
18 December 2024

ISTITUTO NAZIONALE DI RICERCA METROLOGICA
Repository Istituzionale

Nondestructive Raman Spectroscopy as a Tool for Early Detection and Discrimination of the Infection of
Tomato Plants by Two Economically Important Viruses / Mandrile, Luisa; Rotunno, Silvia; Miozzi, Laura;
Vaira, Anna Maria; Giovannozzi, Andrea M; Rossi, Andrea M; Noris, Emanuela. - In: ANALYTICAL
CHEMISTRY. - ISSN 0003-2700. - 91:14(2019), pp. 9025-9031. [10.1021/acs.analchem.9b01323]

Original

Nondestructive Raman Spectroscopy as a Tool for Early Detection and Discrimination of the
Infection of Tomato Plants by Two Economically Important Viruses

American Chemical Society (ACS)

Publisher:

Published
DOI:10.1021/acs.analchem.9b01323

Terms of use:

Publisher copyright

Copyright © American Chemical Society after peer review and after technical editing by the publisher. To
access the final edited and published work see the DOI above.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic
description in the repository

Availability:
This version is available at: 11696/61720 since: 2021-03-09T19:17:50Z

American Chemical Society

This is the author's submitted version of the contribution published as:



 

1

1

2

3

4 Early detection and discrimination of two different viruses 

5 infecting tomato by non-destructive Raman spectroscopy

6

7 Luisa Mandrile†, Silvia Rotunno‡, Laura Miozzi‡, Anna Maria Vaira‡, Andrea M. Giovannozzi†, 

8 Andrea M. Rossi*†, Emanuela Noris*‡

9

10 †Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce, 91 10135 Torino, Italy

11 ‡Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 
12 73, 10135, Torino, Italy
13
14 Corresponding Authors
15 *E-mail: emanuela.noris@ipsp.cnr.it
16 *E-mail: a.rossi@inrim.it

Page 1 of 16

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

mailto:emanuela.noris@ipsp.cnr.it
mailto:a.rossi@inrim.it


 

2

17 Abstract

18 Global population forecasts dictate a rapid adoption of multifaceted approaches to fulfill increasing 

19 food requirements, ameliorate food dietary value and security using sustainable and economically 

20 feasible agricultural processes. Plant pathogens induce up to 25% losses in vegetable crops and their 

21 early detection would contribute to limit their spread and economic impact. As an alternative to 

22 time-consuming, destructive and expensive diagnostic procedures, such as immunological assays 

23 and nucleic acid-based techniques, Raman spectroscopy (RS) is a non-destructive rapid technique 

24 that generates a chemical fingerprinting of a sample at low operating costs. Here, we assessed the 

25 suitability of RS combined to chemometric analysis to monitor the infection of an important 

26 vegetable crop plant, tomato, by two dangerous and peculiarly different viral pathogens, Tomato 

27 yellow leaf curl Sardinia virus (TYLCSV) and Tomato spotted wilt virus (TSWV). Experimentally 

28 inoculated plants were monitored over 28 days for symptom occurrence and subjected to RS 

29 analysis, alongside with the evaluation of virus amount by quantitative real-time PCR. RS allowed 

30 to discriminate mock-inoculated (healthy) from virus-infected specimens reaching accuracy >70% 

31 after only 14 days after inoculation for TYLCSV and >85% only after 8 days for TSWV, 

32 demonstrating its suitability for early detection of virus infection. Importantly, RS highlighted also 

33 spectral differences induced by the two viruses, providing specific information on the infecting 

34 agent.  

35

36 Keywords: Raman Spectroscopy; plant virus; biotic stress; precision agriculture; tomato; virus 

37 diagnosis
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38 INTRODUCTION

39 Intelligent and sustainable agricultural practices represent an outstanding need in view of the 

40 world's population outreach of 9 billion of individuals within 2050 1. Vegetable crops are 

41 fundamental for the human diet and economically remunerative for the agricultural sector, but 

42 according to FAO estimates, transboundary plant pests provoke up to 25% of crop failures, entailing 

43 significant economic losses and contributing to food scarcity. Therefore, innovative strategies for 

44 disease prevention and for limiting pathogen spread are mandatory to reduce failures. 

