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Modeling specific heat and entropy change in La(Fe-Mn-Si)13-H compounds
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aIstituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy
bDISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract

In this paper we model the magnetocaloric effect of LaFexMnySiz-H1.65 compound (x+ y+ z = 13), a system showing a
transition temperature finely tunable around room temperature by Mn substitution. The thermodynamic model takes
into account the coupling between magnetism and specific volume as introduced by Bean and Rodbell. We find a
good qualitative agreement between experimental and modeled entropy change −∆s(H,T ). The main result is that the
magnetoelastic coupling drives the phase transition of the system, changing it from second to first order by varying a
model parameter η. It is also responsible for a decrease of −∆s at the transition, due to a small lattice contribution
to the entropy counteracting the effect of the magnetic one. The role of Mn is reflected exclusively in a decrease of the
strength of the exchange interaction, while the value of the coefficient β, responsible for the coupling between volume and
exchange energy, is independent on the Mn content and appears to be an intrinsic property of the La(Fe-Si)13 structure.

Keywords: magnetocaloric effect, entropy change, mean field theory, magnetoelastic coupling
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1. Introduction

Two classes of magnetic materials are currently the most
promising candidates for room-temperature magnetic cool-
ing applications: the La(Fe-Si)13 based [1, 2] and the
MnFe(X-P) based with X= As, Ge, Si [3, 4]. Both sys-
tems display magnetic transition of the first order type be-
tween ferro- (FM) and paramagnetic (PM) phases with an
enhanced magnetocaloric effect (MCE). In hydrogenated
LaFexMnySiz-H (with x+ y + z = 13) the transition tem-
perature can be finely tuned by Mn substitution [1]. The
material shows, with Mn increasing from y = 0.06 to
y = 0.46, a transition temperature changing from 339 K
to 270 K, an entropy change (at 1.5 T field) which goes
from 18.7 J kg−1 K−1 to 10.2 J kg−1 K−1, and a tempera-
ture hysteresis going from 1.5 K to zero [5, 6]. The specific
heat measured by Peltier calorimetry in magnetic field is
shown in Figure 1. Modeling the measured behavior of
these systems is of primary importance for the further op-
timization of the material.

In this paper we consider a thermodynamic model which
takes into account magnetoelastic effects by introducing
an explicit dependence of the exchange interaction on the
specific volume, as proposed by Bean and Rodbell [7]. The
model is based on the fact that the exchange interaction
may depends on the distance between magnetic atoms and
a volume change is reflected by an overall change in the in-
teratomic distances. Bean and Rodbell [7] described this
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effect by introducing a Curie temperature depending on
the lattice specific volume Ω = (v−v0)/v0 (v, v0 being the
deformed and equilibrium lattice volumes, respectively) as
Tc = T0(1 + βΩ), with β being a dimensionless coefficient
describing the magnetoelastic coupling and T0 the Curie
temperature at β = 0. The model is developed by con-
sidering localized magnetic moments and treating the ex-
change interaction as in mean field theory and is able to
display both first and second order transitions depending
on the strength of β.

The use of the Bean and Rodbell model to describe
La(Fe-Mn-Si)13 is motivated by the fact that the com-
pound shows, at the transition temperature, a volume
shrink of about 1% upon heating without changes in the
cubic crystal symmetry of the elementary cell [8]. The FM
ordered phase is associated with a larger volume of the
crystal cell while the PM disordered state with a smaller
volume. The Bean and Rodbell mechanism is then a good
candidate to describe the phenomenology of La(Fe-Mn-
Si)13. One of the issues concerning the application of the
Bean and Rodbell model, is how the lattice contribution
affects the entropy change at the transition temperature.
Both Bean and Rodbell [7] in their original work on MnAs
and more recently Jia et. al [9] on La(FeSi)13 have ar-
gued that a lattice shrink should always correspond to a
decrease of the lattice entropy. This means that at the FM-
PM transition the magnetic and lattice entropies behave
differently: the first one is increasing, while the second
one is decreasing, with the balance in favor of the first.
Interestingly, recent experiments on the phonon spectrum
of La(Fe-Mn-Si)13 compounds below and above the transi-
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tion temperature, have reached a different conclusion [10].
Experiments shows a lattice entropy that appears to be
slightly larger in the PM state, then acting cooperatively
with the magnetic contribution. These different facts poses
several interesting questions on the nature of the transi-
tion and on the ferromagnetic state of La(Fe-Mn-Si)13[11].
One may wonder if, in the context of ferromagnetism, the
sum a positive contribution from the lattice plus a pos-
itive contribution from the spins is compatible with the
measured entropy change.

