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There is overwhelming evidence that the climate system has warmed since the
instigation of instrumental meteorological observations. The Fifth Assessment
Report of the Intergovernmental Panel on Climate Change concluded that the evi-
dence for warming was unequivocal. However, owing to imperfect measurements
and ubiquitous changes in measurement networks and techniques, there remain
uncertainties in many of the details of these historical changes. These uncertainties
do not call into question the trend or overall magnitude of the changes in the
global climate system. Rather, they act to make the picture less clear than it could
be, particularly at the local scale where many decisions regarding adaptation
choices will be required, both now and in the future. A set of high-quality long-
term fiducial reference measurements of essential climate variables will enable
future generations to make rigorous assessments of future climate change and vari-
ability, providing society with the best possible information to support future deci-
sions. Here we propose that by implementing and maintaining a suitably stable
and metrologically well-characterized global land surface climate fiducial refer-
ence measurements network, the present-day scientific community can bequeath
to future generations a better set of observations. This will aid future adaptation
decisions and help us to monitor and quantify the effectiveness of internationally
agreed mitigation steps. This article provides the background, rationale, metrologi-
cal principles, and practical considerations regarding what would be involved in
such a network, and outlines the benefits which may accrue. The challenge, of
course, is how to convert such a vision to a long-term sustainable capability pro-
viding the necessary well-characterized measurement series to the benefit of global
science and future generations.
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1 | INTRODUCTION: HISTORICAL
OBSERVATIONS, DATA CHALLENGES, AND
HOMOGENIZATION

A suite of meteorological parameters has been measured
using meteorological instrumentation for more than a cen-
tury (e.g., Menne et al., 2012; Becker et al., 2013; Willett
et al., 2013; Rennie et al., 2014; Jones, 2016, henceforth
termed “historical observations”). Numerous analyses of
these historical observations underpin much of our under-
standing of recent climatic changes and their causes
(Hartmann et al., 2013). Taken together with measurements
from satellites, weather balloons, and observations of
changes in other relevant phenomena, these observational
analyses underpin the Intergovernmental Panel on Climate
Change conclusion that evidence of historical warming is
“unequivocal” (Intergovernmental Panel on Climate
Change, 2007; 2013).

Typically, individual station series have experienced
changes in observing equipment and practices (Parker,
1994; Aguilar et al., 2003; Brandsma and van der Meulen,
2008; Sevruk et al., 2009; Menne et al., 2010; Fall et al.,
2011; Mekis and Vincent, 2011). In addition, station loca-
tions, observation times, instrumentation, and land use char-
acteristics (including in some cases urbanization) have
changed at many stations. Collectively, these changes affect
the representativeness of individual station series, and par-
ticularly their long-term stability (Karl et al., 1986; Quayle
et al., 1991; Changnon and Kunkel, 2006; Hausfather et al.,
2013). Metadata about changes are limited for many of the
stations. These factors impact our ability to extract the full
information content from historical observations of a broad
range of essential climate variables (ECVs) (Bojinski et al.,
2014). Many ECVs, such as precipitation, are extremely
challenging to effectively monitor and analyse due to their
restricted spatial and temporal scales and globally heteroge-
neous measurement approaches (Goodison et al., 1998; Sev-
ruk et al., 2009).

Changes in instrumentation were never intended to
deliberately bias the climate record. Rather, the motivation
was to either reduce costs and/or improve observations for
the primary goal(s) of the networks, which was most often
meteorological forecasting. The majority of changes have
been localized and quasi-random in nature and so are ame-
nable to statistical averaging of their effects. However, there
have been regionally or globally systemic transitions

specific to certain periods of time whose effect cannot be
entirely ameliorated by averaging. Examples include:

• Early thermometers tended to be housed in polewards
facing wall screens, or for tropical locales under
thatched shelter roofs (Parker, 1994). By the early 20th
century better radiation shielding and ventilation control
using Stevenson screens became ubiquitous. In Europe,
Böhm et al. (2010) have shown that pre-screen summer
temperatures were about 0.5 �C too warm.

• In the most recent 30 or so years a transition to auto-
mated or semi-automated measurements has occurred,
although this has been geographically heterogeneous.

• As highlighted in the recent World Meteorological
Organization (WMO) SPICE intercomparison (http://
www.wmo.int/pages/prog/www/IMOP/intercomparisons/
SPICE/SPICE.html) and the previous intercomparison
(Goodison et al., 1998), measuring solid precipitation
remains a challenge. Instrument design, shielding, siting,
and transition from manual to automatic all contribute to
measurement error and bias and affect the achievable
uncertainties in measurements of solid precipitation and
snow on the ground.

• For humidity measurements, recent decades have seen a
switch to capacitive relative humidity sensors from tra-
ditional wet- and dry-bulb psychrometers. This has
resulted in a shift in error characteristics that is particu-
larly significant in wetter conditions (Ingleby et al.,
2013; Bell et al., 2017).

As technology and observing practices evolve, future
changes are inevitable. Imminent issues include the replace-
ment of mercury-in-glass thermometers and the use of third
party measurements arising from private entities, the general
public, and non-National Met Service public sector activities.

From the perspective of climate science, the consequence
of both random and more systematic effects is that almost
invariably a post hoc statistical assessment of the homogene-
ity of historical records, informed by any available metadata,
is required. Based on this analysis, adjustments must be
applied to the data prior to use. Substantive efforts have been
made to post-process the data to create homogeneous long-
term records for multiple ECVs (Yang et al., 2005; Menne
and Williams, 2009; Mekis and Vincent, 2011; Rohde et al.,
2013; Willett et al., 2013; 2014) at both regional and global
scales (Hartmann et al., 2013). Such studies build upon
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decades of development of techniques to identify and adjust
for breakpoints, for example, the work of Guy Callendar in
the early 20th century (Hawkins and Jones, 2013). The
uncertainty arising from homogenization using multiple
methods for land surface air temperatures (LSAT) (Jones
et al., 2012; Venema et al., 2012; Williams et al., 2012) is
much too small to call into question the conclusion of
decadal to centennial global-mean warming, and commensu-
rate changes in a suite of related ECVs and indicators
(Hartmann et al., 2013, their FAQ2.1). Evidence of this
warming is supported by many lines of evidence, as well as
modern reanalyses (Simmons et al., 2017).

