

ISTITUTO NAZIONALE DI RICERCA METROLOGICA Repository Istituzionale

Final report of the CCQM-K145: toxic and essential elements in bovine liver

Original

Final report of the CCQM-K145: toxic and essential elements in bovine liver / Wang, Jun; Chao, Jingbo; Wei, Chao; Li, Haifeng; Wang, Qian; Song, Panshu; Lu, Hai; Zhou, Yuanjing; Tang, Yichuan; Wang, Song; Yang, Lu; Nadeau, Kenny; Gedara Pihillagawa, Indu; E Johnson, Monique; L Yu, Lee; Näykki, Teemu; Sara-Aho, Timo; Pérez Zambra, Ramiro; Napoli, Romina; Rienitz, Olaf; Noordmann, Janine; Pape, Carola; Towara, Jessica; Tsz-chun, Cheung; Hei-shing, Chu; Stakheev, Aleksei; Dobrovolskiy, Vladimir; Stolboushkina, **Aatiaaai/iGi**rnkova, Anastasia; Taebunpakul, Sutthinun; Thiengmanee, Usana; Kaewkhomdee, Nattikarn; $\pmb{\text{White}$ acthioistianavaailahakada::Elmi@96)6668884Asmingeetiq21@2.Fibic3a08JP8a2la;:SD&Zer, Caroline; A Ahumada F, Diego; P Abella, Johanna; C, Stephanie Segura; Shin, Richard; Lay Peng Deborah, Sim; Dewi, Fransiska; Tong Meng Kiat, Beny; Yu Zongrong, Wesley; Ho Wah, Leung; Haraldsson, Conny; Merrick, Jeffrey; Antin, Luminita; White, Ian; Goenaga-Infante, Heidi; Hill, Sarah; Entwisle, John; Jaćimović, Radojko; Zuliani, Tea; Fajon, Vesna; Yim, Yong-Hyeon; Woo Heo, Sung; Lee, Kyoung-Seok; Wha Lee, Jong; Lim, Youngran; Oduor Okumu, Tom; Ndege20, Martin; Wangui, Lydia; Z Can, Suleyman; Gonca Coskun, F; Tunc, Murat; **&ibhisheop**oulou, Panagiota; Kakoulides, Elias; Inagaki, Kazumi; Miyashita, Shin-ichi; Klich, Hanen; Jebali, Robuf; Chaaban, Najet; Bergamaschi, Luigi; Sobina, Egor; Tabatchikova and Pavel Migal, Tatyana. - In: METROLOGIA. - ISSN 0026-1394. - 57:1A(2020). *Publisher:* IOP

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)

CCQM-K145: Toxic and essential elements in bovine liver

Final Report

June, 2020

Coordinating laboratory:

Wang Jun, Chao Jingbo, Wei Chao, Li Haifeng, Wang Qian, Song Panshu, Lu Hai, Zhou Yuanjing, Tang Yichuan, Wang Song

National Institute of Metrology (NIM), P. R. China

With contributions from:

Lu Yang, Kenny Nadeau, Indu Gedara Pihillagawa $(NRC)^1$, Monique E. Johnson, Lee L. Yu $(NIST)^2$, Teemu Näykki, Timo Sara-Aho(SYKE)³, Ramiro Pérez Zambra, Romina Napoli(LATU)⁴, Olaf Rienitz, Janine Noordmann, Carola Pape, Jessica Towara(PTB)⁵, Cheung Tsz-chun, Chu Hei-shing(GLHK)⁶, Aleksei Stakheev, Vladimir Dobrovolskiy, Tatiana Stolboushkina, Anastasia Glinkova(VNIIFTRI) 7 , Sutthinun Taebunpakul, Usana Thiengmanee, Nattikarn Kaewkhomdee(NIMT)⁸, Christian Uribe, Elmer Carrasco(INACAL)⁹, Angelique Botha(NMISA)¹⁰, Paola Fisicaro, Caroline Oster(LNE)¹¹, Diego A. Ahumada F., Johanna P. Abella, Stephanie Segura C(INMC).¹², Richard Shin, Sim Lay Peng Deborah, Fransiska Dewi, Benny Tong Meng Kiat, Wesley Yu Zongrong, Leung Ho Wah(HSA)¹³, Conny Haraldsson(RISE)¹⁴, Jeffrey Merrick, Luminita Antin, Ian White(NMIA)¹⁵, Heidi Goenaga-Infante, Sarah Hill, John Entwisle(LGC)¹⁶, Radojko Jaćimović, Tea Zuliani, Vesna Fajon(JSI)¹⁷, Yong-Hyeon Yim, Sung Woo Heo, Kyoung-Seok Lee, Jong Wha Lee, Youngran Lim(KRISS)¹⁸, Tom Oduor Okumu, Martin Ndege, Lydia Wangui(KEBS)¹⁹, Suleyman Z. Can, F. Gonca Coskun, Murat Tunc(UME)²⁰, Panagiota Giannikopoulou, Elias Kakoulides $(EXHM)^{21}$, Kazumi Inagaki, Shin-ichi Miyashita $(NMIJ)^{22}$, Hanen Klich, Raouf Jebali, Najet Chaaban(INRAP)²³, Luigi Bergamaschi (INRIM)²⁴, Egor Sobina, Tatyana Tabatchikova, Pavel Migal(NUIIM)²⁵

- 1 National Research Council Canada (NRC)
- 2 National Institute of Standards and Technology (NIST)
- 3 Finnish Environment Institute (SYKE)
- 4 Laboratorio Tecnológico del Uruguay (LATU)
- 5 Physikalisch-Technische Bundesanstalt (PTB)
- 6 Government Laboratory (GLHK)
- 7 Russian Metrological Institute of Technical Physics and Radio Engineering (VNIIFTRI)
- 8 National Institute of Metrology (NIMT)
- 9 Instituto Nacional de Calidad (INACAL)
- 10 National Metrology Institute of South Africa (NMISA)
- 11 Laboratoire national de métrologie et d'essais (LNE)
- 12 Instituto Nacional de Metrología de Colombia (INMC)
- 13 Health Sciences Authority (HSA)
- 14 Research Institute of Sweden (RISE)
- 15 National Measurement Institute (NMIA)
- 16 LGC Limited (LGC)
- 17 Jožef Stefan Institute (JSI)
- 18 Korea Research Institute of Standards and Science (KRISS)
- 19 Kenya Bureau of Standards (KEBS)
- 20 TUBITAK Ulusal Metroloji Enstitusu (UME)
- 21 EXHM/GCSL-EIM (EXHM)
- 22 National Metrology Institute of Japan (NMIJ)
- 23 National Institute of Research and Physical chemical analysis (INRAP)
- 24 Istituto Nazionale di Ricerca Metrologica (INRIM)
- 25 Ural Scientific Research Institute for Metrology (NUIIM)