45 Tomato (Solanum lycopersicum L.) is the most economically important vegetable crop, with a total 

46 harvested area of 4.7 million ha, a production of 180 million tons 

47 (http://faostat3.fao.org/home/index.html) and a consumption exceeding 20 kg/person/year, with a 

48 still expanding trend 2. Tomato suffers from attacks caused by >200 pests and diseases 2, currently 

49 controlled by chemical treatments, generating negative side effects such as pesticide resistance, 

50 environmental risks, and health issues for farmers and consumers. Among tomato pathogens, 

51 viruses play a significant role; two of them, Tomato spotted wilt virus (TSWV) and Tomato yellow 

52 leaf curl virus (TYLCV), are among the most ten destructive viruses of vegetables 3. 

53 TSWV (Family Tospoviridae), with a tripartite single-stranded (ss) RNA genome 4, infects up to 

54 900 plant species 5,6, causing over 1 billion $ losses worldwide 7,8. On tomato, it induces inward 

55 cupping and drooping of leaves, unilateral plant growth, stunting and ultimately death; if present, 

56 fruits display chlorotic/necrotic ring spots and become unmarketable. TYLCV and its relative 

57 Tomato yellow leaf curl Sardinia virus (TYLCSV) belong to the Geminiviridae family, with a 

58 circular ssDNA genome encapsidated in geminated particles, causing huge economic losses on food 

59 and cash crops 9. TYLCSV and TYLCV are responsible for the tomato leaf curl disease and are 

60 transmitted by whiteflies in a circulative persistent manner 10. 

61 Early detection of plant pathogens is fundamental to prevent disease spread, limit crop damages 

62 and regulate proper pesticide use, under sustainable crop management practices. Identification of 

63 pathogens by visual assessment must be supported by objective and “non-operator dependent” 

64 diagnostic techniques. Immunological assays are commonly used for tospovirus diagnosis 11, while 

65 microarrays allows virus detection and species identification 12 and quantitative PCR (qPCR) is 

66 suitable for species identification and virus quantification 11,13. For tomato leaf curl disease viruses, 

67 molecular hybridization and PCR are preferred diagnostic techniques 14,15, and qPCR allows 

68 absolute and relative quantifications 16,17. Although these traditional assays are sensitive, accurate, 

69 and effective to confirm visual inspection, they are unsuitable for rapid large scale monitoring of 

70 plants before symptom onset, as they are destructive and require detailed sampling procedures, 

71 expensive infrastructures, and skilled personnel. Therefore, innovative, non-invasive, and non-
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72 destructive methods for disease detection have been proposed, based on fluorescence, volatile 

73 sensors and imaging, but these are still at an experimental stage 18. Spectroscopic techniques have 

74 interesting applications and, unlike other methods, are simple, rapid and affordable 18,19. Among 

75 them, Raman spectroscopy (RS) has been applied in the biomedical sector to whole cells, tissues, 

76 and fluids 20. In the agricultural fields, RS was considered for species-specific analysis for feed 

77 safety and traceability 21 and contaminant detection 22. RS provides specific biochemical 

78 fingerprints reflecting detailed chemical and structural alterations 23, possibly representing sensitive 

79 and phenotypic markers of a disease. In plant pathology, RS was proposed to differentiate pepper 

80 plants infected by tobamoviruses 24 and Abutilon spp. plants infected by the geminivirus Abutilon 

81 mosaic virus 25, concluding that carotenoid content was a discriminatory variable. More recently, 

82 RS was also used for early diagnosis of a phytoplasma on sweet orange 26 and for fungal pathogen 

83 detection on maize kernels 27. 

84 Here, we applied RS for the early and discriminative detection of two important viruses of 

85 tomato, in a dynamic infection time-frame. Tomato plants inoculated with TSWV and TYLCSV 

86 were visually inspected for symptoms for up to 28 days after inoculation, tested for relative viral 

87 accumulation by qPCR, and subjected to non-destructive RS analysis on leaves. Beside RS peaks 

88 assignment, a chemometric approach for data analysis was adopted to overcome the difficulties to 

89 interpret chemical information contained in the spectra of whole biological samples. Principal 

90 Components Analysis (PCA) 28 helped to determine systematic differences in the profiles of healthy 

91 and infected plants. Moreover, the sensitivity, precision and accuracy of RS to detect plant infection 

92 by partial least square-discriminant analysis (PLS-DA) were assessed, obtaining satisfactory 

93 classification rates starting from 8 days after inoculation for TWSV and from 14 days after 

94 inoculation for TYLCSV, time points at which viral symptoms were visually undetectable. 