The effects of inhomogeneities are stronger at the local
and regional level, may be impacted by national practices
complicating homogenization efforts, and are more chal-
lenging to remove for sparse networks (Aguilar et al., 2003;
Lindau and Venema, 2016). The effects of inhomogeneities
are also manifested more strongly in extremes than in the
mean (e.g., Trewin, 2013) and are thus important for studies
of changes in climatic extremes. State-of-the art homogeni-
zation methods can only make modest improvements in the
variability around the mean of daily temperature (Killick,
2016) and humidity data (Chimani et al., 2017).

In the future, it is reasonable to expect that observing
networks will continue to evolve in response to the same
stakeholder pressures that have led to historical changes.
We can thus be reasonably confident that there will be
changes in measurement technology and measuring practice.
It is possible that such changes will prove difficult to
homogenize and would thus threaten the continuity of exist-
ing data series. It is therefore appropriate to ask whether a
different route is possible to follow for future observational
strategies that may better meet climate needs, and serve to
increase our confidence in records going forwards. Having
set out the current status of data sets derived from ad hoc
historical networks, in the remainder of this article, we pro-
pose the construction of a different kind of measurement
network: a reference network whose primary mission is the
establishment of a suite of long-term, stable, metrologically
traceable, measurements for climate science.

The remainder of the article is structured as follows. We
begin in section 2 by articulating a view of the observing
system as a system of systems and outlining how the refer-
ence network adds value within such a framework. We then
discuss what the defining features of such a reference net-
work for the land surface would be, touching upon: metro-
logical principles (section 3); station characteristics
(section 4); network configuration (section 5); governance
and coordination (section 6); and likely financial support
requirements (section 7). Having outlined the what, the
how, and the how much we then make recourse to a number
of existing usage examples from similar networks in
section 8 to justify the why. Finally, section 9 considers
next steps.

2 | THE SCIENTIFIC RATIONALE FOR A
LAND SURFACE FIDUCIAL REFERENCE
MEASUREMENTS NETWORK

Climate changes will undoubtedly occur in the future due to
both human and natural factors (Intergovernmental Panel on
Climate Change, 2013). It is important that we can monitor
these changes adequately, so as to enable relevant, timely,
responses, and to understand the extent to which mitigation
strategies are working. The greater the confidence that soci-
ety has in these measurements, the more impact they will
have. We propose to create a network that is uniquely suited
to this purpose.

Our proposal is that a surface climate fiducial reference
measurement network will enhance the value of existing
observing networks. To see how this would work it is help-
ful to envisage global measurements as consisting of three
tiers (Figure 1) (Thorne et al., 2017): fiducial reference
measurement networks; baseline networks; and comprehen-
sive networks.

The fiducial reference measurement network—which
does not currently exist—would provide measurements that
are metrologically traceable, with full metadata. It would
not only provide unambiguous high-quality time series but

FIGURE 1 Conceptual outline of how surface observational capabilities for climate map onto the tiered system of systems approach of Thorne et al.
(2017). The tiers from top to bottom are reference, baseline, and comprehensive. Arrows and associated text denote important facets of the measurements
that increase as you move down tiers (left-hand side) or up tiers (right-hand side). The network types given for each tier are solely exemplars. To decide
where a given network resides requires an in-depth assessment (Thorne et al., 2017). There are, for example, very high quality agricultural networks in some
countries, which may fall into higher tiers than indicated in this oversimplified example
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serve to validate and enhance trust in the quality of the
other networks, as outlined later in the article.

The baseline network consists of a lower long-term
quality but much higher-density subset of stations with
long-term operational commitment. Of the ~11,000 WMO
reported stations, ~4,000 comprise regional basic synoptic
networks (RBSNs), and ~3,000 comprise the regional basic
climatological networks (RBCNs). RBSN and RBCN over-
lap substantively in almost all regions and both will possi-
bly eventually be replaced by a regional basic observing
networks designation (World Meteorological Organization,
2016). Of the RBCN network stations, ~1,000 are also part
of the long-standing GCOS surface network (GSN) (GCOS,
2010). Thus, several thousand stations might be considered
as belonging to this tier, and they would deliver well-
managed spatially representative measurements.

The comprehensive network would consist of “every-
thing else.” It would include those WMO stations not in the
baseline network, and non-national meteorological and
hydrological service networks such as agricultural, urban, or
transport networks, and citizen observer networks. These
might comprise several tens of thousands of stations, most
of which would have poor documentation and traceability,
but which would show spatial detail and spatio-temporal
details beyond the capability of the baseline networks. For
monthly temperatures the complete network likely consists
of in excess of 30,000 station records (Rohde et al., 2013;
Rennie et al., 2014), while for surface precipitation daily
records there are likely in excess of 100,000 (Menne et al.,
2012, and updates).

The tiered network approach is based on the insight that
it is not necessary, economically viable, or technically prac-
tical to have reference quality measurements everywhere.
Rather, they are required in sufficient locations to build con-
fidence in the remaining observations. The surface fiducial
reference measurements network would provide the tempo-
rally stable high-quality backbone of the global climate
observing system. Aspects of such a tiered network struc-
ture are reflected in both the GCOS adequacy report
(GCOS, 2015) and the WIGOS manual (WIGOS, 2015).
Such a tiered network design is also alluded to in the WMO
vision for 2040 (World Meteorological Organization, 2015).