CONTENTS

1. INTRODUCTION

Liver plays a major role in metabolism and acts as a source of energy for the body by storing glycogen. Also, working with other systems and organs, it is responsible for several important functions such as storing iron, detoxifying harmful substances, maintaining the hormonal balance, and producing immune factors to fight infections. Cattle seemed to be the most sensitive animal species with respect to some metal toxicities resulting from ingestion of feed material. With the growing interest and investigation in the biological effects in recent years, it is important and necessary to develop accurate and comparable analytical methods for elements in bio-samples. It has, however, been 10 years since the tissue sample (bovine liver) of CCQM-K49 key comparison. Therefore, the IAWG has included the need for such a key comparison to maintain, expand and improve core capabilities, and to support specific CMCs claim in bio-sample analysis as well.

The purpose of CCQM-K145&P183 is to ensure the comparable and traceable measurement results for essential and toxic elements such as P, S, Zn, Mn, Ni, Mo, Sr, Cr, Co, Pb, As and Hg in bovine liver among NMIs and other designated measurement bodies worldwide. The comparison has been agreed by IAWG as 6th IAWG Benchmarking Exercise with Zn and Ni as exemplary elements at the meeting in Korea in the early October 2016. The results of CCQM-K145 are expected to cover the measurement capability and support CMCs claiming for inorganic elements in the similar biological tissue materials and food samples.

34 NMIs and DIs registered in CCQM-K145 & P183. Among them, 26 institutes only registered in CCQM-K145, 4 institutes registered in both CCQM- K145 and P183. For this comparison, NIM prepared the technical protocol and result report form, and send them to each participant. By the deadline for receipt of the result report, 28 NMIs and DIs submitted their report of measurement results. As the result, Zn and Ni as exemplary elements in this 6th IAWG benchmarking, the successful results are achieved for most participants, meanwhile, good results are also obtained for other 10 elements, P, S, Mn, Mo, Sr, Cr, As, Co, Pb and Hg.

2. LIST OF PARTICIPANTS

26 institutes only registered in CCQM-K145, 4 institutes registered in both CCQM- K145 and P183. The list of all the participating institutes is shown in Table 1 according to a sequence of the time of registration.

CCQM-K145 FINAL REPORT

For CCQM-K145, INMETRO, INTI, IAEA Environment Laboratories and BVL did not submit their result report due to the problems of sample deliver or instruments.

3. TIME SCHEDULE

Call for Participation: May, 2017

Deadline for registration: 10 June, 2017

Dispatch of the samples: June-July, 2017

Deadline for receipt of the result report: 28 February, 2018

Discussing of the result: CCQM/ IAWG Paris meeting of 2018

4. SAMPLE

Sample preparation

Liver tissues of new born healthy steers were collected and prepared under the strict protocols by the professional biological institutes. After the pretreatment of the raw materials, liver tissues were cut into portions of approximately 10 cm³. Then, they were homogenized with a high speed mixer, frozen and lyophilized by a freeze dryer, ground with ball grinding mill. The bovine liver powder was subjected to a sieving process through 200 mesh sieve and thoroughly homogenized in a 3-dimensional mixer. The resulting final product was radiation sterilized, bottled and stored at room temperature.

The measurands to be determined are the mass fractions of P, S, Zn, Mn, Mo, Cr, Ni, Pb, Sr, Co, As and Hg. The expected mass fraction ranges of the twelve elements are listed in Table 2.

Elements	Expected mass fraction ranges
Phosphorus	$(5-50)$ mg/g
Sulfur	$(1-30)$ mg/g
Zinc	$(50-500)$ mg/kg
Nickel	$(0.1 - 10)$ mg/kg
Manganese	$(0.1 - 10)$ mg/kg
Molybdenum	$(0.1 \sim 10)$ mg/kg
Chromium	$(0.1 \sim 10)$ mg/kg
Strontium	$(50-500) \mu g/kg$
Lead	$(10~300) \mu g/kg$
Cobalt	(10~300) μg/kg
Arsenic	$(1~100) \mu g/kg$
Mercury	$(1~100) \mu g/kg$

Table 2. Measurands and expected mass fraction ranges

Homogeneity test

The homogeneity of the sample was investigated by analyzing 25 bottles of the bovine liver powder and determined by ICP-OES, WD-XRF and ICP-MS, the sampling weight is about 300mg. The microwave digestion was used to the sample preparation for ICP-OES and ICP-MS analysis. Particle size distributions in the sample were determined in aqueous suspension via laser light scattering instrumentation (Malvern Mastersizer 2000). Calculated 90th percentile particle sizes was less than 50µm. ANOVA technique was applied to assess the between bottle heterogeneity and the standard uncertainty originated from the between bottle heterogeneity was calculated using the formula given below in accordance with ISO Guide 35:2006^[1]. The results are summarized in Table 3. The results based on the F test showed the homogeneity level can fit the objective of the comparison.

$$
u_{bb} = \sqrt{\frac{MS_{within}}{n} \cdot \sqrt{\frac{2}{V_{MSwithin}}}}
$$
 (1)

Where:

 u_{bb} standard uncertainty due to between bottles heterogeneity *MSwithin* mean square of within bottles variance *MSwithin* degree of freedom of *MSwithin n* number of subsample

Stability monitor

The stability of the bovine liver material stored at room temperature was conducted by using ICP-OES and ICP-MS. The long-term stability of the sample was carried out continually until the deadline for submission of measurement results of this comparison. The short-term stability was conducted at 60 ºC over a week period. The stability testing results of 12 elements in the sample are shown in the Fig.1. All results of the short-term and long-term stability testing indicated that no instability was observed during the duration of the comparison, and hence the bovine liver sample was fit for the purpose of this comparison in terms of stability.

Fig.1 The results of stability monitor of 12 elements in the bovine liver sample

5. INSTRUCTIONS TO PARTICIPANTS

The instructions including technical protocol and results report form were sent to each participant by email. The participants might to use any method of their choice for the measurements. Each participant received one numbered bottle containing 10g sample in each bottle. 2~3 bottles sample were sent to some participants baesd on their special requirements of using analytical methods. Each bottle was vacuum packed in aluminum-nylon pouch with temperature detector. The bovine liver sample size of at least 300mg was recommended. The lyophilized bovine liver tissue is somewhat hygroscopic, and its moisture content may be affected to change by the environmental conditions. Therefore, it was recommended that moisture determinations should be made on separate test portions taken at the same time as the portions to be analyzed. The recommended procedure was that the sample (size of 0.5~1g) was dried at 60℃ for 7 hours by using oven drying, then cooled in a desiccator to room temperature.