95

96 EXPERIMENTAL SECTION 

97 Plant growth and treatments. Tomato plants (n = 3) grown in soil at 23 °C were inoculated 

98 with TYLCSV or with TSWV (see Supporting Information). Symptoms, relative virus amount, and 

99 RS were monitored weekly from 0 to 28 days post inoculation (dpi), using mock-inoculated plants 

100 as control. For TSWV, plants were also tested at 2, 5 and 8 dpi. 

101 Nucleic acid (NA) extraction. NA were extracted from the basal leaflets of the second true leaf 

102 from the apex of each plant. For TYLCSV-infection, total DNA was extracted by the dot-blot 

103 method 16 and used for qPCR, while for TSWV, RNA was extracted with Trizol® and processed for 

104 qRT-PCR. 
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105 Quantitative Real-Time PCR for relative virus quantification. TYLCSV was quantified 

106 using tomato ascorbate peroxidase (APX) as housekeeping gene (Table S1), while the ubiquitin-

107 conjugating enzyme (UBC) was used as housekeeping transcript for TSWV. Reactions were 

108 performed with iTaq™ Universal SYBR® Green Supermix (10-µl volume) and the CFX Connect™ 

109 Real-Time PCR Detection System (three technical replicates; see Supporting Information). The 

110 relative viral amount was calculated by the comparative threshold cycle (ΔCt) method, where ΔCt is 

111 |Ct virus - Ct housekeeping gene|. 

112 Raman spectroscopic measurements. Three Raman spectra were acquired from the apical 

113 leaflets of the second leaf counting from the apex, immediately prior to sample collection for virus 

114 quantification. Leaves were stored in plastic bags at 4 °C until spectra acquisition, occurring within 

115 the following four hours. Spectra (400-3100 cm-1; 5 cm-1 resolution) were obtained with a 

116 Dispersive Raman Spectrometer DRX (780 nm excitation laser, 10X microscope objective, 2 µm 

117 laser spot diameter, 2 mW laser power, 5 sec/15 scansions acquisition time). The spectrometer was 

118 weekly calibrated using a certified white light for intensity and neon gas lines for frequency. 

119 Moreover, a Si standard was measured before each session, to guarantee consistency within 

120 measurements and avoid differences due to instrument performances.

121 Chemometric analysis of Raman spectra. Chemometric analysis was conducted using the PLS 

122 Toolbox (Eigenvector Research, Inc., Manson, WA) for Matlab R2015a (Mathworks, Natick, MA). 

123 We used PCA to find correlations between measurements and the effect of virus infection and 

124 calculated PLS-DA models 29 to determine RS sensitivity for early virus infection. Models were 

125 cross-validated with the “leave-one group-out”, using subsets of samples constituting the sets for 

126 cross-validation corresponding to one plant at a time. To compare classification performances at 

127 different plant ageing levels (0-28 dpi), we calculated Sensitivity [True Positive/(True 

128 Positive+False Negative)], Specificity [True Negative/(True Negative+False Positive)], Accuracy 

129 (correctly classified samples/total samples), and Classification Error (1-Accuracy). Spectra were 

130 pre-processed by Savitsky-Golay smoothing (31 points, polynomial order 2), removing Random 

131 shift of the baseline offset by weighted least squares baseline correction (polynomial order 2) 30. 

132 Multiplicative scattering correction and mean centering were used. The same preprocessing was 

133 adopted for PCA and PLS-DA. 

134 RESULTS AND DISCUSSION 

135 Visual symptom and virus quantification. Viruses induce a variety of systemic symptoms on 

136 plants that increase with time progression depending on the pathogen, the plant species, the time of 

137 infection, and the environment. In our experimental conditions, TYLCSV symptoms consisting of 
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138 leaf yellowing and curling became evident at 28 dpi (Figure 1A), while for TSWV, chlorotic spots 

139 appeared on newly emerging leaves since 8 dpi (Figure 1B). qPCR showed that TYLCSV 

140 progressively increased from 7 to 28 dpi, following a logarithmic scale (R² = 0.9984, P<0.001) 

141 (Figure 1C). Instead, TWSV accumulated faster, as its steady-state level was reached at 5 dpi 

142 (Figure 1D), in line with the more precocious symptom onset. Noteworthy, TSWV amount 

143 remained stable up to 28 dpi (Figure 1D) while symptoms progressively deteriorated, indicating that 

144 cumulative effects due to cell metabolism perturbation 31 rather than virus accumulation could be 

145 responsible for symptom progression. 

