we have preferred to
stick to a “total ignorance” prior (see III-C) in this paper.

We added also the ADEV of the measurement noise on
Figure 5. It is prevailing below 10 s and we can see that the
confidence interval of the most stable clock in this range, B
and C, have a larger confidence interval (e.g. C at 1 s) than
for τ = 100 s for instance. At 1 s, the measurement time
is approximately 5 times higher than the stability of C and,
despite its huge EDF number (EDF = 370 000 @ 1 s), the
effect of the measurement noise affects clearly its confidence
interval as in Figure 4. In other words, the measurement noise
is too high to be fully rejected by GCov.

V. CONCLUSION

The method we propose, KLTS, provides the Cumulative
Density Functions of Groslambert Covariance estimates. From
these CDFs, it is easy to extract confidence intervals for the
GCov estimates as well as alternative estimates such as the
median one. Unlikely the direct GCov estimates, the median
estimate cannot be negative.
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KLTS is a rigorous method since it involves neither ap-
proximations nor simplifying assumptions. It is based on the
property of sufficient statistics that form the estimates.

KLTS is valid for very low EDF including 1 EDF. Massive
Monte-Carlo simulations have perfectly validated KLTS in
different contexts: confidence interval versus the Equivalent
Degrees of Freedom, vs the the stability disparity of the clocks
and vs the level of the measurement noise.

However, KLTS suffers from the drawback of not being
easily computed for high EDF (> 100). But it has been proved
in this paper that the KLTG method, presented in a previous
paper [5], is perfectly reliable above 100 EDF even if the
measurement noise is strong. The combination of these two
methods provides then a powerful tool to assess confidence
intervals for GCov estimates.
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