Several exemplars of fiducial reference networks cur-
rently exist. Firstly, at a national/continental level, there is
the U.S. climate reference network (USCRN) (Diamond
et al., 2013). It consists of well-sited surface stations in
stable areas away from artificial heat sources with triple-
redundant measurements of several ECVs, involving instru-
ments that are calibrated to SI-traceable standards and
continuously monitored so that problems can be addressed
quickly. A limited suite of surface ECVs are measured that
involve air temperature, precipitation, soil moisture and
temperature, relative humidity, and surface radiation. There
are other more recently instigated similar national programs

such as for Canada (Milewska and Vincent, 2016). A sec-
ond example is the GCOS reference upper air network
(GRUAN) (Seidel et al., 2009; Bodeker et al., 2016). The
GRUAN network aims to become a network of 30–40 sites
making traceable measurements with quantified uncer-
tainties of the atmospheric column properties. Products are
being developed for various radiosondes (Dirksen et al.,
2014), frostpoint hygrometers, ozonesondes, and ground-
based remote sensing techniques. Finally, the global cryo-
sphere watch (GCW), a component observing system of
WIGOS, has recently instigated tiered surface observing
networks. Their cryonet sites and stations (Schöner et al.,
2016, https://globalcryospherewatch.org/cryonet/site_types.
html provides information on the distinction) form the core
network, are representative of the surrounding region, and
must meet a set of minimum requirements. They measure
relevant cryosphere variables to the highest measurement
standards currently attainable following documented best
practices and with specified data curation and access and
exchange protocols. In the following sections, further refer-
ences will be made to lessons learned from establishing and
operating these networks.

3 | METROLOGICAL CONSIDERATIONS
OF MEASUREMENT PRACTICES AND
ANALYSES

3.1 | Traceability

The Vocabulaire International de Métrologie (JGCM, 2012)
defines metrological traceability as “the property of a mea-
surement result whereby the result can be related to a refer-
ence through a documented unbroken chain of calibrations,
each contributing to the measurement uncertainty.”

The absolute requirement of a reference-grade measure-
ment is thus that it be made in such a way that after
accounting for all sources of uncertainty it can be concluded
that the true value of the measurand lies within the reported
uncertainty interval with specified confidence, and that the
measurement result is traceable to standards of the system
of units (SI) or other standards.

To obtain full measurement traceability, the complete
measurement uncertainty must be evaluated through the
quantification of the contribution of all sources of uncer-
tainty. Critically, for environmental measurements the
uncertainty includes quantities of influence, such as the site
effect, shielding, instrument ageing, etc. A fundamental
problem with meteorological measurements is that—unlike
physical measurements in a laboratory—the “right answer”
or “true value” is defined operationally rather than through
laws of physics. For example, LSAT and precipitation vary
with height above the ground and thus are not uniquely
defined. Furthermore, temperature measurements need to
take place within a screen, which reduces measurement
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errors, but results in characteristic temporal and remaining
thermal artefacts on the measured data. For any reference
quality measurement, all such factors need to be adequately
quantified.

3.2 | Comparability

Measurements of the same set of measurands at multiple
locations and/or at different times, even if individually
traceable, will still not necessarily be directly comparable.
Comparability is attained when two reported measurements
differ solely due to any difference in the measurand, inde-
pendently from the measurement techniques or instruments
or siting. Even nominally identical equipment may have
variations within and between production batches and dif-
ferent ageing drifts due to differential exposure to environ-
mental conditions. The challenge is to create a diverse
network within which comparability of measurements is
ensured.

3.3 | Representativity

Representativeness is a key property of a reference measure-
ment. A representative measurement reflects the nature of
the measurand across a broader spatial and temporal domain
than the immediate measurement location. If a fiducial ref-
erence measurement network’s purpose is to help constrain
and validate more regional measurements from other net-
works, or measurements from satellites, then it is important
to choose sites which optimize the spatial representativeness
of the measurements.

3.4 | Practical pathways to implementation of
metrological best practices

Certain properties of any reference grade measurement fol-
low from the traceability requirement. The raw data and full
metadata must be available and retained to permit reproces-
sing as required. All processing software should be
available under an appropriate access model (ideally fully
open-source) that enables full understanding of the proces-
sing steps. The uncertainty in each step of the chain must
be quantified and reported and any correlations or co-
dependencies in uncertainties adequately accounted for.
And, finally, there can be no proprietary black-box process
which breaks the traceability chain.

Measurement redundancy is one way to assess aspects
of both traceability and comparability. By using multiple,
co-located traceable instruments to measure the same
parameter the resultant data series can be compared. Dis-
agreement between the data series can highlight measure-
ment problems which would be undetectable with a single
sensor, and agreement results in a lower statistical measure-
ment uncertainty. In the USCRN, for some ECVs, the same
instruments are used with triple redundancy, with one sen-
sor being replaced annually, so that inaccurate readings or

drift from any single instrument can be identified and
addressed. USCRN includes a number of ‘paired’ sites
within reasonably close proximity, and also maintains indi-
vidual sites in Canada and Russia alongside their reference
stations, that aid quantification of comparability to their
sites (Diamond et al., 2013). Within GRUAN it is measure-
ments of the same measurand with different measurement
techniques that is pursued. In both cases the end result is a
degree of redundancy, or to use a less pejorative term com-
plementarity, in measurements that builds confidence in the
metrological verity of the resulting series.

Regular calibration is another key aspect of the imple-
mentation of metrological best practice in a fiducial refer-
ence network. Documented and in some cases dedicated
calibration procedures must be adopted by all network sta-
tions. Knowledge of the components of measurement uncer-
tainty due to the site characteristics and the local quantities
of influence also require dedicated research and field
campaigns.

