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Key points 25 

• Breakpoints are found to be more prevalent in DTR than other elements 26 

• DTR has decreased since the early 20th Century but decrease is not linear 27 

• Effects of homogenization change many details of global and regional DTR   28 



Abstract 29 

It is almost a decade since changes in Diurnal Temperature Range (DTR) globally 30 

have been explicitly assessed in a stand-alone data analysis. The present study takes 31 

advantage of substantively improved basic data holdings arising from the 32 

International Surface Temperature Initiative’s databank effort and applies the 33 

National Climatic Data Center’s automated pairwise homogeneity assessment 34 

algorithm to reassess global and regional DTR records. It is found that breakpoints 35 

are more prevalent in DTR series than other temperature elements and that the 36 

resulting adjustments have a broader distribution. This strongly implies that there 37 

is an over-arching tendency across the global meteorological networks for non-38 

climatic artifacts to impart either random or anti-correlated rather than correlated 39 

biases in maximum and minimum temperature series. Future homogenization 40 

efforts would likely benefit from a consideration of DTR, maximum and minimum, in 41 

addition to average temperatures. Estimates of change in DTR are relatively 42 

insensitive to whether adjustments are calculated directly or inferred from 43 

adjustments returned for the maximum and minimum temperature series. The 44 

homogenized series exhibit a reduction in DTR since the early 20th Century globally. 45 

Adjustments serve to roughly half the magnitude of the long-term global reduction 46 

in DTR in the basic ‘raw’ data. Most of the estimated reduction in globally-averaged 47 

DTR occurred over 1960-1980. In several regions DTR has apparently increased 48 

since the 1990s, whilst globally it has exhibited very little change. Estimated 49 

changes in DTR are an order of magnitude smaller than in maximum and minimum 50 

temperatures, which have both been increasing rapidly on multi-decadal timescales.   51 



1. Introduction 52 

 53 

Diurnal Temperature Range (DTR) is defined as the daily maximum (Tx) minus the 54 

daily minimum (Tn) temperature. Herein consideration of DTR is restricted to land 55 

regions where DTR is far more dynamic than over the oceans. Over land areas DTR 56 

varies enormously both seasonally and geographically [Wang and Dillon, 2014]. The 57 

nature of DTR variability is important from a theoretical perspective for myriad 58 

reasons including in understanding microclimate impacts and the nature of changes 59 

within the deeper boundary layer [e.g. Christy et al., 2009, Pielke and Matsui, 2005, 60 

Zhou and Ren, 2011, Parker, 2006, Steenveld et al., 2011, McNider et al., 2012], and 61 

potentially as a determinant between forcings that have different Short Wave and 62 

Long Wave radiative fingerprints but may otherwise be similar [e.g. Jackson and 63 

Forster, 2013; Wang and Dickinson, 2013]. Trends and variability in DTR also have 64 

important practical implications for human health [Paaijmans et al., 2010], ecology 65 

[Peng et al., 2013, Vasseur et al., 2014], and agriculture [Battisti et al., 2009] 66 

amongst others.  67 

 68 

Meteorlogical records have been undertaken at observing stations that extend back 69 

to the late 18th Century regionally and to the late 19th Century quasi-globally 70 

[Rennie et al., 2014]. Efforts have been made for at least three quarters of a Century 71 

[Callendar, 1938, Hawkins and Jones, 2013] to collate these data, apply homogeneity 72 

assessments and ascertain the nature of changes in Land Surface Air Temperatures 73 

(LSAT) over the globe. Today, there exist several such datasets globally [Lawrimore 74 



et al., 2011 (see also Williams et al., 2012a,b, 2013), Jones et al., 2012, Rohde et al., 75 

2013] and regionally [e.g. Bohm et al., 2010; Tietavainen et al., 2010, Li et al., 2010, 76 

Jain and Kumar,  2012, Trewin, 2012, Vincent et al., 2012, Falvey and Garreaud, 77 

2009, Christy et al., 2009; Van der Schrier et al., 2013]. Many of these analyses have 78 

been limited to a consideration of changes in average temperatures (Tm), in part 79 

because records for average temperatures are more complete (Figure 1).  80 

Proportionately the effect becomes substantial prior to about 1950 and critical prior 81 

to 1895 (Figure 1 lower panel). Most US series post-1895 have been digitized to 82 

include Tx and Tn elements as part of the Climate Database Modernization Program. 83 

Elsewhere the situation is substantially more mixed and depends upon the data 84 

source. 85 

 86 

Although DTR has been discussed as part of more general analyses globally [Rohde 87 

et al., 2012, Donat et al., 2013] and regionally [e.g. Makowski et al., 2008, Sen Roy 88 

and Balling, 2005, Christy et al., 2009, Zhou and Ren, 2011], it is almost a decade 89 

since the last stand-alone comprehensive analysis of global DTR data and its 90 

homogeneity was produced [Vose et al., 2005] and over twenty years since the first 91 

such assessment [Karl et al., 1993]. The IPCC in the most recent working group 1 92 

assessment [Hartmann et al., 2013] noted that there was only ‘medium confidence’ 93 

(see Mastandrea et al. [2010] for an interpretation of the specific meaning of this 94 

term in an IPCC context) in available records of observed changes in DTR due to the 95 

presence of a number of unresolved issues raised in the literature [Fall et al., 2011, 96 