To shed some new light on this issue, we have com-
pared the experimental data concerning the series of Mn
substituted La(Fe-Mn-Si)13-H1.65 samples with the model,
taking explicitly into account the lattice contribution to
the entropy, which can be either positive or negative [12].
We have determined the model parameters by compar-
ison with the experiments. Indeed, the entropy change
has a number of peculiar features that the model is able
to describe up to a certain level of detail and we have
used them to derive the model parameters. The latter are
then needed to discuss the physics behind the behavior of
the hydrogenated La(Fe-Mn-Si)13 compounds at the tran-
sition.

We find a good qualitative agreement between exper-
imental and modeled entropy change −∆s(H,T ). The
main result is that the magnetoelastic coupling drives the
phase transition of the system, changing it from second
to first order by varying a model parameter η. It is also
responsible for a decrease of −∆s at the transition, due to
a small lattice contribution to the entropy counteracting
the effect of the magnetic one. The role of Mn is reflected
exclusively in a decrease of the strength of the exchange
interaction, while the value of the coefficient β, responsi-
ble for the coupling between volume and exchange energy,
is independent on the Mn content and appears to be an
intrinsic property of the La(Fe-Si)13 structure.

2. Thermodynamic theory

The thermodynamic model is developed by defining a
non equilibrium Landau free energy depending on the tem-
perature and on extensive variables such as the magneti-
zation M and the specific volume v of the system. The
Landau free energy of a ferromagnet is expressed as the
sum of the ferromagnetic energy fM and of the energy
associated to the non magnetic degrees-of-freedom fS :

fL = fM + fS (1)

The magnetic contribution can be estimated in terms of
the Weiss molecular field theory of ferromagnetism and it
is expressed as:

fM = −1

2
W (Ω)µ0M

2 − TsM (2)

The coupling between magnetic and structural degrees of
freedom is encompassed in the molecular field coefficient
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Figure 1: Specific heat capacity of hydrogenated La(Fe-Mn-Si)13
with different Mn content. Measurements upon heating at different
magnetic fields.
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Figure 2: Model results at various fields h ranging from 0 to 0.003
in steps of 0.001. Top: normalized magnetization m(h, t). Center:
magnetic field induced entropy change −∆ŝ = ŝ(h = 0, t) − ŝ(h, t).
Bottom: normalized entropy ŝ(h, t). The curves are displaced along
the temperature axis for clarity.
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W (Ω) appearing in Eq. (2), depending on the specific vol-
ume Ω = (v − v0)/v0 as W = W0(1 + βΩ). β is a di-
mensionless parameter describing the rate of change of the
molecular field coefficient with the reduced volume. This
idea has been originally introduced by Bean and Rodbell
[7] and further developed to describe magnetocaloric ma-
terials [13, 14, 15, 16, 12]. The expression for the magnetic
entropy sM is obtained assuming the magnetic moments
to be localized at atomic sites. In particular, the mag-
netic moment along the direction of the magnetic field is
µ(mJ) = −gLµBmJ , where gL is the Landé g-factor, µB is
the Bohr magneton andmJ can assume 2J+1 discrete val-
ues between −J and J . J is the total angular momentum
quantum number due to the contribution of the orbital and
spin momentum of the electrons. The power expansion of
the magnetic entropy around m = 0 is

sM(m) = nkB [ln(2J + 1)