Finally, in view of continuous improvements in the state
of the art instrumentation, procedures to implement man-
aged changes of the instruments must be adopted. The net-
work should as a result be a key resource to study the value
of new and emerging technologies using innovative measur-
ing principles. A number of “super-sites” (sites with extra
instrumentation and perhaps associated directly with
national observatories and/or national measurement insti-
tutes) in the network should therefore be devoted also to
continuous research efforts.

4 | WHAT COULD A SURFACE CLIMATE
FIDUCIAL REFERENCE NETWORK SITE
LOOK LIKE AND HOW WOULD IT
OPERATE?

4.1 | Instrumentation

The exact instrumentation deployed at each station would
depend upon the agreed remit of the network. From a purely
scientific perspective, surface climate fiducial reference net-
work sites should eventually aim to measure all surface
atmospheric, atmospheric composition and terrestrial ECVs
capable of being measured to reference quality (Table 1).
However, we note that the variables to be measured will
almost certainly vary geographically.

In terms of practical implementation, there would be
considerable value in following the GRUAN ethos of “start
small, but start” and thus instigating the network to measure
in the first instance a subset of atmospheric ECVs for which
metrologically well-characterized measurements are either
available or likely to be achievable for little additional effort
(highlighted in Table 1). However, it is only with the full
suite of ECVs being monitored that full understanding can
accrue. Given their significance to multiple application
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areas, an initial network roll-out should consider at a mini-
mum temperature and total precipitation (both liquid and
solid) measurements as mandatory core measurements at
every site, along with as many other highlighted ECVs from
Table 1 as are practicable. In the longer-term efforts should
be encouraged to develop and roll-out instrumentation to
measure the full suite of relevant ECVs at each site, includ-
ing terrestrial and atmospheric composition ECVs at least
for a subset of the sites. However, additional effort will be
needed to reconcile ECVs that are spatially integrated over
large areas of the land (sub)surface, such as river discharge,
with point-based observations and joint links with current
domain-specific initiatives will be an imperative
(e.g., reference hydrologic networks [RHNs]) (Whitfield
et al., 2012).

Fiducial reference stations should utilize high-quality
instruments that enable traceability and comparability
(section 3). However, instrumentation need not be identical
across the network. Indeed, requiring identical instrumenta-
tion across the network may reduce resilience to potential
disruptive changes in instrumentation supply as well as
reduce competition among manufacturers to provide
improvements in instrumentation. Therefore, the focus
should not be on the actual instrumentation, but on the set
of observational requirements that the instrumentation
should meet.

Any fiducial reference network should have operating
procedures for changing instrumentation as technology

advances. Without incorporating “upgradeability” into the
design, the network could eventually find itself in a techno-
logical “dead end,” with equipment that is hard to maintain
and not state-of-the-art. In line with the GCOS climate mon-
itoring principles (World Meteorological Organization,
2017), the value of the long-term data record can be pre-
served by minimizing changes and using a robust program
of change management. This will include substantive
periods of overlapping observations to quantify the uncer-
tainty in the change and thus ensure long-term time series
comparability across all scales, from the individual measure-
ment to multi-decadal trend, and a program of continual
evaluation and comparison of new and evolving technolo-
gies (in conjunction with other relevant bodies) as is per-
formed with the USCRN program.

4.2 | Siting considerations

Each site will need to be large enough to house all instru-
mentation without adjacent instrumentation interfering with
one another, with no shading or wind-blocking vegetation
or localized topography, and at least 100 m from any artifi-
cial heat sources. Figure 2 provides a site schematic for
USCRN stations that meets this goal. The siting should
strive to adhere to Class 1 criteria detailed in guidance from
the WMO Commission for Instruments and Methods of
Observations (World Meteorological Organization, 2014,
part I, chap. I). This serves to minimize representativity
errors and associated uncertainties. Sites should be chosen
in areas where changes in siting quality and land use, which
may impact representativity, are least likely for the next
century. The site and surrounding area should further be
selected on the basis that its ownership is secure. Thus, site
selection requires an excellent working and local knowledge
of items such as land/site ownership proposed, geology,
regional vegetation, and climate. As it cannot be guaranteed
that siting shall remain secure over decades or centuries,
sites need to be chosen so that a loss will not critically
affect the data products derived from the network. A partial
solution would be to replace lost stations with new stations
with a period of overlap of several years (Diamond et al.,
2013). It should be stressed that sites in the fiducial refer-
ence network do not have to be new sites and, indeed, there
are significant benefits from enhancing the current measure-
ment program at existing sites. Firstly, co-location with sites
already undertaking fiducial reference measurements either
for target ECVs or other ECVs, such as GRUAN or GCW
would be desirable. Secondly, co-location with existing
baseline sites that already have long records of several tar-
get ECVs has obvious climate monitoring, cost and opera-
tional benefits.

Siting considerations should be made with accessibility
in mind both to better ensure uninterrupted operations and
communications, and to enable both regular and unsched-
uled maintenance/calibration operations. If a power supply

TABLE 1 Selected ECVs (from the list published and periodically
updated by GCOS), which may be measurable at some or all land climate
reference network sites. An initial set of ECVs for which current
measurement understanding is high are highlighted by text entries in italics
and underlined. This may constitute a starting set of measurements. There
may be additional terrestrial ECVs that are measurable at a small subset of
selected sites. Note that precipitation includes both liquid and solid
precipitation

Domain Selected GCOS ECVs of relevance

Atmospheric Air temperature
Wind speed and direction
Water vapour
Pressure
Precipitation
Surface radiation budget

Composition Carbon dioxide
Methane
Other long-lived greenhouse gases
Ozone (and precursors)
Aerosols (and precursors)

Terrestrial River discharge
Snow cover
Permafrost
Albedo
Land cover (including vegetation type)
Fraction of absorbed photosynthetically active radiation

(FAPAR)
Leaf area index (LAI)
Above-ground biomass
Soil carbon
Fire disturbance
Soil moisture
Land surface temperature
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and/or wired telecommunication system is required then the
site will need to provide an uninterrupted supply, and have
additional redundancy in the form of a back-up generator or
batteries. For many USCRN sites the power is locally gen-
erated via the use of a combination of solar, wind, and/or
methane generator sources, and the GOES satellite data col-
lection system provides one-way communication from all
sites.