At least five replicate samples should be performed for each element. Calculation of the uncertainty expressed as a combined standard uncertainty and an expanded uncertainty at 95% confidence. In order to allow a sufficient evaluation of the comparison, the report was required to include a detail description of the applied method of measurement, information about sample digestion and preparation, information about the reference material used for calibration.

6. METHODS AND TRACEABILITY OF MEASUREMENT

According to the Results Report submitted by each participant, the measurement methods and source of traceability for the results are summarized in Table 4 and Table 5 respectively.

Institute	Type of preparation	Measurement method	Sample mass (g)
UNIIM	Dissolving, dilution	ICP-MS (addition method)(Zn, Ni, Mn, Mo, Cr, Co, As, Hg) ICP-OES (P, S) ID-ICP-MS (Sr, Pb)	0.3
NRC	Microwave digestion	ID-ICP-MS & standard addition ICP-OES (Zn, Ni, Sr) Standard addition ICP-OES (P, S, As) ID-ICP-MS (Pb)	0.3
NIST	Microwave digestion	IDMS (Zn, Ni)	0.5
LNE	Microwave digestion	Double IDMS (Ni, Cr, Pb, Hg) External calibration ICP-MS (Mn, Mo) Standard addition ICP-MS (As)	$0.3 - 0.8$
NIM	Microwave digestion	IDMS (Zn, Ni, Mo, Cr, Sr, Pb, Hg) Standard addition ICP-MS (P, S, Mn, Co, As) ICP-OES (Zn, P, S, Mn) XRF(Zn) AAS (Cr) MDA (Hg)	$0.1 - 4.0$
PTB	Microwave digestion $&$ chromatographic separation	Exact matching double IDMS (Zn, Ni, Pb)	0.5

Table 4. Summary of the measurement methods

CCQM-K145 FINAL REPORT

Table 5. Source of traceability for the measurement results

Based on the CIPM traceability requirements and the related discussion in 2019 Paris meeting, the measurement values which not use calibrants from Metrology Institutes cannot be used for KCRV calculations, and cannot use to calculate and assess the degree of equivalence.

7. RESULTS AND DISCUSSION

7.1 General

The measurement results of 12 elements in CCQM-K145 sample reported by each participant are summarised in Table 6 ~Table 17 respectively.

Table 6. Reported results of Zn

***** NIM submitted three results using three methods. IDMS was used to calculate the KCRV.

CCQM-K145 FINAL REPORT

Table 8. Reported results of P

*****NIM submitted two results using two methods. ICP-OES was used to calculate the KCRV.

Table 9. Reported results of S

Institute	Result (mg/g)	\boldsymbol{u} (mg/g)	\boldsymbol{U} (mg/g)	\boldsymbol{k}	$\mathbf n$	Method	Moisture $(\%)$
UNIIM	6.22	0.21	0.41	\overline{c}	5	ICP-OES	3.238
VNIIFTRI	6.78	0.36	0.72	2	6	SA-ICP-OES	2.67
NIM	6.79	0.06	0.13	2	5	ICP-MS(standard addition)	2.5051
HSA	6.82	0.16	0.33	\overline{c}	6	IDMS(HR)	2.905
NRC	7.01	0.13	0.26	2	5	ICP-OES(standard addition)	3.73
$*NIM$	6.74	0.07	0.14	2	5	ICP-OES	3.23

*****NIM submitted two results using two methods. ICP-MS was used to calculate the KCRV.

Institute	Result (mg/kg)	\boldsymbol{u} (mg/kg)	\boldsymbol{U} (mg/kg)	\boldsymbol{k}	$\mathbf n$	Method	Moisture (%)
UNIIM	5.09	0.18	0.36	$\overline{2}$	5	ICP-MS(standard addition)	3.238
LNE	5.48	0.27	0.55	$\overline{2}$	5	ICP-MS	2.68
JSI	5.57	0.17	0.34	$\overline{2}$	τ	k0-INAA	3.1551
EXHM	5.686	0.245	0.490	$\overline{2}$	6	ICP-MS(HR)(standard addition)	2.139
NIMT	5.71	0.13	0.27	$\overline{2}$	5	ICP-MS(standard addition)	2.11
INRAP	5.74	0.26	0.51	$\overline{2}$	15	ICP-OES HR	3.13
NIM	5.75	0.06	0.12	$\overline{2}$	5	ICP-MS(standard addition)	2.5051
KRISS	5.75	0.11	0.24	2.31	$\mathbf{1}$	ICP-MS(HR)(standard addition)	2.65
INACAL	5.77	0.10	0.20	$\overline{2}$	5	ICP-OES(standard addition)	3.57
LATU	5.79	0.12	0.24	$\overline{2}$	6	ICP-MS(HR)(standard addition)	2.69
NMIJ	5.91	0.06	0.12	$\overline{2}$	5	ICP-MS(standard addition)	3.23
NMISA	6.69	0.14	0.28	$\overline{2}$	$\overline{7}$	$ICP-MS(HR)$	3.97
INRIM	6.70	0.18	0.35	$\overline{2}$	6	NAA	4.74
KEBS	6.71	0.63	1.49	2.36	8	ICP-MS	3.7528
VNIIFTRI	7.08	0.35	0.70	$\overline{2}$	6	SA-ICP-OES	2.67
*NIM	5.79	0.06	0.12	$\overline{2}$	5	ICP-OES	3.23

Table 10. Reported results of Mn

***** NIM submitted two results using two methods. ICP-MS was used to calculate the KCRV.

***** NIM submitted two results using two methods. IDMS was used to calculate the KCRV.

Table 13. Reported results of Sr

Table 14. Reported results of Pb

Table 15. Reported results of Co

Table 16. Reported results of As

Institute	Result $(\mu g/kg)$	\boldsymbol{u} $(\mu g/kg)$	\boldsymbol{U} $(\mu g/kg)$	\boldsymbol{k}	$\mathbf n$	Method	Moisture (%)
EXHM	9.63	0.44	0.88	$\overline{2}$	6	ICP-MS(HR)(standard addition)	2.139
LNE	9.8	0.6	1.2	$\overline{2}$	5	ICP-MS(HR)(standard addition)	2.68
NIMT	10.9	0.91	1.9	\overline{c}	5	ICP-MS(QQQ, standard addition)	2.11
NIM	11.24	0.42	0.83	$\overline{2}$	5	ICP-MS, ICP-MS(standard addition)	2.505
UME	11.3	0.5	0.9	$\overline{2}$	5	ICP-MS(QQQ)	4.51
NRC	12.97*	0.43	0.86	$\overline{2}$	10	ICP-MS(standard addition)	3.73
INMC	19.4	1.1	2.2	2	9	ICP-MS(standard addition)	2.593
UNIIM	25.2	3.1	6.2	$\overline{2}$	5	ICP-MS(standard addition)	3.238

* NRC found a calculation mistake for the report value.