146

147

148 Figure 1. Infection of tomato plants by TYLCSV and TSWV. Images of leaflets collected before (0 
149 dpi) and at different time points after inoculation with TYLCSV (A) or TSWV (B). Images of 
150 TSWV-infected leaves after 14 dpi are not shown, as they were clearly symptomatic. Bar = 1 cm. 
151 Relative accumulation of TYLCSV (C) and TSWV (D) in leaf tissue, at different times post-
152 inoculation. Results are expressed as ΔCt values, representing the difference between the threshold 
153 cycle (Ct) of each sample and that of the reference gene (APX for TYLCSV) or of the reference 
154 transcript (UBC for TSWV). Bars are the mean value of three plants, while vertical lines on each 
155 bar are the standard error.

156 Unsupervised data analysis of Raman spectra during virus infection. The vibrational bands 

157 obtained from the normalized average RS recorded on tomato leaves (Figure 2) were assigned to 

158 corresponding functional groups and biochemical species; the majority of peaks were attributed to 

159 carotenoids, chlorophyll and carbohydrates (Table 1). Specifically, carotenoids generated bands at 

160 1526, 1153, and 1000 cm-1, due to C=C and C–C stretching and to in-plane CH3 rocking modes 

161 32,33, as well as bands at 1387, 1328, and 1184 cm-1 34,35. The structure of carotenoids shows various 

162 CH3 groups attached to C=C responsible for the band at 1387 cm-1, but the band linked to this 

163 bending was relatively weak. Other bands associated with =CH rocking are visible at 1330-1250 

164 cm-1, whereas the band at 1184 cm-1 is again assigned to a C–C stretching mode. The weak bands at 

165 1353, 1287 and 915 cm-1 and the shoulders at 1551 and 987 cm-1 associated to chlorophyll 36 

166 partially overlapped with those of certain carotenoids around 1350-1280 cm-1 33. Other components 

167 identified in the spectra represented cellulose and hemicellulose, with limited contributions 37, and 
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168 lignin (characteristic peak at 1608 cm-1; C-C stretching) 27. The contribution of monomeric sugars 

169 and starch was observed at 1153 cm-1 and in the region 940-850 cm-1 (C-O-C vibration, typical of 

170 starch), while bands at 1110, 1070, 1047 and 1026 cm-1 are associated to C-OH, related to 

171 monomeric sugars.

172

173

174

175

176

177

178

179

180 Figure 2. Mean Raman spectra of tomato leaves obtained from plants mock-inoculated (healthy) 
181 and infected by either TYLCV or TSWV. Spectra of all tested plants were averaged to obtain the 
182 three spectra shown.

183 Table 1. Vibrational bands and their assignments for tomato leaf samples.

Band Vibrational assignment
1608 m ν(phenyl ring) (phenolics and 

lignin) 38 

1551 m br chlorophyll - central 16-
membered-ring vib.+ ν(C=C) 
(pyrrole ring)

1526 s ν1(C-C) (carotenoids)39

1438 m ν(phenyl ring) (phenolics) 38

1483 m δ(CH2) and δ (CH3) 

1328 m δ(CH). ν(CN) (pyrrole ring br. - 
chlorophylls) 40

1353 w undefined (chlorophylls)

1387 w δ(CH3) (β-carotene and luteine)25

1284 m δ(phenyl-OH) (phenolics) 38 + - 
δ(CH). ν(CN) (chlorophyll)25

1261 w ro(=CH) (carotenoids)25

1222 m δ(CH). δ(CH2) (chlorophyll)40

1125-1185 ms ν(CC). γ(CH) (chlorophylls)40 + 
δ(CH phenyl) phenolics)38

1153 s ν2(C\\C) (carotenoids) 41

1144 m sh ν(CN). δ(CNC) (chlorophyll)40
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1110 δ (C-OH) (carbohydrates)27