− 1

2aJ

(
m2 +

bJ
2
m4 +O(m6)

)]
(3)

where m = M/M0 (−1 ≤ m ≤ 1) is the reduced mag-
netization, M0 = nµ(mJ = −J) is the saturation mag-
netization (n being the number of magnetic moments per
unit mass). kB is the Boltzmann constant and the co-
efficients aJ , bJ are given by aJ = (J + 1)/(3J) and
bJ = (3/10)[(J + 1)2 + J2]/(J + 1)2.

The structural part of the free energy, fS, gives rise to
an entropy contribution that is mainly due to the atomic
vibrations, i.e. to the phonons, and to the fluctuations
of electrons around the Fermi energy level. Phenomeno-
logically it can be expanded around the temperature T0
as

fS(Ω, T ) = fS(0, T0) +
v0
κT

Ω2

2

−
[
αpv0
κT

Ω + s0

]
(T − T0)− bv

1

2
(T − T0)2 (4)

where κT is the isothermal compressibility, αp is the ther-
mal expansion coefficient and bv is the entropy coefficient
at constant volume. From Eq. (4) it is possible to de-
rive the following linear equations of state, describing the
structural behavior alone:

Ω = −κT p+ αp(T − T0) (5)
s− s0 = −v0αpp+ bp(T − T0) (6)

where bp is the entropy coefficient at constant pressure
related to bv by the relation

bv = bp −
α2
pv0

κT
(7)

Both the entropy coefficients bv and bp are related to the
specific heat c by the relation b = c/T0.

We introduce now the normalized magnetic field h =
H/H0, where H0 = WM0, and the normalized temper-
ature t = T/T0, where T0 = aJµ0H0M0/(nkB) is the
Curie temperature at β = 0. By evaluating the deriva-
tive ∂fL/∂m = h, we determine the equation of state to
be solved in order to obtain the behavior of the magneti-
zation m at various t and h:

h = −[1 + ζ(1− t)]m− 1

3
ηm3 + taJB−1(m) (8)

where B−1(m) is the inverse Brillouin function and η, ζ
are two dimensionless parameters introduced to describe
the magnetostructural coupling. They are expressed as:

η =
3

2

β2κTnkB
aJv0

T0 (9)

ζ =αpβT0 (10)

In particular Bean and Rodbell [7] demonstrated that the
magnetic transition may transform from the second to the
first order type depending on the value of the parameter η.
In particular, the transition between PM and FM states is
of the second order for η < ηc while becomes of the first
order for η > ηc, with ηc = 3bJ . When the transition is
of the first order the entropy jump occurring at the phase
transition may include a structural contribution. The lat-
ter is regulated by the parameter ζ [12, 14].

To investigate more in detail the various contributions
to the entropy, we the derivative of Eq. (1) with respect
to T obtaining:

s = sM(m) + sW (m) + sS(p, T ) (11)

where sM(m) is the magnetic entropy of Eq. (3), sS(p, T )
is the structural lattice entropy of Eq. (6) and

sW (m) =
nkB
2aJ

ζm2 (12)

is the magnetoelastic entropy, a term of structural lat-
tice origin induced by the ferromagnetic exchange interac-
tion through the magnetoelastic coupling. The magnetic
entropy sM(m) has a maximum at m = 0 and it decreases
to zero for |m| = 1. The magnetoelastic entropy depends
upon the value of the parameter ζ and it is proportional to
m2. To analyze the competition between sM and sW , the
two terms depending on m, we introduce the normalized
magnetoelastic entropy, ŝ(m) = (sM(m) + sW (m))/(nkB).
The maximum difference is between the entropy at m = 0
and |m| = 1, ∆ŝmax = ŝ(0) − ŝ(1), and it is given by
∆ŝmax = ln(2J + 1) − 1

2aJ
ζ. By using the power expan-

sion of sM from Eq. (3) we obtain the following expression
for ŝ:

ŝ = ln(2J + 1)− 1

2aJ

[
(1− ζ)m2 +

bJ
2
m4 +O(m6)

]
.