***** NIM submitted two results using two methods. IDMS was used to calculate the KCRV.

Fig.2~ Fig.13 shows the distribution for the results of CCQM-K145 for each measurand respectively. Error bar represents the standard uncertainty (*u*), as reported.

Fig.2 All results of Znic in CCQM-K145

Fig.5 All results of Sulfur in CCQM-K145

Fig.8 All results of Chromium in CCQM-K145

Fig.9 All results of Strontium in CCQM-K145

Fig.11 All results of Cobalt in CCQM-K145

Fig.12 All results of Arsenic in CCQM-K145

Fig.13 All results of Mercury in CCQM-K145

7.2 Screening the data for consistency and anomalous values

According to the CCQM Guidance Note^[2], the result data reported by each participant were screened for the consistency and anomalous values. The robust estimate of location $\hat{\mu}$ and dispersion $\hat{\sigma}$ were hence used to detect possible outliers, i.e. values would be considered as extreme when outside $\hat{\mu} \pm 2\hat{\sigma}$ (corresponding to approximately 95 % confidence). The result data reported by each participant was detected according to the rule, and the outlier testing results are shown in Table 18.

Measurand	Robust mean μ	Robust SD dispersion $\widehat{\sigma}$	$\hat{\mu}$ – $2\hat{\sigma}$	$\hat{\mu} \pm 2\hat{\sigma}$	Institutes found with suspected extreme results
Zn	457.03	4.92	447.18	466.87	INRAP, UNIIM, KEBS, INRIM
Ni	2.018	0.102	1.814	2.222	UNIIM, NMISA, NIMT, KEBS
\mathbf{P}	11.318	0.232	10.853	11.782	UNIIM
S	6.795	0.209	6.377	7.213	UNIIM
Mn	5.763	0.192	5.378	6.147	UNIIM, NMISA, INRIM, KEBS
Mo	1.537	0.024	1.490	1.585	UNIIM, INRAP, LNE, KEBS
Cr	4.327	0.291	3.745	4.909	UNIIM, NMISA, NIMT, KEBS
Pb	145.10	2.75	139.61	150.59	KEBS
Co	125.68	2.91	119.86	131.51	UNIIM
As	11.68	2.26	7.15	16.21	INMC, UNIIM
Hg	15.73	1.47	12.79	18.66	INMC

Table 18. Summary of outlier testing results using robust estimates

Based on the IAWG meeting discussion and Dr. Sargent 's suggestion made in Paris on April 2018, also in order to present a more reasonable data processing for the comparison, the institutes found with suspected extreme results were asked to investigate reasons for their measurement results. Most of institutes found out some technical problems caused these results, which included the sample was not dissolved completely for sample preparation; parameter setting, instability, interference effect and blank correction for instrumental analysis. Hence, the outlier data reported by these institutes were excluded from the KCRV calculations. EXHM withdrew the results of Zn, Ni, Cr and Pb from their report. JSI removed data of Sr due to an unexpected contamination during the ICP-MS measurement.

7.3 Calculation of the reference mass fraction values and associated uncertainties

The report summarized the calculated consensus values and their respective standard deviation using different location estimators including arithmetic mean and median without the suspected extreme values being included in the calculation. Additionally, according to the information showed in Table 5, the measurement values used the commercial RM as calibrant cannot be use to calculate the KCRV. The calculated results are presented in Table 19.

Measurand	$\mathbf n$	Arithmetic Mean	SD	Median	MADe
Zn (mg/kg)	19	457.20	3.40	456.20	4.15
Ni (mg/kg)	17	2.035	0.075	2.022	0.082
P(mg/g)	6	11.397	0.194	11.335	0.153
S(mg/g)	3	6.873	0.119	6.820	0.044
Mn (mg/kg)	10	5.716	0.119	5.745	0.059
Mo(mg/kg)	8	1.540	0.022	1.548	0.009
Cr (mg/kg)	11	4.400	0.203	4.380	0.133
Sr (μ g/kg)	5	321.0	1.42	321.0	0.30
Pb $(\mu g/kg)$	14	144.9	2.38	144.7	1.78
Co (μ g/kg)	6	126.1	2.70	126.6	1.71
As $(\mu g/kg)$	5	10.57	0.80	10.90	0.59
$Hg(\mu g/kg)$	10	15.99	1.21	15.75	1.19

Table 19. Results of calculation of consensus values and respective standard deviation by using arithmetic mean and median

7.4 KCRV and associated uncertainty

IAWG meeting hold in NRC in October 2018 made the decision for proposed KCRV calculation: the selection of mean or median should not be made on considerations other than the number of participants, and it was agreed that from this point forwards where number ≥ 8 , the median would be used as the KCRV, while where number ≤ 7 , the arithmetic mean would be applied for IAWG comparisons.

Based on the calculation results showed in Table 19 and mentioned above decision as well, the candidate estimators proposed for the KCRV and associated uncertainty of CCQM-K145 is as follows:

- **Arithmetic mean and associated uncertainty for P, S, Sr, Co, As**, the standard uncertainty is calculated using Equation (2).
- **Median and associated uncertainty for Zn, Ni, Mn, Mo, Cr, Pb, Hg,** the associated uncertainty is calculated using formulas (3).

The calculated KCRV and associated uncertainty of the all measurands are listed in Table 20.

$$
u[x_{KCRV}] = \sqrt{\frac{1}{n} \left(\frac{1}{n-1} \sum_{i=1}^{n} (x_i - x_{KCRV})^2 + \frac{1}{n} \sum_{i=1}^{n} u^2(x_i) \right)}
$$
(2)

$$
u(KCRV) = \frac{1.25 \times MADe}{\sqrt{n}} \tag{3}
$$

Table 20. Calculated KCRV and associated uncertainty

The results for 12 elements in the CCQM-K145 are graphically displayed in Fig.14 ~ Fig.25. Error bars depict standard uncertainties. The solid horizontal line is the suggested KCRV; the dashed lines show the standard uncertainty interval calculated with a coverage factor *k*=1.