Williams et al., 2012c, Christy et al., 2009] and the lack of recent studies and 97 

analyses. 98 

 99 

In the last decade substantial progress has been made in:  100 

• Creating better more complete records of daily data holdings of Tx and Tn 101 

with better provenance and quality control [Menne et al., 2012];  102 

• In combining disparate global holdings of monthly records with the 103 

improved daily holdings to provide a more robust data basis from which to 104 

undertake analyses of long-term LSAT changes [Rennie et al., 2014]; and  105 

• The creation of automated monthly climatic timeseries homogeneity 106 

assessment methods and their performance benchmarking and assessment 107 

[Venema et al., 2012, Williams et al., 2012c, Menne and Williams, 2009].  108 

 109 

This paper aims to take advantage of these methodological and data innovations to 110 

create a new estimate of long-term changes in DTR globally and regionally.  A 111 

subsequent companion paper compares these results to a broad range of other 112 

observationally based estimates [Thorne et al. submitted]. These subsequent 113 

analyses permit an assessment of sensitivity to both structural and parametric 114 

uncertainties [Thorne et al., 2005] in DTR estimation. A holistic assessment of DTR 115 

and its changes is stayed to the companion piece. This paper focuses instead upon 116 

the effects of the Pairwise Homogenization Algorithm (PHA) technique upon the 117 

data and a characterization of the resulting series and a consideration of 118 

implications for trends in Tx and Tn. 119 



 120 

The remainder of the paper is structured as follows. In section 2 the data and 121 

homogenization methods employed in this study are briefly introduced. Section 3 122 

summarizes the impacts of running the PHA algorithm on the data and discusses 123 

potential implications for the nature of non-climatic artifacts in the record. Section 4 124 

describes the spatial and temporal evolution of the homogenized series for the 125 

spatially incomplete global mean and a subset of regions for which data are 126 

complete enough to analyze back to 1901 (Europe, N. America and Australia). 127 

Section 5 provides a brief discussion. Section 6 contains details on the dataset 128 

availability and Section 7 concludes.  129 

 130 

2. Data and homogeneity assessment method 131 

 132 

2.1 Source data 133 

 134 

The present analysis is exclusively based upon the version 1 ‘recommended merge’ 135 

release of the Global Land Surface Databank [Rennie et al., 2014] at monthly data 136 

resolution. This databank release is a result of efforts by many international 137 

collaborators under the auspices of the International Surface Temperature Initiative 138 

[Thorne et al., 2011]. It has combined holdings from over 50 constituent sources 139 

ranging from single stations to holdings of many thousand stations. These sources 140 

have been merged hierarchically with merge decisions based upon both metadata 141 

and data similarity metrics. Sources with Tx and Tn and better provenance and 142 



believed to be closer to the original recorded ‘raw’ basic data have been prioritized. 143 

The merge creates a single unique version per station that is as long as possible 144 

while minimizing potential discontinuities through false imputation of short period 145 

data. In total this version consists of just over 32,000 stations, most of which have 146 

Tx and Tn series for at least part of their records and many of which extend over at 147 

least 100 years (although not necessarily continuously).  148 

 149 

The processing of the databank series merged Tx and Tn series stations first and 150 

only then went back to look for record segments for which solely Tm records exist. 151 

Despite this deliberate effort to maximize the amount of Tx and Tn data pull-152 

through, availability for these elements is always lower than for Tm (Figure 1). It is 153 

all but certain that Tx and Tn data, or at least observations at intervals over the day, 154 

were associated with the original records for which in the digital archives now only 155 

Tm data exist in most cases. These data have either been lost or more likely were 156 

never digitized. This attests to the real importance of data rescue efforts, even for 157 

those stations which nominally already have records but for which the records are 158 

incomplete in important aspects such as availability of daily summaries which serve 159 

to inhibit understanding [e.g. Allan et al., 2011]. 160 

 161 

To facilitate the analysis herein a fourth field – Tdtr – the difference between Tx and 162 

Tn has also been calculated and analyzed. In addition, for those analyzes of 163 

homogenization performance (Section 3) which include recourse to results for Tm 164 

these consider solely Tm values derived directly from the Tx and Tn elements as 165 



their average. This avoids conflation of data completeness and data characteristics 166 

in the analysis, which would otherwise ensue from use of the more temporally 167 

complete merged Tm series (Figure 1). In many cases for remaining Tm reports the 168 

archived Tm may not result simply from averaging Tx and Tn. For example in at 169 

least Australia (and perhaps many other regions) in recent years the monthly 170 

average reported in CLIMAT messages is the average of hourly reports.  Regardless, 171 

given that PHA is a neighbor-based procedure it is important to have the same 172 

networks for each element to perform a fair comparison and evaluation. 173 

 174 

Both the DTR and the Tm fields result from direct calculation from the monthly 175 

mean Tx and Tn series. So, the basic data used herein are internally consistent in 176 

that in the data presented to the homogenization algorithm DTR will always be the 177 

difference between Tx and Tn, Tm will always be their average, and these elements 178 

are only ever calculated when both Tx and Tn are present. However, for months 179 

where either Tx and / or Tn have missing daily values this is not going to be 180 

equivalent to the average of the calculable daily DTRs (or Tm’s) within the month. 181 

While a more restrictive criteria of calculation of these values from the dailies could 182 

be applied to the subset of the databank arising from daily sources [Rennie et al., 183 

2014] it would result in considerably fewer candidate station records, particularly 184 

prior to the 1950s. This comes at a potential cost regarding the monthly statistical 185 

mean and / or standard deviation characteristics for those stations where data is 186 

patchy on an intra-month basis due either to frequent missing days or frequent 187 

quality control flagging on the daily reports.    188 



 189 

2.2 Pairwise Homogeneity Assessment 190 

 191 

The data are presented to the exact same processing suite as those for Global 192 

Historical Climatology Network Monthly (GHCN, currently GHCN-Mv3.2.0) 193 

[Lawrimore et al., 2011, Williams et al. 2012a,b, 2013]. This consists of a set of 194 

quality control checks followed by application of a Pairwise Homogeneity 195 

Assessment (PHA) breakpoint identification and adjustment procedure [Menne and 196 

Williams, 2009].  The interested reader is directed to these papers for a fuller 197 

exposition of the methodology than is possible here if technical details are required. 198 

 199 

The data are submitted separately for each of the four data streams considered (Tx, 200 

Tn, Tm and DTR). No attempt is made herein to consider these data jointly to ensure 201 

consistency in returned adjustments across the elements when assessing 202 

homogeneity of the series, although such an approach is being actively developed 203 

for new versions of GHCNM. This is likely to yield inconsistencies at the station level 204 

between elements herein, which may occasionally be substantial (Section 3). The 205 

PHA algorithm analyzes timeseries of pairwise differences between nearby stations. 206 