1070 δ (C-OH) (carbohydrates)27

1047 ν (C-O)+ ν(C-C)+ ν(C-OH) 
(carbohydrates)27

1000 m δ(C-CH3) (carotenoids)41

987 m undefined (chlorophylls)

915 m undefined (chlorophylls)

747 m-s ring br. Mode (aromatics)

184 m=medium w=weak ms= medium strong

185 Overall, the spectral profiles for healthy and for TYLCSV- or TSWV-infected plants showed 

186 similar patterns (Figure 2); in both cases, signals due to chlorophylls were remarkably weaker than 

187 those assigned to carotenoids and even weaker in infected plants, as previously described 25, 

188 providing a clear indication of metabolic changes occurring during infection 42. 

189 Contrary to a recent RS analysis on plants subjected to abiotic stress 43, it was difficult to identify 

190 single Raman bands strongly altered by virus infection. Therefore, to straightforwardly interpret 

191 data and emphasize systematic spectral variations, a chemometric analysis was applied, a process 

192 that could be unnecessary for plants subjected to abiotic stresses, eliciting more uniform and 

193 synchronous metabolic responses in all cells, as opposed to the progressive changes on newly 

194 emerging tissue occurring during systemic pathogen infection. 

195 At first, we investigated by PCA non-random variability associated with virus infection, 

196 obtaining a systematic grouping of spectra linked to the progression of both plant ageing and virus 

197 infection. To determine the effect of each virus, two separate PCA models were calculated. For 

198 TYLCSV, the most informative spectral regions within 950-1250 cm-1 and 1320-1640 cm-1 were 

199 considered (Figure 3). 
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200

201 Figure 3: PCA model for TYLCSV-inoculation experiment. (A, B) PCA score plots as a function 
202 of time for the two first components. (C) Average tomato leaf spectra for each time point of 
203 analysis; arrows indicate the bands mainly represented in PC1, mostly correlated with time 
204 progression. (D) Average tomato leaf spectra of all mock-inoculated and all TYLCV-infected 
205 plants; arrows indicate bands mainly represented in PC2, mostly correlated with TYLCV infection.

206 The scores of the first two components plotted against time progression indicated significant 

207 differences among samples along the entire experimental period. In particular, PC1 mainly captured 

208 changes correlated with plant ageing, with scores progressively decreasing from 7 to 28 dpi (Figure 

209 3A), while PC2 caught spectral modifications due to virus infection, as infected leaves showed 

210 scores lower than healthy ones, at the corresponding time points (Figure 3B). The loadings of the 

211 model and the histogram of the variance of spectral frequencies captured by each component 

212 (Figure S1) show the bands or the spectral regions responsible for sample grouping on the scores 

213 plot. Specifically, at 7 dpi (very early stage of infection), all signals displayed a relatively low 

214 intensity that increased at 14 dpi (early infection) and gradually decreased thereafter. However, the 

215 general intensity was not as informative as the differences in the intensity ratio and the shape of 

216 bands. The signals represented in PC1 (marked by arrows in Figure 3C) are mainly related to plant 

217 ageing and derive in particular from the carotenoid peak (1526 cm-1) that underwent a slight 
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218 frequency shift and a bandwidth modification over time. A non-negligible contribution arose also 

219 from the 1470 cm-1 peak and the small shoulder at 1420 cm-1 that decreased from 7 to 28 dpi, 

220 together with the chlorophyll band at 1326 cm-1. Other important contributions to PC1 arose also by 

221 the triplet bands between 1250-1100 cm-1, again related to carotenoids and chlorophylls; on the 

222 contrary, an increase in the 1070 cm-1 peak (C-OH in carbohydrates) was recorded. In conclusion, 

223 the RS analysis of TYLCSV-infected plants identified a decrease in signals related to 

224 carotenoid/chlorophylls along with an increase in carbohydrates accumulation. 