Fig.14 Results for Zinc in CCQM-K145 bovine liver sample

Fig.15 Results for Nickel in CCQM-K145 bovine liver sample

Fig.16 Results for Phosphorus in CCQM-K145 bovine liver sample

Fig.17 Results for Sulfur in CCQM-K145 bovine liver sample

Fig.18 Results for Manganese in CCQM-K145 bovine liver sample

Fig.19 Results for Molybdenum in CCQM-K145 bovine liver sample

Fig.20 Results for Chromium in CCQM-K145 bovine liver sample

Fig.21 Results for Strontium in CCQM-K145 bovine liver sample

Fig.22 Results for Lead in CCQM-K145 bovine liver sample

Fig.23 Results for Cobalt in CCQM-K145 bovine liver sample

Fig.24 Results for Arsenic in CCQM-K145 bovine liver sample

Fig.25 Results for Mercury in CCQM-K145 bovine liver sample

7.5 Equivalence statements

According to CCQM Guidance Note^[2], the degree of equivalence of each national measurement standard is expressed quantitatively by two terms: its deviation from the key comparison reference value and the uncertainty of this deviation (at a 95 % level of confidence). The degree of equivalence or DoE $(d_i, U(d_i))$ are calculated using formulas (4) and (5).

$$
d_i = (x_i - \text{KCRV})
$$

\n
$$
U(d_i) = 2 \cdot \sqrt{u(x_i)^2 + u(\text{KCRV})^2}
$$
\n(4)

Where:

 x_i : reported value submitted by participant *i* ($i = 1, ..., n$)

*d*_i : value component x_i – KCRV of the degree of equivalence (DoE) for participant *i* ($i = 1, ..., N$)

 $U(d_i)$: uncertainty component of the DoE for participant *i* ($i = 1, ..., N$), this uncertainty is expressed at 95 % confidence.

Reported value *xⁱ* for measurand (Zn, Ni, P, S, Mn, Mo, Cr, Sr, Pb, As, Co, Hg) in the CCQM-K145 bovine liver sample with their associated combined standard uncertainties $u(x_i)$, together with the d_i , and the associated expanded combined uncertainties $U(d_i)$, are listed for each participant in Table21 ~ Table32. The equivalence statements for CCQM-K145 are shown graphically in Fig.26 \sim Fig.37.

Fig.26 Equivalence statement of Zinc for CCQM-K145. Points show the d_i , while the error bars denote the $U(d_i)$.

	x_i	$u(x_i)$	d_i	$U(d_i)$	
Institute	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	$d_i/U(d_i)$
UNIIM	$0.147*$	0.016	-1.88	0.059	-32
NMISA	$0.902*$	0.038	-1.12	0.090	-12
NIMT	$1.65*$	0.06	-0.37	0.13	-2.8
JSI	1.93	0.11	-0.09	0.23	-0.41
INMC	1.94	0.06387	-0.08	0.14	-0.60
GLHK	1.942	0.092	-0.080	0.19	-0.42
LNE	1.958	0.075	-0.064	0.16	-0.41
NIST	1.984	0.020	-0.038	0.064	-0.59
KRISS	1.993	0.033	-0.029	0.082	-0.35
INACAL	2.01	0.06	-0.01	0.13	-0.09
NMIA	2.02	0.05	-0.002	0.11	-0.02
NIM	2.022	0.023	0.000	0.068	0.00
NMIJ	2.05	0.02	0.03	0.06	0.5
RISE	2.055	0.052	0.033	0.12	0.29
NRC	2.07	0.05	0.05	0.11	0.45
PTB	2.077	0.035	0.055	0.086	0.64
LATU	2.08	0.059	0.06	0.13	0.45
LGC	2.131	0.042	0.109	0.097	1.1
UME	2.15	0.03	0.13	0.08	1.6
HSA	2.18	0.08	0.16	0.2	0.8
KEBS	$4.63*$	0.94	2.61	1.9	1.4

Table 22. Equivalence statement of Nickel for CCQM-K145

Fig.27 Equivalence statement of Nickel for CCQM-K145. Points show the *di*, while the error bars denote the *U*(*di*).

Institute	x_i (mg/g)	$u(x_i)$ (mg/g)	d_i (mg/g)	$U(d_i)$ (mg/g)	$d_i/U(d_i)$
UNIIM	$10.65*$	0.24	-0.75	0.53	-1.41
NMISA	11.203	0.092	-0.19	0.27	-0.71
NMIJ	11.26	0.07	-0.14	0.25	-0.56
NIM	11.27	0.12	-0.13	0.31	-0.41
LATU	11.40	0.12	0.00	0.31	0.00
UME	11.55	0.09	0.15	0.27	0.57
NRC	11.70	0.30	0.30	0.63	0.48
			Mater & non-outed subsects not included in the colouration of VCDV		

Table 23. Equivalence statement of Phosphorus for CCQM-K145

Fig.28 Equivalence statement of Phosphorus for CCQM-K145. Points show the d_i , while the error bars denote the $U(d_i)$.

Institute	x_i (mg/g)	$u(x_i)$ (mg/g)	d_i (mg/g)	$U(d_i)$ (mg/g)	$d_i/U(d_i)$
UNIIM	$6.22*$	0.21	-0.65	0.46	-1.43
NIM	6.79	0.06	-0.08	0.23	-0.36
HSA	6.82	0.16	-0.05	0.38	-0.14
NRC	7.01	0.13	0.14	0.33	0.42

Table 24. Equivalence statement of Sulfur for CCQM-K145

Fig.29 Equivalence statement of Sulfur for CCQM-K145. Points show the *di*, while the error bars denote the *U*(*di*).

	x_i	$u(x_i)$	d_i	$U(d_i)$	
Institute	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	$d_i/U(d_i)$
UNIIM	5.09*	0.18	-0.66	0.36	-1.8
LNE	5.48	0.27	-0.27	0.54	-0.49
JSI	5.57	0.17	-0.18	0.34	-0.51
EXHM	5.686	0.245	-0.059	0.49	-0.12
NIMT	5.71	0.13	-0.04	0.27	-0.15
INRAP	5.74	0.26	-0.01	0.52	-0.02
NIM	5.75	0.06	0.005	0.13	0.04
KRISS	5.75	0.11	0.005	0.23	0.02
INACAL	5.77	0.10	0.02	0.21	0.10
LATU	5.79	0.12	0.04	0.25	0.16
NMIJ	5.91	0.06	0.17	0.13	1.3
NMISA	$6.69*$	0.14	0.95	0.28	3.3
INRIM	$6.70*$	0.18	0.96	0.36	2.6
KEBS	$6.71*$	0.63	0.97	1.3	0.77
\mathbf{d} \mathbf{X}	\blacksquare		$1 \t1 \t1 \t1$	1.1.1 c r c n r r	

Table 25. Equivalence statement of Manganese for CCQM-K145

Fig.30 Equivalence statement of Manganese for CCQM-K145. Points show the *di*, while the error bars denote the *U*(*di*).