For a reference grade installation, an evaluated uncer-
tainty value should be ascertained for representativeness
effects which may differ synoptically and seasonally. Tech-
niques and large-scale experiments for this kind of evalua-
tion and characterization of the influences of the siting on
the measured atmospheric parameters are currently in pro-
gress (Merlone et al., 2015).

Finally, if the global surface fiducial reference network
ends up consisting of two or more distinct set-ups of instru-
mentation (section 4.1), there would be value in side-by-
side operations of the different configurations in a subset of
climatically distinct regions to ensure long-term comparabil-
ity is assured (section 3). This could be a task for the identi-
fied super-sites in the network.

4.3 | Data and metadata reporting requirements

Data collected at fiducial reference stations should ideally
be transmitted and exchanged in near-real-time. This would
permit use in real-time applications, but more pertinently,
enable pro-active quality control/quality assurance and issue
tracking and resolution to be enacted and enforced. This is a
key facet of high-quality networks such as USCRN, and the
U.S. Department of Energy’s Atmospheric Radiation

Measurement (ARM) program network that contributes to
GRUAN.

The data transmitted must be at the basic instrument
measurement frequency. Additionally, time-averaged series
over, for example, sub-hourly, hourly, daily, or monthly
periods should be transmitted. Data should be archived at
the native data reporting resolution and made freely avail-
able and accessible in order to enable subsequent analysis.
If data processing occurs at the measurement station, then in
addition to the processed data the original measured series
(i.e., a digital count) should be transmitted. This permits
subsequent reprocessing of the entire record from the funda-
mental measurement data if required. For measurements that
require substantive post-processing, the GRUAN model of a
centralized data collection and processing facility that col-
lects the fundamental measurement series (including all rele-
vant metadata) and applies a consistent set of processing
would be advisable. This structure ensures consistency and
comparability in the resulting data products (Bodeker et al.,
2016), and additionally guarantees that the original mea-
sured data are retained. However, implementation of inter-
operability among distributed data archives/centres through
existing portals allows metadata and data to be easily
exchanged and offers an effective alternative to a central-
ized facility and still can provide consistent data processing.

Comprehensive metadata are key to making a surface
climate fiducial reference network a success. Such metadata
are required to be collected and curated to enable unambig-
uous subsequent use by the research and operations commu-
nities. This includes discovery metadata (sometimes termed
collection level metadata), file level metadata, and docu-
mentation metadata. Metadata collection should follow

FIGURE 2 Schematic of the instrumentation at a typical USCRN station in the CONUS. The triplicate configuration of temperature sensors is repeated in
the three precipitation gauge weighing mechanisms and in the three sets of soil probes located around each tower (taken from Diamond et al., 2013)
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appropriate agreed terminology such as the emerging
WIGOS metadata standard (WIGOS, 2015).

All fiducial reference stations should meet minimum cri-
teria for discovery metadata including:

• Longitude and latitude as decimal degrees (with at least
three decimal places).

• Elevation to at least 1 m precision.
• Station name and unique network identifier.
• All known additional identification codes.
• Site photographs taken at a minimum annually and pref-

erably seasonally to track environmental changes around
the site.

• Site and locale description using a standard template.
• Instrument types description.
• Instrument screen description.

File level metadata includes aspects such as:

• Instrument.
• Location.
• Time of observation.
• Calibration applied.

Such metadata should be exchanged via BUFR file for-
mats for real-time applications.

Documentation metadata may include items such as:

• Instrument manuals.
• Documentation of methods of observation and data

transmission.
• Details of quality assurance and quality control proce-

dures applied.
• Calibration records.
• Full documentation of any changes and evaluation

thereof.

These metadata should also be stored and archived
indefinitely.

5 | WHAT WOULD A GLOBAL LAND
SURFACE CLIMATE FIDUCIAL
REFERENCE NETWORK LOOK LIKE
GEOGRAPHICALLY?

The optimum size and composition of a network are ines-
capably intertwined with its purpose as discussed in
section 2. It is therefore necessary first to define the specific
purpose(s) of the proposed fiducial reference network. We
would suggest that a global surface climate fiducial refer-
ence network must serve at least two principal purposes.
First, it should provide a high-quality, stable and indepen-
dent estimate of hemispheric and global-scale changes in air
temperature to ascertain the effectiveness of internationally

agreed mitigation measures. Second, it should enable under-
standing of regional level observations arising from the rele-
vant baseline and comprehensive networks.

5.1 | Monitoring global warming

Following COP-21, signatories to the UNFCCC unani-
mously committed to avoiding ‘dangerous’ climate change,
defined as avoiding breaching certain global mean surface
temperature thresholds relative to a “pre-industrial” baseline
(Hawkins et al., 2017). A fiducial reference network would
enable monitoring of the effectiveness of agreed mitigation
measures in future. Of course, it cannot inform us on the
c. 70% of the surface domain covered by oceans (for which
a similar network may be possible but is outside the scope
of the current article), but it can inform us about the land
response to anthropogenic climate forcing, if sufficiently
globally representative.