(13)
Eq. (13) clearly shows that the total magnetoelastic en-

tropy may be increased or decreased depending on the sign

3



of ζ. The physics encompessed in the model ensures that
for ζ > 0 the lattice entropy contribution counteracts the
magnetic entropy one, thus reducing the entropy change
at the transition. Moreover, when η > ηc the transition is
first order and there is a discontinuous jump of the mag-
netization m. Consequently, at the transition temperature
between the low temperature phase (LT) and the high tem-
perature phase (HT) the entropy ŝ increases also discontin-
uously with a jump that must satisfy the thermodynamic
condition ∆ŝ = ŝHT−ŝLT > 0. Figure 2 shows the reduced
magnetization m(h, t), the normalized entropy ŝ(h, t) and
the entropy change −∆ŝ = ŝ(h = 0, t)− ŝ(h, t) computed
by solving Eq. (8) for η = 1 and ζ = 0, 0.25, 0.5.

!"# !$# %## %!# %&# %"#

#

'

(#

('

!#

!'

)#*')+

)(*#)+

)(*')+

,-). #*&"
#*%/

#*!'

#*($
#*#"

012345,-5678
(%
59

5)
!:
)(;
<
=
5(
>
5(
)

+)2>8theory

T (K)

ζ=0.25

η=1

1.15
1.1

1.2 1.2

-Δ
s 

(J
kg

-1
K-1

)
-Δ

s 
(J

kg
-1

K-1
)

Figure 3: Magnetic field induced entropy change −∆s(H,T ) in hy-
drogenated La(Fe-Mn-Si)13 samples with different Mn content. Top:
experimental curves obtained by Peltier calorimetry after Ref. [5].
Bottom: model results derived for the same h values set inFigure 2.

It is worth noting that for ζ < 1 the transition is from
LT-FM (m 6= 0) to HT-PM (m = 0) (see Figure 2, top
panel) and the magnetic entropy change is positive, i.e.
∆sM > 0. For what concerns sW , we can distinguish two
different cases depending on the sign of ζ. For ζ < 0, from
Eq. (12) we have ∆sW > 0 and there is an enhancement
of the total entropy change with respect to the magnetic
contribution alone, i.e. ∆ŝ > ∆sM. On the opposite,

∆sW < 0 for 0 < ζ < 1 and there is a reduction of the
total entropy change ∆ŝ < ∆sM. For ζ > 1 a novel feature
appears: the magnetic entropy change is negative ∆sM < 0
but the magnetoelastic entropy change is positive and large
enough (∆sW > |∆sM|) to invert the transition, i.e. from
LT-PM (m = 0) to HT-FM (m 6= 0) [12].
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Figure 4: Entropy change s(H,T )− sPM(T ) in hydrogenated La(Fe-
Mn-Si)13 compounds with different Mn content. Top: experimental
curves obtained by Peltier calorimetry after Ref. [5]. Bottom: model
results obtained with the same h field values set in Figure 2.

3. Comparison with experiments

To compare the model with experimental data we have
fixed J = S = 1/2. The remaining free parameters to
determine are then η, ζ, T0 and n. The value of T0 has
been set to fit the transition temperature measured for
the La(Fe-Mn-Si)13-H1.65 samples under investigation (see
Table 1). The values of the remaining parameters, η, ζ
and n, have been set by looking at the shape of the en-
tropy change −∆s (see Figure 3, top panel). Numerical
calculations show that the parameter η mainly affects the
shapes of the curve −∆s ( see Figure 3, bottom panel);
the parameter ζ changes the ratio between the height and
width of the −∆s peak (see Figure 2, central panel); the