Institute	x_i (mg/kg)	$u(x_i)$ (mg/kg)	d_i (mg/kg)	$U(d_i)$ (mg/kg)	$d_i/U(d_i)$
UNIIM	$1.34*$	0.05	-0.21	0.1	-2
INRAP	$1.36*$	0.066	-0.19	0.13	-1.4
LNE	$1.41*$	0.06	-0.14	0.12	-1.2
NIMT	1.49	0.02	-0.058	0.04	-1.4
NMISA	1.532	0.021	-0.016	0.04	-0.4
KRISS	1.539	0.049	-0.009	0.10	-0.09
HSA	1.546	0.021	-0.002	0.04	-0.05
NMIA	1.550	0.015	0.002	0.03	0.06
JSI	1.55	0.07	0.002	0.14	0.014
INMC	1.551	0.026	0.003	0.05	0.06
NIM	1.559	0.015	0.011	0.03	0.36
KEBS	$1.91*$	0.11	0.36	0.22	1.6

Table 26. Equivalence statement of Molybdenum for CCQM-K145

Fig.31 Equivalence statement of Molybdenum for CCQM-K145. Points show the d_i , while the error bars denote the $U(d_i)$.

Institute	x_i	d_i $u(x_i)$		$U(d_i)$	$d_i/U(d_i)$	
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		
UNIIM	$0.345*$	0.015	-4.04	0.10	-40	
NMISA	1.816*	0.07	-2.56	0.17	-15	
NIMT	$3.44*$	0.11	-0.94	0.25	-3.8	
LNE	4.13	0.15	-0.25	0.32	-0.78	
KRISS	4.184	0.041	-0.196	0.13	-1.5	
NMIA	4.29	0.06	-0.09	0.16	-0.56	
NIM	4.303	0.046	-0.080	0.14	-0.57	
NMIJ	4.37	0.03	-0.01	0.12	-0.08	
LATU	4.38	0.13	0.00	0.28	0.00	
RISE	4.39	0.079	0.01	0.19	0.053	
HSA	4.44	0.10	0.06	0.22	0.27	
UME	4.47	0.09	0.09	0.2	0.4	
JSI	4.55	0.14	0.17	0.30	0.57	
INRIM	4.89	0.15	0.51	0.32	1.6	
KEBS	$5.21*$	0.36	0.83	0.73	1.1	

Table 27. Equivalence statement of Chromium for CCQM-K145

Institute	x_i $(\mu g/kg)$	$u(x_i)$ $(\mu g/kg)$	d_i $(\mu g/kg)$	$U(d_i)$ $(\mu g/kg)$	$d_i/U(d_i)$
UNIIM	319	9	-2	19	-0.1
NIM	321.0	4.7	-0.04	12	-0.003
NIMT	321	9	-0.04	19	-0.002
LATU	321.2	4.3	0.2	11	0.02
NRC	323	9	\mathfrak{D}	19	0.1

Table 28. Equivalence statement of Strontium for CCQM-K145

Fig.33 Equivalence statement of Strontium for CCQM-K145. Points show the d_i , while the error bars denote the $U(d_i)$.

Institute	x_i	$u(x_i)$	d_i	$U(d_i)$	$d_i/U(d_i)$	
	$(\mu g/kg)$	$(\mu g/kg)$	$(\mu g/kg)$	$(\mu g/kg)$		
UNIIM	141.8	4	-2.9	8	-0.36	
NIMT	142	3	-3	6	-0.5	
LATU	142.2	3.0	-2.4	6	-0.4	
INMC	143.4	4.3	-1.2	8.8	-0.14	
LNE	143.8	2.5	-0.8	5.1	-0.16	
LGC	143.8	1.2	-0.8	2.7	-0.3	
SYKE	144.0	5.0	-0.6	10	-0.06	
NIM	145.30	1.15	0.65	2.6	0.25	
KRISS	145.6	2.8	0.9	5.7	0.2	
UME	145.6	1.3	0.9	2.9	0.3	
HSA	145.8	2.6	1.2	5.3	0.23	
NRC	147	5	2	10	0.2	
PTB	147.8	2.6	3.2	5.3	0.60	
NMISA	150.2	2.3	5.6	4.8	1.2	
KEBS	159.49*	26.09	14.8	52	0.28	

Table 29. Equivalence statement of Lead for CCQM-K145

Institute	x_i $(\mu g/kg)$	$u(x_i)$ $(\mu g/kg)$	d_i $(\mu g/kg)$	$U(d_i)$ $(\mu g/kg)$	$d_i/U(d_i)$
UNIIM	98.6*	3.2	-27.5	7.6	-3.6
NIMT	121	5.6	-5	12	-0.4
LATU	125.7	2.6	-0.4	6.6	-0.06
NIM	126.2	1.7	0.1	5.3	0.02
KRISS	127	5		11	0.09
JSI	128	4	2	9	0.2
EXHM	128.5	4.9	2.4	11	0.22

Table 30. Equivalence statement of Cobalt for CCQM-K145

Fig.35 Equivalence statement of Cobalt for CCQM-K145. Points show the d_i , while error bars denote $U(d_i)$.

Institute	x_i $(\mu g/kg)$	$u(x_i)$ $(\mu g/kg)$	d_i $(\mu g/kg)$	$U(d_i)$ $(\mu g/kg)$	$d_i/U(d_i)$
EXHM	9.63	0.44	-0.94	1.2	-0.78
LNE	9.8	0.6	-0.8	1.5	-0.53
NIMT	10.9	0.91	0.3	2.0	0.15
NIM	11.24	0.42	0.67	1.2	0.56
UME	11.3	0.5	0.7	1.3	0.54
INMC	$19.4*$	1.1	8.8	2.3	3.8
UNIIM	$25.2*$	3.1	14.6	6.3	2.3

Table 31. Equivalence statement of Arsenic for CCQM-K145

Fig.36 Equivalence statement of Arsenic for CCQM-K145. Points show the d_i , while error bars denote $U(d_i)$.