Air temperature series at monthly to annual scales have
the longest spatial correlation lengths of all atmospheric
surface ECVs (Peterson et al., 1997), and Jones (1995)
showed that a well-spaced network of 170 representative
sites could be used to estimate the global mean LSAT
series on monthly to annual timescales with reasonable
fidelity. This analysis is repeated and updated here using
CRUTEM4.5 (Climatic Research Unit Temperature data
set version 4.5) in Figure 3 using five unique subsets of
163 well-separated long-term stations. The spatial correla-
tion length of annual average temperature is about
2,000 km, corresponding to about 85 evenly spaced sta-
tions (Briffa and Jones, 1993). In practice, achieving
evenly spaced stations would be impractical, and thus
c. 160 stations that are free of inhomogeneities would pro-
vide a sufficient sample for the annual means.

Similarly, an analysis showed that approximately
135 evenly spaced stations would be needed to character-
ize annual air temperature and precipitation trends on a
national scale across the conterminous United States (Vose
and Menne, 2004; Vose, 2005). Further refinement of this
work using actual station locations reduced the require-
ment to the 114 stations finally deployed in the USCRN
network in the conterminous United States, while an addi-
tional 29 stations are being deployed to characterize cli-
mate change across the state of Alaska, (Diamond et al.,
2013) (Figure 4).

Typically, higher-frequency timescales (e.g., daily and
sub-daily) would require many more stations. Also, the
number of stations required for a reference network is
driven by observation variables exhibiting lower spatial
autocorrelation and/or more temporal variability such as
precipitation and related snow variables (e.g., snowfall and
snow depth) (Vose and Menne, 2004). In regions of com-
plex topography consideration of sampling different alti-
tudes would be important for aspects such as water
supply.
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Further refinement of station site selection can be
achieved through consideration of the impacts of modes of
variability such as El Niño-Southern Oscillation (ENSO).

Placing measuring stations near the nodes of the modes of
variability will have greatest explanatory power over the
broadest possible regions (Kreher et al., 2015), but at the
same time make the network particularly susceptible to the
loss of such stations. It is possible to run observing system
simulation experiments (OSSEs) to explicitly design an opti-
mal set of observing locations (Kreher et al., 2015). How-
ever, such design would also need to account for possible
future large-scale changes such as those related to changing
seasonal coverage of sea-ice and snow and related feedbacks.

5.2 | Constraining regional observing networks

In a tiered networks concept (Figure 1) (Thorne et al.,
2017) the fiducial reference network measurements provide
a potential means through which to characterize and make
sense of the remainder of the observing system for the full
range of target ECVs (section 4.1). They therefore must be
sufficiently regionally representative and located so as to
provide a meaningful cross-validation to as many other
nearby sites as possible. It may be necessary to consider, for
example, sampling a representative range of surface types
within a given region as was performed for the GSN when
choosing mountainous region sites (Peterson et al., 1997).
This is particularly important for those potential applications
that require a consideration of absolute rather than anomaly
values or which require data to characterize satellite perfor-
mance. This requirement, coupled with the need for redun-
dancy to improve the resilience of the network against
individual site losses, may increase, slightly, the required

FIGURE 4 Locations of the paired and
single site USCRN stations in the
conterminous United States, Alaska, and
Hawaii

FIGURE 3 Hemispheric time series of the full network of CRUTEM4.5
and 5 unique well-spaced subsets of long-term source station records since
1920 (data prior to 1920 becomes sufficiently sparse that distinctions
arising from station drop-out that would not pertain to a stable reference
network become important). The thick black line shows CRUTEM 4.5
annual anomalies taken from the Hadobs website, along with the 95%
confidence limits from the same source (shaded grey). The coloured lines
show the smoothed annual gridded-anomalies from the respective
hemispherical component of five unique 163-member subsets of CRUTEM
4.5 well spread over the globe
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station count, and shall certainly affect the considerations of
where to place individual sites.

6 | HOW WOULD A CLIMATE SURFACE
FIDUCIAL REFERENCE NETWORK BE
INSTIGATED, MANAGED, AND
COORDINATED?

Stations contributing to a global surface fiducial reference
network would first and foremost be hosted, financially sup-
ported and practically implemented at the national and/or
regional level, while leaving room for mechanisms such as
pairing to support installations in developing nations. As an
example of the pairing concept, Meteoswiss has an active
twinning with the Kenyan Meteorological Department
which assures high-quality radiosonde measurements from
Nairobi. Similar partnerships could be adopted for the sur-
face climate reference network. However support is real-
ized, it would undoubtedly require global governance and
coordination if the network were to be effective. Such
global oversight would help ensure comparability and inter-
operability of the national and regional contributions and
seamless user access to the data. The global governance
would have to strongly and appropriately recognize the
underlying national and regional contributions to the net-
work. Global governance will also require comprehensive
recognition and participation by many national entities. This
points to the need for recognition and coordination under
one or more appropriate programmatic sponsors constituting
a recognized and respected international program.

Any network, if it is to be used as a network, requires a
degree of standardization to ensure the data can be drawn
seamlessly from across the network. Where the network is
supported and managed by a single national entity, as is the
case with USCRN, the management and standardization can
be rigorously enforced. In the absence of a supra-national
management, oversight, and funding mechanism (which
seems unlikely on practical and political grounds) a confed-
erated approach as adopted in GRUAN or Global Cryo-
sphere Watch would appear more tractable. Key facets
which would be required to ensure success of a surface ref-
erence network are:

1. A scientific working group providing leadership and
oversight in implementation that answers to the spon-
soring program(s). This working group should have the
correct mix of instrument experts, users, scientific
experts in relevant multidisciplinary fields, etc. to pro-
vide varied perspectives and long-term oversight of net-
work operations.

2. A dedicated (set of ) coordination/monitoring facility(s)
charged with overseeing the day-to-day operations of
the network, coordinating network activities and provid-
ing regular reports to the working group. This must be

adequately resourced to enable pro-active management
of the network including scheduled and unscheduled
maintenance, exception reporting and resolution, and
ensuring innovations are adopted seamlessly.

3. Identification of an initial selection of contributors of
sites to the network willing to help develop and test
implementation of the protocols and practices, and to
build the necessary data protocols and data exchange
structures.