It uses a Standardized Normal Homogeneity Test (SNHT) test statistic 207 

[Alexandersson, 1986] which is a t-test class of test, to identify potential 208 

discontinuities in each station pair.  After doing so for all identified neighbor 209 

combinations the very large matrix of potential breakpoints is decomposed such 210 

that breakpoints are assigned iteratively to those stations in which they arise 211 



concurrently across multiple inter-comparisons with the resulting counts reduced 212 

accordingly until no further plausible breakpoint candidates exist. Then 213 

adjustments are inferred for the resulting population of identified candidate real 214 

breakpoints through comparisons to apparently homogeneous neighbor segments 215 

and applied if the distribution of returned adjustment estimates is substantively 216 

non-zero. The process is run solely once and the resulting set of applied and rejected 217 

adjustments are returned. The stations have been adjusted based upon the 218 

adjustment estimates and quality control decisions returned by the PHA in its 219 

operational version settings. The ensemble analysis of Williams et al. [2012c] 220 

highlights potential impacts from giving different, plausible, parameter settings to a 221 

number of the uncertain parameters within the PHA algorithm. For the present 222 

analysis consideration of such ensembles is deemed beyond scope.   223 

 224 

2.3 Station gridding 225 

 226 

For subsequent analysis only stations and months with sufficient data to create a 227 

1971-2000 climatology under a Climate Anomaly Method have been retained in the 228 

gridded fields. As is discussed in the accompanying paper [Thorne et al., submitted] 229 

this is one of several possible approaches to gridding. For each station and calendar 230 

month, the minimum data requirement for calculating a climatology is 2/3 of data in 231 

the 30 year period taken as a whole and at least 1/2 in each decade (1971-1980, 232 

1981-1990 and 1991-2000). This implies that a climatology may have been 233 

computed for some, but not all, calendar months at a particular station. For example, 234 



if the station's operator always took a vacation in July, then an insufficient amount 235 

of data may have been available for July while data for the other months of the year 236 

were sufficiently complete. In practice stations tend to be either substantively 237 

complete over the climatology period or have a marked data paucity that precludes 238 

their inclusion, meaning this affect is relatively minor in the retained station set. 239 

Stations for which a climatology can be calculated for any month tend to have 240 

climatologies for all twelve calendar months. 241 

 242 

The climatology value has only been calculated with a trimmed mean based upon 243 

solely months within 3 standard deviations (σ) of the climatology period data mean 244 

for the given calendar month. An additional simple 5σ anomaly QC check has then 245 

been applied to the resulting anomaly series on a calendar month basis to remove 246 

gross outliers. Data between 3 and 5 standard deviations are retained but do not 247 

inform the climatological estimate. In stations with a strong secular trend this 248 

quality control step may remove real points far away in time from the climatology 249 

period. A high critical threshold of 5σ was chosen to mitigate this risk while still 250 

ensuring grossly questionable data did not get gridded. The check removes solely a 251 

handful of grossly questionable data points. 252 

 253 

Resulting anomalies have simply been gridded, without any further weighting, into 254 

bins of 5 degrees latitude by 5 degrees longitude. Data have been gridded for all Tx, 255 

Tn and DTR for both the raw and adjusted series. Gridded Tm series are not 256 

considered herein but will be documented in forthcoming GHCNM analyses instead. 257 



 258 

For DTR it is possible to estimate the adjustments and resulting gridded series both 259 

directly from applying PHA to the timeseries and indirectly, through applying the 260 

net effect of the returned adjustments to Tx and Tn. The latter approach will yield a 261 

set of physically consistent estimates by construction, but at a potential cost if it 262 

misses breaks more amenable to identification and / or adjustment in DTR. 263 

Regardless, differences arising between ‘directly adjusted’ and ‘indirectly adjusted’ 264 

series provide some indication of likely uncertainties / sensitivities of the resulting 265 

analyses using the PHA method. However, these are very much an incomplete 266 

indicator of the likely true uncertainties. Comparisons to other estimates, 267 

constructed using distinct methods for all processing choices including quality 268 

control, adjustment, climatology calculation and gridding, will likely give a more 269 

realistic assessment of the true magnitude of the uncertainties in DTR estimates and 270 

are discussed further in the accompanying paper [Thorne et al., submitted]. 271 

 272 

3. Analysis of homogeneity adjustments 273 

 274 

3.1 A consideration of the potential structure and magnitude of breakpoints 275 

 276 

The four sets of series submitted to PHA consist of the two primary elements (Tx 277 

and Tn), their average (Tm), and their difference (DTR). To ascertain the possible 278 

effects of the different data artifact characteristics on breakpoint magnitudes and 279 

distributions all possible combinations of Tx and Tn breakpoints between -5 and 5 K 280 



have been considered in Figure 2. By construction breakpoints in Tm are always 281 

smaller than the break in either Tx or Tn except in the special case where the breaks 282 

in both elements are identical in sign and magnitude (perfectly correlated).  Because 283 

DTR is the difference between the two elements there is no such cancellation in 284 

breakpoints of DTR and absolute breakpoint magnitudes reach 10K at [-5K, 5K] and 285 

[5K, -5K]. Hence DTR has twice as large a potential breakpoint magnitude for 286 

combinations explored as any of the other elements. By construction breakpoint 287 

magnitudes in DTR and Tm are orthogonal. In the limit of perfectly correlated 288 

breakpoints in Tx and Tn (Tx break = Tn break) there will be no breakpoints in DTR. 289 

Similarly for perfectly anti-correlated breakpoints (Tx break = -Tn break) there will 290 

be no breakpoints in Tm.  291 

 292 

In cases where the breakpoints in Tx and Tn are correlated (both of the same sign) 293 

one or other of the breakpoints in Tx and Tn will always be the largest breakpoint. 294 

Where the breakpoints in Tx and Tn are anti-correlated (one positive, one negative) 295 

the largest breakpoint will always be in DTR.  Restricting to a consideration of solely 296 