4



coefficient nkB changes the amplitude of −∆s. The result
of the balance of the three effects is not trivial and the
choice of the values of the parameters leaves some arbi-
trariness. As a result we have found a good agreement
with experiments by choosing the same coefficient nkB =
170 J kg−1 K−1 for all the samples. The changes in the
shape of the curves obtained by lowering the Mn content
are well described by slight changes in the value of η and
a positive ζ is needed to fit the whole set of curves. The
value is approximately the same for all the series and it is
ζ = 0.25. The comparison between the experimental −∆s
and the theoretical one evaluated with the above η, ζ and
nkB values is shown in Figure 3. To compare the experi-
mental entropy with the theoretical expected one we have
subtracted from the experimental s(H,T ) a contribution
sPM(T ), depending only on T , representing the lattice con-
tribution in the HT-PM phase. This term is evaluated as
sPM(T ) =

∫
cPM/T dT , where cPM is the constant value

of the specific heat evaluated above the transition. The
experimental s(H,T ) − sPM (T ) curves are shown in Fig-
ure 4, top panel, and the results from theory are displayed
below. The comparison shows that the model is able to
reproduce the entropy change at the transition.

Fe Mn Si T0 µ0H0 η
(K) (T)

11.22 0.46 1.32 272 405 1.0

11.33 0.37 1.30 286 426 1.1

11.47 0.25 1.28 305 455 1.15

11.60 0.18 1.22 320.5 478 1.2

11.76 0.06 1.18 339 505 1.2

Table 1: Parameters T0, µ0H0 and η used to model the entropy
change behaviour of La(FexMnySiz)13-H1.65 samples with compo-
sitions x (Fe), y (Mn), z (Si) shown in the first, second and third
columns, respectively.

The values found for η are approximately linear with T0,
in agreement with Eq. (9). By making a linear fit of the
η values reported in Table 1 versus the corresponding T0
values we find a linear coefficient of 3.7× 10−3 K−1. The
latter can be used to determine the value of β through
Eq. (9). By taking a literature value for the compress-
ibility κT = 8.6× 10−12 Pa−1 [17] we find β ' 15 for all
the samples, independently of the Mn content. This value
appears reasonable in comparision with other estimates
made on different magnetocaloric materials [12]. At the
same time Eq. (10) gives another relation linking this time
β and ζ. We have therefore an alternative independent
route to check the feasibility of the chosen value of ζ, i.e.
ζ ' 0.25. If in Eq. (10) we substitute αp ' 5× 10−5 K−1,
the typical value of the thermal expansion coefficient for
iron alloys (that in the model should be an expansion due
to the lattice only) we end up with ζ values ranging be-
tween 0.20 and 0.25, depending on the transition temper-

ature. Since we do not have a very precise method to fit
with accuracy ζ from the experimental data, the fact that
the value fixed at the beginning, i.e. ζ ' 0.25, is within the
calculated range is quite satisfactory. This result provides
global coherency of the whole modeling approach.

4. Discussion

The physical picture of the phase transitions occurring
in La(Fe-Mn-Si)13-H1.65 compounds emerging from the
comparison between the model and the experiments can
be summarized as follows. The phase transition is driven
by magnetoelastic effects. The latter are at the same time
responsible for the transformation of the phase transition
from second to first order (η ≥ 1) and for a decrease of the
entropy change −∆s at the transition (ζ > 0). The varia-
tion of Mn content in the compounds results exclusively in
a change of the transition temperature T0, i.e. in a change
of the strength of the exchange interaction W ∝ T0 (see
Sec. 2). On the opposite, the magnetoelastic coefficient
β, linking W to the specific volume Ω, is basically inde-
pendent on the variation in Mn content. This fact may
be explained by noting that it is the particular arrange-
ment of the magnetic atoms in the La(Fe-Si)13 unit cell to
be responsible for the magnetoelastic effects, so for the β
value. The partial substitution of Fe atoms with Mn does
not change too much the arrangement of the atoms, but
it weakens the effective FM interaction between them.