225 Interestingly, complementary bands represented in PC2 resulted more related to the virus 

226 presence (Figure 3D). Here, the peak shoulder at 1150 cm-1, associated with the pyrrole ring 

227 stretching of chlorophylls, played a relevant role, together with the two smaller bands between 

228 1500-1400 cm-1 related to phenolic compounds. PC2 also captured signals with significant variance 

229 at 1216, 1172 cm-1 and the shoulder at 1126 cm-1 probably due to chlorophylls. In conclusion, 

230 although single Raman bands affected by TYLCSV infection could not be identified, the entire 

231 spectral profile showed modifications in the regions associated to chlorophylls and phenolic 

232 compounds, at least in the period of infection considered. Interestingly, the early identification of a 

233 decrease in chlorophyll content in TYLCSV-infected plants is in line with the reported 

234 transcriptional perturbation of this metabolic pathway 44. 

235 Similar experimental evidence was also recorded in the PCA model obtained for TSWV on 

236 spectra between 700 and 1800 cm-1 (Figure 4). In the long-term TSWV-infection analysis (7 to 28 

237 dpi), both PC1 and PC2 resulted related to plant ageing and virus infection, contrary to the results 

238 with TYLCSV. In fact, TSWV -infected plants showed higher scores on PC1 at 21 and 28 dpi 

239 (Figure 4A) and, concurrently, the scores on PC2 of TSWV-infected plants were generally lower 

240 than control plants, at the corresponding time points (Figure 4B). 
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241

242 Figure 4: PCA model for TSWV inoculation experiment. (A) PCA score plots as a function of time 
243 for PC1. (B) PCA score plots as a function of time for PC2. (C) Average tomato leaf spectra for 
244 each time point of analysis; arrows indicate bands mainly represented in PC1, mostly correlated 
245 with time. (D) Average tomato leaf spectra of all mock and all TSWV-infected plants; arrows 
246 indicate bands mainly represented in PC2, mostly correlated with TSWV infection, with a 
247 magnification of the Raman spectral regions with major differences between control samples 
248 (Mock) and TSWV. 

249 Therefore, the variations induced by TSWV are masked by changes liked to plant ageing arising 

250 from the same spectral bands, supporting the concept that TSWV provokes premature ageing 

251 signals. In particular, based on the model loadings and the percent of variance captured by each PC 

252 (Figure S2), TSWV induced a general decrease of the entire spectrum intensity (Figure 4C), 

253 accompanied by rising of the low-intensity peaks at 1468, 1424, 1396, and 1242 cm-1 (Figure 4D). 

254 Small, but statistically significant differences between mock-inoculated and TSWV-infected plants 

255 were also revealed for bands at 1072, 1020, 1013, and 974 cm-1 (Figure 4D).

256 Interestingly, when we analyzed plants in the first week after TSWV inoculation (short-term 

257 experiment), similar conclusions were reached. Here, the PCA model calculated with spectra 

258 collected at 2, 5 and 8 dpi highlighted non-random variations due to TSWV infection. Most 
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259 information was captured by the first two components that correlated with virus infection (PC1) and 

260 plant ageing (PC2) (Figure 5 A, B). 

261

262 Figure 5: PCA scores plots of TSWV early-infected plants. (A) Scores of PC1 plotted against dpi 
263 and colored by infection conditions. (B) Scores of PC2 plotted against dpi and colored by time of 
264 analysis. 

265 Therefore, in this case, the spectral changes due to virus infection prevail compared to the ageing 

266 effects occurring during one week. In particular, infected samples showed on average higher scores 

267 on PC1, already since 5 dpi, whereas the scores on PC2 gradually decreased from 2 to 5 dpi, 

268 confirming that PC2 captures information related to plant aging. The loadings of PC1 and PC2 of 

269 the model calculated for this short-term experiment exhibit several bands responsible for the 

270 differences between healthy and infected samples, but the most relevant variance was associated 

271 with the carotenoid peak at 1526 cm-1, that relatively decreased in virus infected samples (Figure 

272 S3). 

273 Supervised data analysis of Raman spectra during virus infection. To gather indications 

274 about the sensitivity, specificity and accuracy of RS in the identification of infected plants, PLS-DA 

275 classification models were calculated. These results were validated by the “leave-one group-out” 

276 cross-validation using one plant at a time as cancellation group, the most robust procedure when a 

277 separate external validation set is not available. For both viruses, an increasing trend of all figures 

278 of merit along the time frame considered (Table 2) was obtained, showing that mock-inoculated and 

279 experimentally infected samples can be distinguished with >70% accuracy since 14 dpi for 

280 TYLCSV. Moreover, RS provided positive results also for the very early detection of TSWV, i.e. 

281 within the first 8 dpi, with an accuracy >85%. Therefore, RS allowed to recognize infected plants 

282 since the early stages of infection, when symptoms are visually undetectable.
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283 Table 2. Identification of virus infection by PLS-DA classification 
284 in “leave-one-plant-out” cross-validation.