Tm and DTR, the breakpoint in DTR will be largest both when the breakpoints in Tx 297 

and Tn are anti-correlated, and when they are only weakly correlated (same sign 298 

but substantially distinct magnitude whereby the difference is greater than their 299 

mean). 300 

 301 

Assuming that the inter-station noise arising from random effects and real physical 302 

effects is similar across the elements such that Signal-to-Noise Ratios (SNRs) are 303 



similar in all resulting pairwise comparisons for breakpoint detection (Section 2.2) 304 

there is therefore a set of a priori expectations that can be made:  305 

1. If the breakpoints in Tx and Tn are entirely randomly distributed and not 306 

conditionally dependent such that the break in Tx has no a priori 307 

distributional basis given a break in Tn, then it would be expected that there 308 

would be more and larger breaks in DTR than in Tx or Tn and fewest in Tm. 309 

2. If the breaks in Tx and Tn are conditionally dependent such that if the break 310 

in Tn is positive it is more likely that Tx is also positive and vice-versa then 311 

most and larger breakpoints would be expected to be found in Tx and Tn 312 

with fewest in DTR or Tm (depending upon whether the conditioning was 313 

weak (Tm) or strong (DTR)) 314 

3. If the breaks in Tx and Tn are conditionally independent such that a negative 315 

break in Tn has a tendency to lead to a positive break in Tx and vice-versa 316 

then it would be expected that most breaks would be found in DTR and they 317 

would be substantially larger than in Tx and Tn with fewer, much smaller 318 

breaks in Tm 319 

 320 

3.2. Analysis of returned breakpoint adjustments from the PHA algorithm 321 

 322 

The PHA algorithm (Section 2.2) was run on the subset of stations which had 323 

sufficiently long records and for which sufficient neighbor estimates existed. The 324 

data masks are exactly equivalent for Tm and DTR as they require Tx and Tn to both 325 

be available (Section 2.1). For Tx and Tn some additional data exists for some 326 



stations. However, to a first approximation the number of stations and record length 327 

are equivalent for all four elements presented to PHA. Despite this similarity in 328 

input data availability there exist marked differences in the estimated frequency, 329 

magnitude and distribution of adjustments returned across the 4 elements (Figure 330 

3). There are more adjustments returned for DTR (66,572) than for Tn (62,013), for 331 

which there are more again than for both Tx (51,777) and Tm (50,378). The 332 

standard deviation of the returned adjustment estimates is largest for DTR (1.24K), 333 

roughly equivalent for Tx (0.98K) and Tn (1.00K), and smallest for Tm (0.75K). 334 

There is no obvious substantial departure for any element from Gaussian 335 

distributional assumptions. In all cases there is a ‘missing middle’ of undetectable / 336 

unadjustable real-world breakpoints that must in reality exist. 337 

 338 

Following from Section 3.1 if there is no difference in effective power of PHA to 339 

detect and adjust for breaks between elements then the implication is that the 340 

breakpoints in Tx and Tn are either entirely random or conditionally independent.  341 

However, there are also reasons why DTR may be expected to exhibit lower noise as 342 

it is the difference between two variables, Tx and Tn, which tend to co-vary on 343 

monthly timescales. If the noise in the pairwise station comparators, which form the 344 

basis for the breakpoint statistical assessment, was lower then it may simply be that 345 

PHA can more efficiently detect smaller breakpoints from the ‘missing middle’ 346 

clearly evident in all panels of Figure 3. It is obvious given the broader distribution 347 

of DTR adjustments from Figure 3 that the increased number of breakpoints found 348 



and adjusted in DTR results from larger discontinuities rather than any difference in 349 

efficacy of breakpoint identification.  350 

 351 

The breakpoint behavior can be further investigated by consideration of directly 352 

inferred and indirectly inferred adjustment estimates for DTR and Tm (Figures 4 353 

and 5). Breaks in the derived variables would be expected to be coincident in timing 354 

and resulting magnitude with those estimated from the Tx and Tn analyses. 355 

Comparing direct and indirect adjustment estimates therefore provides a check on 356 

internal consistency of results. The direct and indirect adjustment estimates should 357 

be correlated and show no overall offset from one another. Scatter would be 358 

expected to arise due to variations in breakpoint date assignments and neighbor 359 

segments used to adjust. The degree of scatter provides some indication of the 360 

probable uncertainty in the resulting station series estimates. 361 

 362 

For DTR these comparisons exhibit substantial scatter, even when a collocation 363 

error of 12 months in the breakpoint locations found is allowed for (Figure 4 left 364 

hand panel). There are many cases where either a DTR adjustment is made without 365 

a corresponding adjustment to either Tx or Tn and vice-versa (points along either 366 

y=0 x≠0 or x=0 y≠0 respectively). In numerous cases the adjustments differ in sign 367 

(top left and lower right quadrants). Overall, however, there is a tendency to 368 

broadly agree with the cloud of points scattered around the 1:1 line rather than 369 

entirely randomly. The histogram of adjustment comparators (Figure 4 right hand 370 

panel) is zero mean and broadly Gaussian, albeit with a large sigma such that almost 371 



23% of differences exceed 1K in magnitude. A similar analysis of Tm (Figure 5) 372 

exhibits far less scatter between directly and indirectly inferred adjustments (left 373 

hand panel, points lie much closer to the 1:1 line) with only just under 5% of 374 

differences exceeding 1K in magnitude (right hand panel).  375 

 376 

Both direct and indirect adjustments to DTR act to reduce the apparent spread in 377 

individual station linear trend fit estimates over 1901-2012 and 1951-2012 (Figure 378 

6). This is consistent with what would be expected if reasonable adjustments were 379 

being applied to data containing inhomogeneities. Individual station series in the 380 

basic data contain systematic data errors. Such systematic effects are equivalent to 381 

adding units of red noise to the time-series, causing artificial dispersion in the 382 

distribution of long-term station series behavior. Figure 6 suggests that many such 383 

systematic biases are being effectively removed in a reasonable manner by the PHA 384 

algorithm. 385 

 386 

3.3 Synthesis of adjustments analysis 387 

 388 

Breakpoints are more easily discoverable using PHA in DTR than they are in Tx or 389 