Institute	x_i $(\mu g/kg)$	$u(x_i)$ $(\mu g/kg)$	d_i $(\mu g/kg)$	$U(d_i)$ $(\mu g/kg)$	$d_i/U(d_i)$
INMC	$12.6*$	0.69	-3.2	1.7	-1.9
NIMT	13.8	0.52	-2.0	1.4	-1.4
SYKE	14.96	0.75	-0.79	1.8	-0.44
HSA	15.50	0.33	-0.25	1.1	-0.23
NRC	15.6	2.2	-0.2	4.5	-0.04
RISE	15.6	0.62	-0.2	1.5	-0.13
JSI	15.9	0.5	0.1	1.4	0.07
NIM	16.56	0.78	0.81	1.8	0.45
LNE	16.9	0.8	1.1	1.8	0.61
UME	16.9	0.4	1.1	1.2	0.92
UNIIM	18.2	2.1	2.4	4.3	0.56

Table 32. Equivalence statement of Mercury for CCQM-K145

Fig.37 Equivalence statement of Mercury for CCQM-K145. Points show the d_i , while error bars denote $U(d_i)$.

8. CONCLUSION

With respect to the methodology, most of the participants used microwave digestion methods for sample pretreatment. For the instrumental determination, a variety of techniques such as IDMS, ICP-OES, ICP-MS(non-ID), AAS and NAA were adopted by the participants. Some participants reported the measurement results by using a combined techniques, such as IDMS and ICP-MS(standard addition), IDMS and ICP-OES(standard addition). For Zn, Ni, Sr, Pb and Hg measurements, most participants chose ID-ICP-MS method, which showed the better performance in terms of consistency and reliability of the measruement results. According to the information of Table 6~Table 17, the measurement methods adopted by all participants in CCQM-K145 are summaried in Table 33.

	Measurement methods							
measurand	IDMS	ICP-MS $(non-ID)$	ICP-OES	AAS	NAA	XRF	MDA	
Zn	14	5	6		$\overline{2}$			
Ni	13	10	3					
P		$\overline{4}$	5					
S			$\overline{4}$					
Mn		10	$\overline{4}$		2			
Mo	5	5	1		1			
Cr	10	5			$\overline{2}$			
Sr	5							
Pb	14	3						
Co		7						
As		8						
Hg	7	$\overline{2}$		\mathfrak{D}				

Table 33. Measurement methods adopted in CCQM-K145

Base on different statistic way to calculate the reference mass fraction values and associated uncertainties for each measurand, and removal of the suspected extreme values, the median values are proposed as the KCRV for Zn, Ni, Mn, Mo, Cr, Pb and Hg; the arithmetic mean values are proposed as the KCRV for P, S, Sr, Co and As. According to the CCQM Guidance Note^[2], the expanded uncertainty of the reference value is calculated as $U = 2 \times u$.

In aspect of the traceability for the measurement results in CCQM-K145, most participants used their own (in house) CRMs or other NMI's CRMs to guarantee trace to SI unit. Most participants used similar matrix CRMs for quality control or method validation.

In general, the performances of the majority of CCQM-K145 participants are very good, illustrating their measurement capabilities for Zn, Ni, P, S, Mn, Mo, Sr, Cr, As, Co, Pb and Hg in a complex biological tissue matrix.

Measurement capability claims- How far the light shines

The purpose of CCQM-K145 is to ensure the comparable and traceable measurement results for essential and toxic elements such as P, S, Zn, Mn, Ni, Mo, Sr, Cr, Co, Pb, As and Hg in bovine liver among NMIs and other designated measurement bodies worldwide.

Bovine liver contains many kinds of nutrients and microelements, it can be regarded as a typical representative material of biological tissue and food. In CCQM-K145, the analytes involved alkali metals and transition elements, metalloids / semi-metals and non metals with a range of mass fraction from mg/g

to µg/kg. CCQM-K145 also tested the ability of NMIs/DIs to determine elements that were easy to be lost and polluted, and interfered significantly. The chemical pretreatment methods of samples used in the comparison is suitable for general food and biological matrix samples. A variety of measurement methods used in the comparison represent the main instrumental technology for elemental analysis.

Based on measurement of 12 elements in CCQM-K145, the CCQM IAWG Core Capability Table is shown in APPENDIX A. For supporting CMC claim, CCQM-K145 is readily applicable to measurement of more elements in a wide range of biological materials (including liquids and solids) and meat products.

9. ACKNOWLEDGEMENTS

The contact persons, analysts and institutes responded to this comparison and contributed their efforts to CCQM-K145 are highly appreciated and acknowledged. Many thanks for the support and advice from Dr. Mike Sargent and Dr. Michael Winchester.

10. REFERENCES

- [1] International Standards Organization, ISO Guide 35: Reference materials General and statistical principles for certification, Geneva, Switzerland, 2006.
- [2] CCQM Guidance note: Estimation of a consensus KCRV and associated Degrees of Equivalence, Version: 10, 2013-04-12.
- [3] The Core Capability approach in support of CMCs for Inorganic Analysis: guidelines for the use of the revised approach. 2018-10.

APPENDIX A: CCQM IAWG CORE CAPABILITY TABLE

CCQM IAWG Core Capability Table

APPENDIX B: REGISTRATION FORM AND TECHNICAL PROTOCOL

CCQM-K145 & P183 Essential and Toxic Elements in Bovine Liver Registration Form

*** The sample will be dispatched directly to you according to this table, please fill in it in detail.**

*** Exemplary elements for the 6th IAWG Benchmarking Exercise.**

Other information:

a) Each participant will receive one numbered bottle containing 10g sample in each bottle. Based on the analyte and measurement methods chose by participant, if more sample is needed, please tell us at the time of registration.

b) A special requirement of customs entry for the sample dispatch should be described clearly, if needed.

Please send completed registration form to Wang Jun by e-mail no later than 10 June, 2017.