4. Sites should undergo a rigorous assessment process to
ensure that the network is sufficiently similar to ensure
comparability between sites.

5. Data and metadata streams should be verified as being
reference quality, which implies a high level of metro-
logical understanding, which is well documented via
both the peer-reviewed literature and instrument techni-
cal documentation.

6. Centralized or coordinated processing of data streams
should serve data in a consistent format through a dedi-
cated (set of ) portal(s) to enable ease of use.

7. Active quality control should pro-actively identify data
issues as they arise. This should be accompanied by a
resolution system that quickly fixes technical and instru-
mentation issues as they arise. A target availability
would be, for example, >99%, that is, fewer than 10 lost
days every 3 years. This may have to be relaxed for sta-
tions in more challenging and inaccessible environ-
ments, such as high latitudes and high altitudes.

Specific governance and management protocols would
need to be developed and adopted. Experience of existing
similar networks suggests that this is an iterative and ongo-
ing process best facilitated by annual meetings of stake-
holders in the network (at least during development and
initial implementation) including users, managers and
observers, supplemented by more frequent remote-
participation meetings and discussions.

7 | NETWORK COSTS

As detailed in preceding sections the fiducial reference net-
work would consist of a set of sites, facilitated on a day-to-
day basis by a dedicated coordination mechanism oversee-
ing data flow and pro-actively assessing data quality, and
guided by an appropriate international oversight body. Con-
sidering each of these facets in turn allows us to make a
very approximate cost estimate.

The USCRN network provides an initial rough estimate
of the installation and routine maintenance costs of surface
sites similar to those envisaged. A typical figure would be
$50K per station in an easy location that is not climatically
challenging and easily accessible, while for more remote or
harsh locations (e.g., Arctic, high-elevation, inaccessible,
etc.) costs may be closer to or even exceed $100K per
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station. Keeping remote and cold-climate stations opera-
tional comes with substantial logistical and technical chal-
lenges, yet it is critical to monitor such areas. Here much
can be learnt from the GCW activities which have been
grappling with these challenges for decades. These costs
include the initial installation, and the first decade of recur-
ring costs of maintenance, communications, data access,
archival, quality control (QC), etc. Obviously, the site costs
will depend upon the range of ECVs to be monitored and
the measurement techniques involved. A key lesson arising
from USCRN is that whatever it costs to initially install
instrument hardware, it is necessary to budget at least that
much again to maintain the operational status from that
point on.

Given the size and the international nature of the net-
work and experiences from GRUAN, GCW, and USCRN,
we would contend at least 10 full time equivalent (FTE)
staff would be required to fulfil posited roles of network-
wide coordination, archival, quality assurance, etc. to an
adequate degree. The more stations and ECVs in the net-
work, the greater the staffing resource required to carry out
network coordination and quality assurance functions.

The governance and oversight should be an international
committee activity. Such activities have typically hidden
costs either in de facto time given by employers to enable
participation or in other tasks not taken on. The only direct
cost associated with this group is facilitation of annual
meetings with the coordination centre(s) and representatives
from sites. Assuming a degree of self-funding of attendance
by sites and coordination centre(s) somewhere of the order
$50K per annum should facilitate attendance by all those
who would require support (including site representatives
from developing regions).

Overall, therefore, the order of magnitude cost of insti-
gation and ongoing management of network will likely be
somewhere in the low tens of millions of U.S. dollars per

decade. For context, this is considerably less than a single
satellite mission with an expected lifetime of 5–10 years,
which measures far fewer ECVs, and lacks the metrological
traceability that would be possible in a global land surface
fiducial reference network.

8 | WHAT SCIENTIFIC AND SOCIETAL
BENEFITS WOULD ACCRUE?

If the climate community, and the wider community they
represent, is to know whether international targets are met
regarding limiting human induced climatic change it is nec-
essary to monitor the global climate system sufficiently well
to determine when any threshold is breached. If “danger-
ous” climate change is to be avoided (where dangerous is
defined as some net change from a baseline state), it is nec-
essary to quantify in a rigorous manner the change since the
baseline period. Beyond recognized uncertainties in defining
the pre-industrial baseline (Hawkins et al., 2017), a fiducial
reference network would take measurements in such a way
that there would be high confidence in stating when certain
thresholds of change since network instigation are
exceeded.

Indeed, the primary motive for the establishment of the
USCRN was to answer questions about how much climate
has changed over the United States (Diamond et al., 2013)
with a high degree of certainty. Already after 10 years, the
USCRN has been used to validate United States annual sur-
face air temperature anomalies as determined by homoge-
nized standard network observations (Menne et al., 2010;
Hausfather et al., 2016). However, as Figure 5 shows, in
2015 and 2016, small differences have been observed. The
origin of these differences is a topic of current research, but
one could not possibly know that such potential effects
existed without a reference network.

For a fiducial reference network that measures multiple
ECVs (Table 1), it will be possible to determine trends for
each ECV at the site and to determine trends around each
site commensurate with the correlation scales of each ECV
and the representativeness of the site with its regional sur-
roundings. These high-quality observations (in addition to
temperature) will likely become increasingly politically
important because of agreements on burden sharing for cli-
mate impacts and adaptation. In providing well-character-
ized, homogeneous series, data from fiducial reference
networks will aid future comparisons between climate
model outputs and observations, enhancing our ability to
detect and attribute emerging signals.