Tn which in turn are somewhat more discoverable than in Tm. Earlier analyses over 390 

the European domain [Wijngaard et al., 2003] and globally using HadISD [Dunn et 391 

al., 2014] found similarly that breakpoints in DTR were somewhat more amenable 392 

to detection. Not only were more breakpoints found in DTR but they were on 393 

average larger and had a broader standard deviation than other elements. When 394 



calculated directly from DTR or indirectly from Tx and Tn adjustments, individual 395 

adjustment estimates show similar behavior but with substantial dispersion. 396 

Therefore care should be taken in interpretation of individual adjusted station DTR 397 

series. However, the overall distribution of station trend estimates is less dispersive 398 

following application of adjustments with many obviously questionably large 399 

station trends removed. Taken as a whole this analysis provides confidence in the 400 

efficacy of PHA when applied to DTR series at least at regional or global scales.  401 

 402 

Overall, results from PHA strongly imply that breakpoints in Tx and Tn are either 403 

randomly distributed or conditionally independent. Strong conditional dependence 404 

whereby Tx and Tn breakpoints are almost always of the same sign and similar 405 

magnitude can be ruled out by the present analysis. Reasons and implications are 406 

returned to in the discussion (Section 5). 407 

  408 

4. Analysis of gridded fields and regional averages 409 

 410 

4.1 Data completeness 411 

 412 

As with most preceding analyses of DTR [e.g. Vose et al., 2005] data is globally 413 

incomplete and the data density in those areas sampled varies over at least two 414 

orders of magnitude. Figure 7 shows gridbox DTR station data counts for the month 415 

when data density is globally maximal (October 1987).  Sampling is dense over 416 

much of Australia, China and Japan, Europe and in particular North America. 417 



Sampling is particularly poor (or even non-existent) over much of Africa, SE Asia, 418 

the Arabian Peninsula, the Amazon basin and the ice sheets of Antarctica and 419 

Greenland. Sampling varies substantively through time both globally and regionally 420 

in those regions with records that extend back to the early 20th Century (Figure 8).  421 

Outside North America there exists a step-change in availability in 1960 with far 422 

fewer stations prior to this. As a result trends and variability in DTR for analyses 423 

across 1960 may be an artifact of coverage changes rather than true changes. As 424 

discussed further in Section 2.1 there likely exist records which if rescued digitized 425 

and shared could mitigate this issue. 426 

 427 

4.2 Diurnal Temperature Range 428 

 429 

Herein analysis is made of changes in DTR from the original ‘raw’ data records and 430 

following adjustments calculated directly and indirectly from applying the 431 

adjustments returned to Tx and Tn and then calculating DTR from these series as 432 

outlined in Section 2.3. The analysis starts with spatial patterns of trends over 433 

increasingly shorter periods to present. Recourse is then made to regionally 434 

averaged timeseries behavior and linear trend estimates.  435 

 436 

4.2.1 Spatial trends 437 

 438 

Trends calculated since the beginning of the 20th Century greatly reduce coverage if 439 

a data completeness mask is applied to ensure early and late period data availability 440 



in addition to total timeseries completeness (Figure 9 c.f. Figure 7).  Data remain 441 

only for N. America, Europe, parts of Australia, E. China and Japan and a handful of 442 

dispersed additional locations. The spatial domains sampled in Figure 9 govern the 443 

designation of sub-domains considered in subsequent regional analyses and 444 

denoted henceforth by geographic shorthand as: N. America (45W-135W, 25-60N); 445 

Europe (10W-60E, 25-60N); and Australia (110E-155E, 10S-45S). The cluster over 446 

Japan and E. China is deemed too small to calculate a reasonable regional average.  447 

 448 

Century timescale trends in DTR (Figure 9) are of the order 0.1K/decade at most 449 

across the sampled gridboxes in the raw data and in the two adjusted products. 450 

Trends are significant at the gridbox level in many of the gridboxes sampled in the 451 

input data, but this decreases substantially following application of adjustments 452 

either using the direct or the indirect approach. In the input data most gridboxes 453 

exhibit a reduction in DTR over time. Although a majority of gridboxes still indicate 454 

a reduction in DTR following the application of adjustments, the magnitude of the 455 

DTR reduction is far less significant. Adjustments change the sign of the DTR trends 456 

in much of the South Western / Western United States from negative to positive and 457 

reduce the negative trends elsewhere in N. America. This change is more marked 458 

when adjustments are calculated indirectly than when they are calculated directly. 459 

There are less spatially consistent changes in remaining regions with many 460 

gridboxes experiencing large changes including changing the sign of the DTR trend.  461 

 462 



Starting in 1951 as expected from Figure 8, spatial sampling is much more complete 463 

although Africa, the Indian sub-continent and S. America remain substantively 464 

incompletely sampled in addition to Greenland and Antarctica (Figure 10). Over this 465 

62 year period in the input data records the vast majority of gridboxes exhibit 466 

substantial reductions in DTR that are particularly marked over much of Asia and N. 467 

America. Application of adjustments substantively changes the trend behavior over 468 

N. America where trends are reduced with a sign change in many gridboxes west of 469 

the Rockies to an increasing DTR and very few gridbox series remain significant. In 470 

Southern Europe adjustments indicate small increases in DTR. Overall, adjusted 471 

series are visually somewhat more spatially homogeneous than the input data 472 

trends lending some support to the findings detailed in Section 3 regarding the 473 

efficacy of the PHA when applied either directly or indirectly to DTR records. 474 

 475 

The last period for which geographical trends are considered is from 1979, a start 476 

date typically used in climate studies because it is the advent of regular polar-477 

orbiter satellite measurements. Although the current analysis is in-situ only it is still 478 

potentially informative to other studies to document changes over this period 479 

(Figure 11).  Over this period sampling is more complete again, particularly so over 480 

South America although large areas remain data void. Since 1979 trends are 481 

substantively larger in magnitude and of more mixed sign. That trends over shorter 482 

periods are larger, more spatially heterogeneous, and of mixed sign is to be 483 

expected as shorter periods increasingly reflect decadal-scale regional variability 484 