Virus dpi Sensitivity Specificity Accuracy Class. 
Error %

7 0.71 0.64 0.67 33
14 0.80 0.67 0.71 29
21 0.78 0.78 0.78 22

TYLCSV

28 0.80 0.88 0.83 17
2 0.67 0.33 0.50 50
5 0.91 0.56 0.75 25
8 0.80 1.00 0.89 11
14 0.67 1.00 0.87 13
21 0.78 1.00 0.90 10

TSWV

28 0.67 1.00 0.83 17

285 When comparing the loadings of the above models for TYLCSV and TSWV, differences in the 

286 relevant spectral regions for virus detection were revealed, suggesting that different viruses provoke 

287 specific modifications. To confirm this evidence and possibly distinguish the effect of the two 

288 viruses, a PLS-DA model was calculated to classify TYLCSV- vs. TSWV-infected samples. To 

289 highlight differences specifically due to each virus, independently from plant ageing, all the spectra 

290 of infected plants at the different time points were used as training set. Noteworthy, we detected a 

291 remarkable class separation between TYLCSV- and TSWV-infected plants (Figure 6) with three 

292 latent variables (LVs) (the loadings of the considered LVs are shown in Figure S4). 

293 Table 3. Virus discrimination (TYLCSV vs. TSWV) by PLS-DA classification in “leave-one-plant-
294 out” cross-validation (CV). The first two lines represent the confusion matrix in CV.

 Pred. 
TSWV

Pred. 
TYLCSV

True TSWV 25 8

True TYLCSV 8 27

Sensitivity 0.76 0.77

Specificity 0.77 0.76

Accuracy 0.76 0.76

Class. error % 24 24

295
296 Figure 6: Classification model for the discrimination of TYLCSV vs. TSWV in tomato plants. LS-
297 DA scores on the first three of the model. 

298 Moreover, the “leave-one plant-out” cross-validation indicated that sensitivity, specificity and 

299 accuracy values were > 75% (Table 3), confirming that specific spectral features can be associated 

300 to each virus, according to the previous unsupervised data elaboration. This result could be linked to 
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301 the different nature of the two viruses, TSWV infecting all plant tissues and rapidly invading the 

302 plant, TYLCSV restricted to few phloem cells and slowly colonizing the plant 45. 

303 CONCLUSIONS

304 The current research contributes to develop alternative, automated and non-destructive 

305 technologies for plant disease and stress evaluation, helpful to reach objective, reliable and quick 

306 plant diagnostic procedures required in a new era of precision agriculture 18,27,43,46-49. RS represents 

307 a rapid, specific and sensitive tool to realize practical and cheap methods for large-scale disease 

308 monitoring in real time, alternative to molecular and traditional techniques. 

309 In this work, we applied for the first time RS to monitor the spectral changes occurring during 

310 virus infection of an important crop plant, in a time frame including early (asymptomatic) and late 

311 infection stages, monitoring in parallel the amount of infecting virus using quantitative molecular 

312 approaches. A coherent modification of the entire spectral profile in virus-infected plants was 

313 detected in regions associated with carotenoids, chlorophylls, carbohydrates, and phenolic 

314 compounds. The more informative spectral regions related to the early onset of virus infection were 

315 identified by PCA. Unexpectedly, such analysis also revealed differences related to plant ageing, 

316 even if samples always consisted of newly emerged leaves. Noteworthy, RS captured not only the 

317 effect of infection since early and still asymptomatic infection stages for both tested viruses, but 

318 could also differentiate TYLCSV and TSWV, identifying relevant and specific spectral variations 

319 between them. 

320 Conclusively, RS could be applied in plant breeding programs for disease resistance monitoring, 

321 under phytosanitary surveillance screenings, particularly relevant for the viruses here considered for 

322 which the most effective control strategies rely on selection of resistant genotypes 6,50. Nonetheless, 

323 this study provides interesting clues to screen other species of interest exposed to different biotic or 

324 abiotic stimuli. 
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