However, the value of a fiducial reference site is not
limited solely to the ability to determine and understand
long-term trend behaviour. Indeed, if this were the sole pur-
pose of the network it would have to be in operation for
multiple decades before it gives a return on investment.
Given the relative expense of maintaining metrologically

FIGURE 5 Comparison of the temperature anomaly in air temperature in
the lower 48 states of the United States of America determined by analysis
of the homogenized “baseline” network consisting of several thousand
stations and the unhomogenized USCRN with 132 stations. The agreement
is generally excellent, but small disagreements are visible in some years,
most notably in 2015 and 2016
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well-characterized instruments and measurement procedures
in stable and regionally representative locations, it is imper-
ative that nearer-term scientific, technological, and societal
returns on investment accrue. We cannot wait decades to
realize the benefits. Fortunately, there are many potential
applications for, and benefits of, fiducial reference quality
observations which can be achieved far more immediately.
Table 2 provides a summary, based upon citations, of cur-
rent usage of the USCRN and GRUAN networks over
recent years showing a broad range of applications of these
data to address numerous research questions.

In the shorter-term a fiducial reference network can help
confirm our understanding of instrumentation from other
networks. Arguably, the existing comprehensive network
requires such calibration in order for it to be used robustly
to study at the level of detail relevant to people, that is, at
the hourly individual station level. For example, Otkin et al.
(2005) used hourly global solar radiation observations from
USCRN stations to validate GOES surface insolation esti-
mates used in hydrologic modelling. Work under the Hori-
zon 2020 GAIA-CLIM (gap analysis and impacts
assessment for climate) project is investigating how data
assimilation techniques can spread the information from ref-
erence sites to broader geographical inferences (Noh et al.,
2016). Hence, a fiducial reference network would be of high
value to reanalyses developers by reducing vulnerability to
observational biases and improving long-term homogeneity,
and given the data will be available in real-time will be wel-
comed too by operational forecasting. Fiducial reference
network observations could also be used to robustly charac-
terize satellite observations, as is already being carried out
for upper-air ECVs by GAIA-CLIM using GRUAN and
similar measurements. Furthermore, a fiducial reference net-
work should be a useful validation tool for both large-scale
and downscaled climate model reconstructions, ultimately
enabling advances in model development. In the short-term
it can help in validating diurnal, seasonal and process
scales, longer-term it can help validate climate-timescale
processes and trends.

A fiducial reference network would enable us to
improve our understanding of fundamental climate pro-
cesses through observing multiple ECVs to high quality and
with high temporal resolution. In addition, with high-quality
observations on a continuous basis, reference sites would
constitute desirable locations to base future field campaigns
as they provide a pre-existing capability and a longer-term
context in which to interpret the results including how cli-
matologically representative the period of the campaign
was.

Because fiducial reference observations are striving for
improved metrological characterization and understanding
there are potentials for trickle-down to other networks of
either improved instrumentation or improved practices. For
example, work within GRUAN to characterize radiosondes
has led to changes in protocols and processing, which has
served to improve the Modem M10 sonde throughout the
baseline and comprehensive radiosonde sounding network.

Finally, fiducial reference quality observations can also
improve our ability to interpret historical observational
records. For example, an important advantage of automated
measurements at USCRN has been to accurately record pre-
cipitation and other variables in specific time intervals,
avoiding issues of time-of-observation inconsistencies in
manual observations (Leeper et al., 2015).

9 | NEXT STEPS

While it is beyond question that the climate system has
changed since instrumental records were instigated, we can
improve our collective ability to characterize these changes
through instigating and maintaining a global surface fiducial
reference network. If such a network is to become a reality
then it needs to be formalized and adopted by a relevant
sponsor(s) and then accepted by those national agencies
likely to contribute to it. Preceding sections have provided
an outline upon which much specific detail must be built if
a network is to be adopted and then to become successful.
This progress will only be assured with strong backing from
the World Meteorological Organization and its members.
This article was requested by the Global Climate Observing
System and the Commission for Climatology to outline a
vision and provide a coherent perspective on what would be
required and how it could be achieved. It is now up to these
and other relevant parties to decide how to take this for-
ward. Logically this may be achieved via some variant on
the following steps:

1. Development of more detailed concept and formal guid-
ance materials.

2. Agreeing to a governance and oversight structure and
ensuring appropriate resourcing including staffing of a
lead centre(s).

TABLE 2 Summary of citations by primary application area based upon
title and abstract for USCRN (Diamond et al., 2013) and GRUAN (Seidel
et al., 2009; Bodeker et al., 2016) taken from the citations listed by the
Bulletin of the American Meteorological Society as at October 14, 2017.
Numerous applications already have benefitted from these networks despite
only now being a decade or so old

Analysis type USCRN GRUAN

Process understanding 10 1

Trend detection 7 13

Data analysis 12 5

Instrument development 6 9

Satellite cal/val 11 14

NWP/real-time 6 1

Applications 9 4
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3. Recruitment of national and regional contributions to
the network.

Furthermore, all aspects of a successful network would
require strong and sustained stakeholder engagement. This
article not only serves as a means to collate and peer-review
a vision, but also to begin the long process of creating a net-
work that has strong commitment from data owners and
data users.

There are many possible metrics for determining the
success of a global land surface fiducial reference climate
network as it evolves, such as the number and distribution
of fiducial reference climate stations or the percent of sta-
tions adhering to the strict reference climate criteria
described in this article. However, in order to fully appreci-
ate the significance of the proposed global climate surface
fiducial reference network, we need to imagine ourselves in
the position of scientists working in the latter part of the
21st century and beyond. However, not just scientists, but
also politicians, civil servants, and citizens faced with
potentially difficult choices in the face of a variable and
changing climate. In this context, we need to act now with a
view to fulfilling their requirements for having a solid his-
torical context they can utilize to assist them making scien-
tifically vetted decisions related to actions on climate
adaptation. Therefore, we should care about this now
because those future scientists, politicians, civil servants,
and citizens will be—collectively—our children and grand-
children, and it is—to the best of our ability—our obligation
to pass on to them the possibility to make decisions with
the best possible data. Having left a legacy of a changing
climate, this is the very least successive generations can
expect from us in order to enable them to more precisely
determine how the climate has changed.
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