[Santer et al., 2011].  Over this shorter period, the application of adjustments leads 485 



to large changes in apparent sign and magnitude of DTR trends in many regions. 486 

This is particularly marked in the United States, in parts of Europe and over much of 487 

China and SE Asia.  488 

 489 

Over the United States the adjustments in the post-1979 era lead to a change from a 490 

slight reduction in DTR to a larger increase in many gridboxes. The adjusted DTR 491 

increases are significant in several gridboxes in the South Western states. This 492 

adjustment is consistent with understanding of the transition from Cotton Region 493 

Shelters (CRS, termed Stevenson Screens elsewhere) to electronic Maximum 494 

Minimum Temperature Sensor (MMTS) starting in the 1980s and substantively 495 

completed by the late 1990s. In this change both the instrument and its shielding 496 

were changed substantively, often associated with a change in measurement 497 

location. This change affected roughly 70% of the COOP network, which is the 498 

backbone of the US records. Field based studies and statistical analyses have 499 

variously concluded that the CRS to MMTS transition led to a positive bias in Tn and 500 

a negative bias in Tx artificially reducing DTR in the raw data [Fall et al., 2011, 501 

Williams et al., 2012c and references therein]. Assuming that the PHA algorithm is 502 

adequate the effect of this change is larger than the underlying real-world DTR 503 

signal over much of the United States. The size of the effect found and adjusted for 504 

here is consistent in magnitude with understanding from various side-by-side 505 

comparisons under the assumption that c.70% of the network experienced the 506 

change. 507 

 508 



In Europe adjustments lend support to the propensity for increased DTR in recent 509 

years [Vautard et al., 2009]. In China and SE Asia, although gridbox trends remain 510 

significant the reductions in DTR are generally less following adjustment than is 511 

implied by the raw data. 512 

 513 

4.2.2 Regional and global timeseries and trends 514 

 515 

As is visually obvious from Figures 9-11 linear trend estimates do not describe all 516 

facets of the timeseries behavior globally or regionally. Timeseries for global (Figure 517 

12) and regional (Figure 13) DTR averages serve to highlight the presence of 518 

substantial interannual to multi-decadal variability in DTR even globally. In all cases 519 

these timeseries have been derived from averaging all available gridded data at each 520 

timestep using cos(lat) area weighting. As noted earlier, given the varying station 521 

count and gridbox availability care should be taken in interpretation in particular of 522 

pre-1960 data. The effects of different completeness inclusion criteria for this step 523 

are further discussed and analyzed in the accompanying paper [Thorne et al., 524 

submitted]. 525 

 526 

Following adjustments it is estimated that globally averaged DTR was elevated 527 

relative to present day until the late 1950s, declined by of the order 0.2C by the 528 

early 1980s and has then been relatively steady since according to both adjusted 529 

series considered. There are substantial differences between directly and indirectly 530 

adjusted series estimates prior to around 1950. Overall the adjusted series are more 531 



similar to each other than they are to the input data both in terms of the long-term 532 

trend and also decadal timescale variability. Globally adjustments have a substantial 533 

impact in the most recent period since 2000 when (semi-)automation has been 534 

prevalent across the global network as a whole (although some regions experienced 535 

this change 10-20 years earlier), and prior to the 1970s.  536 

 537 

Global and regional average trends are substantively impacted by the PHA 538 

homogenization procedures. Adjusting either directly or indirectly the net effect is 539 

to reduce the magnitude of the apparent long-term trends in global DTR (Table 1). 540 

Nonetheless, trends towards globally reduced DTR are statistically significant over 541 

the period 1901 to 2012 and the shorter sub-period 1951 to 2012 for the ‘raw’ 542 

series and remain so for the adjusted series.  Over the period 1979 to 2012 the 543 

global mean trend reverses from a significant reduction in the ‘raw’ data, to a slight 544 

increase in both of the adjusted series neither of which are statistically significant 545 

(c.f. Figure 11 and associated discussion). 546 

 547 

In North America the adjustments reduce DTR prior to 1950 and increase DTR since 548 

the 1980s yielding a large reduction in the apparent narrowing of DTR implied by 549 

the basic ‘raw’ data (Figure 13, top panel). As discussed previously post-1980 550 

changes are consistent with understanding of the effects of transition from CRS to 551 

MMTS across roughly 70% of the US observing network. Earlier period adjustments 552 

may relate either to the effects of changes in time of observation [Karl et al., 1986] 553 

or a propensity to relocate from city to airport locations. Trends over 1901-2012 are 554 



significantly negative in the basic ‘raw’ data and both adjusted series, but are halved 555 

in magnitude following adjustments. Over the two shorter periods considered 556 

neither adjusted series exhibits significant trend behavior. Estimates are slightly 557 

negative over 1951-2012 and slightly positive over 1979-2012 (Table 1). The two 558 

adjusted series are very similar to each other and very distinct from the basic ‘raw’ 559 

data behavior. 560 

 561 

Over the European domain adjustments act to increase DTR both since the 1980s 562 

and prior to the 1950s (Figure 13, middle panel). This yields a marked change in 563 

multi-decadal variability in this region removing an apparent trend of increasing 564 

DTR in the first half of the twentieth Century in the basic ‘raw’ data. On the longest 565 

timescales this leads to an increased negative trend in DTR following adjustments, 566 

which is significant in both adjusted estimates but not the basic data (Table 1). Over 567 

1951-2012 again all estimates are significantly negative. Since 1979 both adjusted 568 

series imply positive trends in DTR over the European domain taken as a whole but 569 

these are not statistically significant. As is the case globally and over N. America the 570 

adjusted series are much more similar to each other than they are to the basic ‘raw’ 571 

data. 572 

 573 

Australian DTR series exhibit far greater variability than those over Europe and 574 

America (Figure 13, lower panel). Variability appears to be highly correlated with 575 

continental scale aridity / rainfall (and by extension ENSO). For example the very 576 

wet year of 2010/11 is associated with a marked negative DTR anomaly, consistent 577 



with basic theoretical understanding of partitioning of fluxes [Peterson et al., 2011]. 578 

The effect of the adjustments is more muted for this region with slight increases in 579 