Moreover, our results show that in magnetocaloric ma-
terials in which the transition is from a LT magnetically
ordered to a HT magnetically disordered state (ζ < 1),
the origin of the entropy change at the transition shall
be searched in the spin contribution, since lattice entropy
plays only a minor counteracting role. Another important
point to mention is that the performed modeling led us to
consider magnetoelastic effects with both β > 0 and ζ > 0.
This is a confirmation of the results obtained by Jia et al.
[9], foreseeing a lattice entropy decrease at the FM-PM
magnetic transition accompanied by lattice shrink. The
result recently obtained by Gruner et al. [10] may be due
to the fact that the experimental technique used by the
authors to access the phonon density of states may dis-
play a sensitivity on magnetic fluctuations. Therefore, the
results they have obtained may represent the sum of both
magnetic and structural contributions to the entropy and
not the lattice contribution alone.

Some final comments on the physical robustness of the
overall model can be argued by looking in more detail an-
other interesting aspect, concerning the choice of the nkB
coefficient we have made. In the fit with the experimental
data (see Sec. 3) nkB has been treated as a free parameter.
However, the density of spins (i.e. of magnetic moments)
n in a given compound can be calculated knowing the sat-
uration magnetization M0. Indeed, M0 = ngLµBJ and n
can be expressed as n = (NA/PM )NmNs, where NA is
the Avogadro’s number, PM is the molecular weight of the
system under consideration, Nm represents the number of
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magnetic ions per formula unit and Ns is the number of
spins per magnetic ion. In particular, for the La(Fe-Si)13
system, since J = 1/2, gL = 2 and iron atoms are the
only magnetic ions of the compound, knowing the ground
state spontaneous magnetization M0 = 165 A m2 kg−1 for
Nm = 11.5 [18], we get a number spins Ns ' 2.08,
corresponding to an atomic magnetic moment of 2.08µB
per Fe atom. We have then considered the La(Fe-Mn-
Si)13-H1.65 compounds: since the Fe content varies be-
tween 11.22 and 11.76 (Table 1) we can safely assume
that the same Ns evaluated for La(Fe-Si)13 [18]. Taking
the Nm values from Table 1, we get a mass density of
spins n/NA = 28.8 mol kg−1. This value can be compared
with the corresponding one as obtained from the model
(nkB = 170 J kg−1 K−1 ). The result is that from the en-
tropy fit the value, n/NA ' 20.5 mol kg−1, is only 70% of
the one derived from the saturation magnetization. This
fact should probably be ascribed to the limitations of the
mean field theory to describe the details of the magnetic
entropy sM of the system.

Indeed, it is well known that the sharp peaks experimen-
tally observed in the specific heat of magnetic compounds
are insufficiently reproduced by mean field theory. This
difficulty is related to the presence of spin correlations both
below and above the Curie point, producing a similar ef-
fect. Below the Curie point the long range spin correlations
lower the spin entropy as obtained from the individual lo-
calized moments estimate of mean field theory. Thus, in
the FM state the experimental cp is lower then the MFT
estimate. On the other hand, in the m = 0 disordered
PM state, above the Curie point, short range correlations
are still present and they are able to lower the magnetic
entropy below the maximum value nkB ln (2J + 1). This
is the reason why in the PM state the experimental cp is
higher then the MFT one.

The presence of magnetoelastic coupling does not
change too much this picture. As an example, Figure 6
shows the normalized specific heat ĉ = tdŝ/dt computed
through our MFT model. The specific heat displays a
peak at the transition temperature which is smoothed out
by the magnetic field. This phenomenology corresponds
qualitatively to what is observed in the experiments on
hydrogenated La(Fe-Mn-Si)13 shown in Figure 1, but for
what concerns quantitative comparison the model still suf-
fers from the defects of MFT just described. The over-
estimation of the magnetic entropy due to MFT causes
the density of magnetic moments n, resulting from the fit
with experiments, to be lower of ' 30% than the experi-
mental value, as pointed out previously. This fact can be
interpreted as an indirect effect of the existence of spin
correlations close to the Curie point.