Coordinating laboratory and contact person Dr. Wang Jun National Institute of Metrology (NIM) No. 18, Bei San Huan Dong Lu, Chaoyang District, Beijing, P.R.China Email: wangjun@nim.ac.cn; Tel: 86-10-84251244

CCQM-K145 & P183 Essential and Toxic Elements in Bovine Liver Technical Protocol

1. Introduction

Liver plays a major role in metabolism and acts as a source of energy for the body by storing glycogen. Also, working with other systems and organs, it is responsible for several important functions such as storing iron, detoxifying harmful substances, maintaining the hormonal balance, and producing immune factors to fight infections. Cattle seemed to be the most sensitive animal species with respect to some metal toxicities resulting from ingestion of feed material. With the growing interest in the biological effects and also for the meet measurement quality, it is important and necessary to develop accurate and comparable analytical methods for elements in bio-samples. It has, however, been 10 years since the tissue sample (bovine liver) of CCQM-K49 key comparison. Therefore, the IAWG has included the need for such a key comparison to maintain, expand and improve core capabilities, and to support specific CMCs claim in bio-sample analysis as well.

The purpose of CCQM-K145&P183 is to ensure the comparable and traceable measurement results for essential and toxic elements such as P, S, Zn, Mn, Ni, Mo, Sr, Cr, Co, Pb, As and Hg in bovine liver among NMIs and other designated measurement bodies worldwide. The comparison has been agreed by IAWG as 6th IAWG Benchmarking Exercise with Zn and Ni as exemplary elements at the meeting in Korea in the early October 2016. The results of CCQM-K145 are expected to cover the measurement capability and support CMC claiming for inorganic elements in the similar biological tissue materials.

2. Sample

Liver tissues of new born healthy steers were collected and prepared under the strict protocols by the professional biological institutes. After the pretreatment of the raw materials, liver tissues were cut into portions of approximately 10 cm³. Then, they were homogenized with a high speed mixer, frozen and lyophilized by a freeze dryer, ground with ball grinding mill. The bovine liver powder was subjected to a sieving process through 200 mesh sieve and thoroughly homogenized in a 3-dimensional mixer. The resulting final product was radiation sterilized, bottled and stored at room temperature.

The homogeneity was investigated by analyzing 25 bottles of the liver material and determined by ICP-OES, WD-XRF and ICP-MS, the sampling weight is about 300mg. The microwave digestion was used to the sample preparation for ICP-OES and ICP-MS analysis. The results based on the *F* test showed the homogeneity level can fit the objective of the comparison.

The stability of the liver material at room temperature was conducted by using ICP-OES and ICP-MS. The testing results show that no obvious change trend of quantity was observed for the typical level elements during the 6-month period. The long-term stability of the material will be continued until the deadline for submission of this comparison results.

3. Measurands

The measurands to be determined are the mass fractions of P, S, Zn, Mn, Mo, Cr, Ni, Pb, Sr, Co, As and Hg. The expected concentration ranges of the twelve elements are listed in Table 1.

Table 1. Measurands and expected concentration range

For the benchmarking purpose, participants should carry out the analysis of the two exemplary analyte Zinc and Nickel, and submit the analytical results for Zinc and Nickel accordingly.

4. Measurement method

Participants may use any appropriate method(s) of their choice. The sample should be mixed thoroughly before pretreatment, and the analysis should be conducted with a recommended sample size of at least 300mg. Sample digestion methods is not prescribed; however, for methods requiring sample digestion, participants are cautioned about potential analyte loss, especially with dry-ashing techniques. It is suggested that at least five replicate samples be analyzed in order to assess the impact of measurement replication on the overall analytical uncertainty.

5. Dry mass correction

Because lyophilized bovine liver tissues are somewhat hygroscopic, and its moisture content may be affected to change by the environmental conditions. So **it is recommended that moisture determinations should be made on separate test portions taken at the same time as the portions to be analyzed.** The recommended procedure is that the sample (size of $0.5~1g$) is dried at 60°C for 7 hours by using oven drying, then balanced in a desiccator to room temperature.

6. Distribution

Each participant will receive one numbered bottle containing 10g sample in each bottle. Based on elements and measurement methods chose by participants, if more sample is needed, please specify in the registration form. Participants will be informed the date of samples dispatching, also each participant is required to confirm the receipt of the sealed samples, to fill in the return receipt table and send it to the coordinator by e-mail. If there is any damage, please contact us immediately and NIM will mail out another one.

7. Handling and storing instructions

The sample should be stored at room temperature ($18~22^{\circ}$ C) in its original bottle, capped tightly and not exposed to intense direct light and ultraviolet radiation. The sample should be carefully opened for analysis in a short period of time to avoid contamination.

8. Time schedule

Call for Participation: May, 2017 Deadline for registration: 10 June, 2017 Dispatch of the samples: June-July, 2017 Deadline for receipt of the result report: 28 Feb., 2018 Discussing of the result: CCQM/ IAWG Paris meeting of 2018

9. Registration

Please complete the registration form and return it to wangjun@nim.ac.cn no later than 10 June 2017.

10. Reporting

A suggestion for a summary report table will be sent to the participants by email while the samples are dispatched. The report should be submitted before 20 December, 2017. NIM will confirm the receipt of each report. The report should include the following aspects:

 \Diamond A final result and uncertainty evaluation. The results will be reported as mass faction [mg/g] for P and S, [mg/kg] for Zn, Mn, Mo, Cr and Ni, [μg/kg] for Pb, Sr, Co, As and Hg, respectively. At least five replicate

samples should be performed for each element.

- \Diamond Please note that only one result from each institute will be considered for calculation of the KCRV of each element.
- \Diamond A detail description of the applied method of measurement. If more than one method were applied, a detail description must be given for each method.
- \Diamond Information about sample digestion and preparation.
- \diamond Information about the reference material used for calibration (origin, standard value, standard uncertainty and isotopic ratio if necessary) or other materials used in the analytical procedure.
- \Diamond Information about the measurement uncertainty:
	- The complete specification of the measurement equation, including corrections, e.g. for blanks and interferences.
	- The identification and quantification of all uncertainty sources.
	- The combined standard uncertainty.
	- The value for the coverage factor and the expanded uncertainty.
- \Diamond Filled core capability tables relating to the measurement methods used by participants.

11. Participation

National metrological institutes (NMIs), or an appropriate designated institute in accordance with the CIPM MRA, are welcome to participate in the key comparison CCQM-K145 or the pilot study CCQM-P183. Other expert institutes from countries that are members of the Metre Convention are also invited to participate in the pilot study.

Coordinating laboratory and contact person

Dr. Wang Jun National Institute of Metrology (NIM) No. 18, Bei San Huan Dong Lu, Chaoyang District Beijing, 100029 P. R. China Tel: +86 10 84251244; Fax: +86 10 64271639 Email: wangjun@nim.ac.cn