DTR in the mid-20th Century and reductions in the early 20th Century. Trends are 580 

generally not significant in the adjusted series with the exception of indirectly 581 

adjusted series for 1901-2012 (Table 1) and confidence intervals are larger than for 582 

other regions considered reflecting the much greater year to year variability in the 583 

series. Over this region there is less obvious concordance between the adjusted 584 

series. 585 

 586 

4.3 Maximum and minimum temperatures 587 

 588 

For Tx and Tn only direct adjustments exist so analysis is limited to the raw and 589 

directly adjusted series. Trends over 1951-2012 for Tx (Figure 14) and Tn (Figure 590 

15) both exhibit strong warming in the vast majority of the gridboxes that are 591 

sampled. Adjustments remove an apparent cooling in Tx in the eastern United States 592 

consistent with the United States Historical Climatology Network (USHCN) [Menne 593 

et al., 2010] and our understanding of US biases arising from the CRS to MMTS 594 

transition.  Cooling in Tx in Southern China is also reduced and several obviously 595 

erroneous gridbiox series look more similar to surrounding series after 596 

homogenization. Adjustments to Tn adjust several obviously erroneous gridbox 597 

trends and increase slightly the apparent warming in eastern North America but 598 

otherwise have little obvious effect at the gridbox scale. 599 

 600 



Global average timeseries of Tx and Tn are strongly positive (Figure 16), particularly 601 

since the early 1970s.  Adjustments serve to narrow the difference in trends (which 602 

is consistent with a reduction in the estimated rate of decrease in DTR in the 603 

preceding subsection). The overall effect of PHA adjustments is to increase the long-604 

term trend in both Tx and Tn with the effect being larger for Tx (although the Tx 605 

trend is still smaller than that for Tn, Table 2). Trends in Tx and Tn are highly 606 

significant over all three periods considered in the present analysis and, in the 607 

adjusted series, roughly an order of magnitude larger than DTR trends. Trends in Tx 608 

and Tn are consistent with GHCNv3.2.0 trends for Tm even though the station basis 609 

set differs substantially. 610 

 611 

5. Discussion 612 

 613 

The adjustments returned by the PHA algorithm strongly imply that breakpoints in 614 

Tx and Tn are either random or conditionally independent. Random breaks would 615 

mean that the break size and magnitude in Tn on average had no influence upon the 616 

resulting break size and magnitude in Tx. Conditionally independent would imply an 617 

overall tendency for Tx and Tn breakpoints to be of opposite sign such that they 618 

partially or completely cancel in the mean. This raises two interesting questions: 619 

first whether there are more optimal approaches to homogenization than analyzing 620 

Tm as is commonly the case for global centennial timescale LSAT reconstructions to 621 

date; and second why, metrologically, the over-arching tendency may be so. 622 

 623 



5.1  Future homogenization efforts considerations 624 

 625 

Homogenization of surface meteorological station records is inherently a signal-to-626 

noise problem. Small, relative to meteorological and climatological variability, 627 

breakpoints arising for myriad reasons must be found and then accurately 628 

quantified. Therefore it is important to search in an optimal direction. State of the 629 

art algorithms like PHA perform pairwise comparisons that act to remove common 630 

real-world variations between candidate nearby stations and leave a difference 631 

series that in the absence of any biases in the two comparators should behave as iid 632 

white noise arising from random measurement errors and real inter-site variability. 633 

The white noise places a hard lower limit on signal detectability. No break will be 634 

discoverable that is of comparable magnitude to the standard deviation of the 635 

series. Yet, small breaks arguably matter substantively because they are systematic 636 

effects that do not cancel, so methods should try to optimize breakpoint 637 

detectability and adjustments whilst simultaneously minimizing false alarm rates. 638 

All breakpoint algorithms return bivariate distributions (cf. Figure 3) that in reality 639 

are the two wings of the true Gaussian distribution of real-world breaks with breaks 640 

around zero not being found and / or adjusted for. 641 

 642 

If the breakpoints in Tx and Tn were strongly conditionally dependent (similar sign 643 

and magnitude) then searching for breakpoints in Tm would be quasi-optimal. The 644 

further towards conditional independence of Tx and Tn breakpoints the less optimal 645 

use of Tm series to locate and adjust for breakpoints will become as the dominant 646 



direction of breaks becomes increasingly orthogonal to Tm (Figure 3). Section 3 647 

strongly implies breakpoints are at best random, if not conditionally independent. If 648 

the breakpoints are random then a search should be made in all four elements. If the 649 

breakpoints are mainly conditionally independent then consideration could be 650 

limited to DTR, Tx and Tn. Thus in future, homogenization procedures that search 651 

for breakpoints in Tm, Tx, Tn and DTR simultaneously will very likely yield a more 652 

accurate and optimal set of breakpoint locations. 653 

 654 

Finding the breakpoints is just the first part of the problem. The resulting 655 

adjustment estimates then need to be reconciled. Here, no such effort has been 656 

made and instead the difference between direct DTR and indirect DTR adjustments 657 

has been used to illustrate potential sensitivities. In future, efforts could be made 658 

given a set of 4 adjustment estimates (or better still conditional density functions of 659 

the adjustments) and a closure condition that the adjustments to Tx and Tn must 660 

average to the adjustment of Tm and difference to the adjustment to DTR to form a 661 

combined set of adjustments. Such an approach is being pursued to develop future 662 

versions of GHCNM. 663 

 664 

All of the above considerations are moot if the station series are only available as 665 

Tm, as is the case for many of the stations in the current databank (Figure 1, lower 666 

panel). Therefore to optimize future analyses of surface temperature changes over 667 

land efforts should be made to recover Tx and Tn records for stations and periods of 668 

record for which currently only Tm records exist in addition to rescuing that data 669 



for new stations to improve both coverage and station periods of record [Allan et al., 670 