The whole above discussion clarifies that a detailed theo-
retical description of the entropy change measured in mag-
netocaloric materials should rely on an improvement of the
evaluation of the magnetic entropy. Various approaches
to achieve this aim have been proposed in the the litera-
ture. It is worth mention here, as an example, the use of

Monte Carlo simulations to evaluate the energy dependent
density of states of systems including spin fluctuations.
Magnetic entropy is then derived from the density of state
through common thermodynamic relations. In particular,
Tamura et al. [19] have recently applied this approach
to the Ising ferromagnet, deriving the density of state by
means of the fast Wang-Landau sampling algorithm [20].
The resulting model allows to better capture the peculiar
shape of the specific heat peak observed at the first order
phase transition of the La(Fe-Mn-Si)13-H1.65 compounds
and it is promising for the eventual inclusion of magne-
toelastic effects. Future work shall be dedicated to the
understanding of which approach may have the advantage
of being physically sound and computationally feasible.

Although the main aim of the manuscript is to describe
entropy change at the transition, the model is also able to
give some insight about the hysteresis. Even if hystere-
sis is related to extrinsic effects, such as defects, acting
as pinning centers for the structural domain transforma-
tion that should be described by appropriate models [2],
the present MFT model, can at least provide the infor-
mation about the extension of the metastability region.
This latter corresponds to the region in which the solu-
tion of Eq. shows two coexisting FM and PM solutions.
These appear for η > 1 (at S = 1/2). The inset of Fig.
shows the magnetization versus temperature upon heating
and cooling obtained by taking the local metastable solu-
tions, depending on the temperature history, instead of the
equilibrium solution. In the model the temperature hys-
teresis ∆Thyst = Th − Tc depends on the eta value. Form
the previous discussion one expects that the MFT model
provides un upper limit of the measured material hystere-
sis. As an example we reported in Fig. the experimental
∆Thyst data from [cite] corresponding to different Mn con-
tent versus each transition temperature Th together with
the model predictions. The theoretical curve is obtained
by changing η from 1 to 1.25. In the graph for the sake
of comparison with experiments, we have used the linear
relation between eta and T0 (Eq.) with the proportion-
ality constant 3.7e-3 K-1 found before. One can observe
that the measured hysteresis is always lower or equal to
the model curve.

5. Conclusions

In this paper we have applied a thermodynamic model
describing magnetism and comprising the magnetoelas-
tic coupling between magnetic exchange interactions and
crystal lattice to explain the behavior of the specific
heat cp(H,T ) and entropy change −∆s(H,T ) experimen-
tally measured in a series of LaFexMnySiz-H1.65 samples
(x+ y + z = 13) having different Mn content.

The model is able to describe the change in the tran-
sition type from second order (high Mn content) to first
order (low Mn) by varying the MFT exchange interaction
coefficient. The detailed description of the shape of the
entropy change allowed us to obtain the values of the free
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parameters of the model. In particular we have found a
positive magnetoelastic coefficient β = 15, describing the
coupling between the exchange energy and lattice volume,
independent on the Mn content. This value implies also
that the lattice entropy has a small action in the FM-PM
phase transition, counteracting the magnetic entropy in-
crease. This result is in agreement with the conclusions
previously evidenced by Ref. [9].

While the MFT model is accurate enough to describe
the shape of the entropy change −∆s(H,T ), it is too sim-
ple to allow a satisfactory description of the main features
shown by the specific heat cp(H,T ). Thus, it appears evi-
dent that a detailed interpretation of the thermodynamic
behavior of magnetocaloric materials close to the phase
transitions deeply rely on the improvement of the under-
lying theoretical treatment of the magnetic entropy.
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