2011]. 671 

 672 

5.2 Why metrologically may breakpoints in Tx and Tn be random or conditionally 673 

independent? 674 

 675 

All meteorological temperature measurements are undertaken by a proxy that is 676 

correlated with the target measurand be that the expansion of liquid, electrical 677 

resistance or some other means. Ideally, the calibration processes for thermometers 678 

would be defined by robust and well documented procedures, under highly 679 

controlled conditions, leading to a full evaluation and definition of calibration 680 

uncertainty components budgets and total values, according to the kind of sensors 681 

used and environments experienced.  682 

 683 

Far from being in thermal adiabatic condition, a thermometer used to measure air 684 

temperature actually measures the mix of convective, radiative and contact heat 685 

transfers. All of these thermodynamic effects are difficult to be corrected with an 686 

uncertainty on the correction. Some devices permitting evaluation of the influence 687 

of such parameters on the sensors under calibration are being developed, but are 688 

still under experimental prototype status [Lopardo et al 2014, Merlone et al. 2014, 689 

Musacchio et al. 2014]. Moreover, since the calibration is performed in stable 690 

temperature conditions, while the measurement of daily air temperature 691 

fluctuations is anything but stable, sensor dynamics can introduce deviations due to 692 



the response inertia and delay, not evaluated during calibration. For example, the 693 

behavior of two different thermometers calibrated both in a climatic chamber and in 694 

a liquid bath, was compared to their performance in a Stevenson Screen (CRS) 695 

(Grykalowska, 2014). While both the controlled calibration methods resulted in 696 

consistency within uncertainty, when placed in the Stevenson Screen, the readings 697 

of the two thermometers differed by substantially more than the sum of their 698 

calibration uncertainties, demonstrating that hitherto unaccounted for sensor 699 

dynamics effects remained.   700 

 701 

In the atmosphere there are two critical aspects: the response to heat transfer 702 

effects; and dynamic behavior in capturing temperature fluctuations. Having long 703 

established and recognized the difficulties in estimating the errors induced by these 704 

quantities of influence on the sensors there have been the attempts to reduce the 705 

effects through e.g. screens protecting from direct radiation on the sensing element, 706 

reduced contact surface with the supporting structure, models to minimize the 707 

convective effects, and ventilation to reduce extra heating due to stagnant air. The 708 

range of measurement, shielding and mounting techniques likely yields differing 709 

error characteristics across the meteorological networks, which further are likely to 710 

be climatically dependent. 711 

 712 

In principle, three physical co-variates shall influence the temperature 713 

measurements: radiation, wind speed and humidity. In days with wind blowing and 714 

limited sun radiation these effects are expected to be of low amplitude regardless of 715 



instrument configuration whereas in days with sun, absence of wind and larger 716 

night-day temperature fluctuations the effects would be maximal. Such conditions 717 

amplify the possible differences in DTR recording arising from changes in 718 

instrumentation and practices through time.  719 

 720 

There are two broad classes of instrumentation: artificially aspirated and non-721 

aspirated. Artificially aspirated measurements exhibit substantially lower 722 

sensitivity to prevailing meteorological conditions so long as adequately screened 723 

from direct and indirect radiative effects. They may tend to read slightly high during 724 

daytime due to imperfect shielding from radiation or thermal contact and slightly 725 

low during nighttime due to cooling effects from condensation of the drawn air. 726 

Non-aspirated measures will exhibit substantially greater sensitivity to prevailing 727 

meteorological conditions. On average the measures may be warm biased for both 728 

Tx and Tn due to a mix of radiative and ventilation effects. The biases will be highly 729 

dependent upon configuration and site micro-environment. The change from CRS to 730 

MMTS  (both non-aspirated but very distinct) had differential effects on Tx and Tn 731 

with Tx decreasing and Tn increasing. Changing from non-aspirated to aspirated 732 

measurements will tend to yield an apparent and spurious increase in DTR that is 733 

larger than any concurrent change in Tm. 734 

 735 

5.3  Caveats pertaining to use of current data products 736 

 737 



For analyses of DTR using the dataset constructed herein, the effects of the changing 738 

station availability through time are potentially an insidious effect. The primary 739 

effects are two-fold. Firstly changing the neighbor constraint substantively through 740 

time will affect the efficacy of any homogenization algorithm and PHA is not 741 

immune to this. Secondly, the changing data mask may confound a clean 742 

interpretation of global and regional trends even if the data were perfect (which 743 

they are not). Care should be taken in interpreting pre-1960 records when the 744 

station mix changes substantively both globally and regionally. 745 

 746 

6. Dataset availability 747 

 748 

The dataset is made available through [website to be appended here once decided, 749 

can we host through NUIM?]. The following series shall be made available: 750 

• Adjusted station series as CF-compliant netcdf files (one per station) 751 

containing several timeseries fields. 752 

• Gridded raw and adjusted series for Tx, Tn and DTR (including indirectly 753 

adjusted) as CF-compliant netcdf files (a total of 7 files) 754 

At this time there are no plans to update the series beyond 2012. Dataset users 755 

should cite this paper. 756 

 757 

7. Conclusions 758 

 759 



The present analysis has re-examined changes in DTR globally and regionally using 760 

improved holdings and NCDC’s PHA algorithm. Adjustments to the basic ‘raw’ data 761 

have a non-negligible impact upon the resulting series behavior on multi-decadal 762 

timescales and are comparable in magnitude to the apparent trend in the basic ‘raw’ 763 

data globally and regionally. DTR is estimated to have decreased globally since the 764 

mid-twentieth Century but the adjustments reduce by half the trend compared to 765 

that in the basic ‘raw’ data. Both maximum and minimum temperatures have 766 

increased rapidly and changes in these elements are an order of magnitude greater 767 

than in DTR globally. Adjustments are more prevalent in DTR than in Tx or Tn, 768 

which in turn are more common than in Tm. This implies that overall the biases in 769 

Tx and Tn are either random or conditionally independent and has potentially 770 

important implications for future homogenization strategies. It implies that 771 

searching for and adjusting breaks in average temperatures is likely to be sub-772 

optimal as the signal to noise ratio will tend to be a minimum in average 773 

temperatures. Instead efforts that search in addition for breakpoints in DTR, Tx ,and 774 

Tn would likely be more efficient at finding and adjusting for non-climatic artifacts 775 

in the records. 776 

 777 
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