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Magnetization instabilities due to Spin Hall effect described by a
nonequilibrium thermodynamic approach

Patrizio Ansalone, Marco Piazzi, Vittorio Basso

Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce, 91, 10135 Torino, ITALY

Abstract

Magnetization instabilities in an insulating ferromagnet can be induced because of the spin Hall effect in a
Platinum side layer. In this paper we present a non equilibrium thermodynamic approach to jointly describe
magnetization dynamics and magnetic moment transport in the insulating ferromagnet. We employ non
equilibrium thermodynamics to derive the magnetic moment current which is injected into the ferromagnet
from Pt. We find that the magnetic moment current induces a thermodynamic effective field which depends
on the penetration depth of the current. By considering vector magnetization dynamic equation we show
that this term is able to compensate the damping and can possibly give rise to instabilities and the onset
of self-oscillations. We apply to the case of thin YIG and we derive the corresponding instability. The
model predicts the threshold for the onset of self oscillations, without tunable parameters, which are in good
agreement with recent experiments .
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1. Introduction

The capability to inject, manipulate and detect
spin polarized currents, represents one of the main
objectives of the field of magnon spintronics [1]. A
particular relevance is seen in the presence of magne-5

tization torque effects in ferromagnetic insulators (i.e.
yttrium iron garnet, YIG) caused by the magnetic
moment current induced by a metallic side layer with
a large spin Hall effect (i.e. platinum, Pt). In partic-
ular, it has recently been shown that when the direc-10

tion of the injected moment is antiparallel to the mag-
netization of the ferromagnet, it is possible to gener-
ate spontaneous magnetization dynamics [2]. As the
magnetization current in the insulating ferromagnet
is not carried by conduction electrons, but rather by15

out-of-equilibrium spin waves or magnons, the effect
is different from the well known spin transfer torque

[3]. Although the generation of spin currents from
magnetization dynamics is well documented [4], the
inverse effect is less clear. Here we look at the prob-20

lem from the point of view of the non equilibrium
thermodynamic approach to the transport of mag-
netic moment originally developed by Johnson and
Silsbee [5] and recently applied to the problem of
transport of spin waves in insulators [6, 7]. To jointly25

describe magnetization dynamics and transport, it is
necessary has to extend the thermodynamic theory
to vector magnetization. In this paper we present
such theoretical approach and we discuss the possi-
bility to predict magnetization instabilities and self-30

oscillations induced by the spin Hall effect.
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2. Nonequilibrium thermodynamics

The non equilibrium thermodynamics of fluxes and
forces applied to the transport of magnetic moment
is based on a continuity equation for the magnetiza-35

tion and on a constitutive relationship between cur-
rents and generalized forces. For the scalar mag-
netization the continuity equation reads ∂M/∂t +
∇ · jM = H∗/τM, where jM is the magnetic mo-
ment current, H∗ is the thermodynamic effective field40

H∗ = H − Heq(M) given by the difference between
the magnetic field H and the equation of state at
equilibrium Heq(M) and τM is a material dependent
time constant. This last term corresponds to the
presence of sinks and sources for the magnetic mo-45

ment as expected in a continuity equation. The gen-
eralized force associated to the magnetic moment cur-
rent results to be the gradient of the thermodynamic
effective field H∗, then the constitutive relationship
reads jM = µ0σM∇H∗ where σM is the magnetic50

moment conductivity, which is a material dependent
quantity[5, 6] .

In ferromagnets, characterized by a vector magne-
tization M, both equations must be generalized. A
particularly crucial point is to take into account that55

the continuity equation becomes a dynamic equation
for the magnetization vector and therefore it should
also includes the conservative torque term giving rise
to the precessional motion of the magnetization vec-
tor. By writing this equation in the Landau-Lifshitz-60

Bloch style [8] we have

∂M

∂t
+∇ · jM = −µ0γLM×Heff +

1

τM
H∗ (1)

where at the left-hand side of Eq. (1) one finds the
time variation of the magnetization and the diver-
gence of the magnetic moment current jM (a tensor
quantity) and at the right-hand side the conserva-65

tive torque and the damping term. The precessional
torque term depends on the effective field of micro-
magnetism Heff , while the damping term depends on
the vector thermodynamic effective field

H∗ = H−Heq(M) (2)

The last term at the right hand side of Eq.(1) ex-70

presses at the same time the sinks and sources for
the magnetic moment and the damping for the mag-
netization dynamics. Eq.(1) contains µ0, the perme-
ability of vacuum, and γL, the gyromagnetic ratio for
electron, which are known constants, and the time75

constant τM which is material dependent. In Eq.(2)
H contains the contributions of both the applied and
demagnetizing field, while Heq(M) is the vector equa-
tion of state at equilibrium. Similarly to the scalar
case, the constitutive relation is formally written as80

jM = µ0σM∇H∗ where σM is the magnetic moment
conductivity, which is a now a tensor quantity.

The thermodynamic effective field H∗ can be dif-
ferent from zero either because the magnetization is
out of the equilibrium state or because the boundary85

conditions with a side layer are forcing a magnetic
moment current which is absorbed by the ferromag-
net. A complete solution of the joint problem would
require to consider both the processes. Here we test
the model by first solving the magnetic moment cur-90

rent problem along the specific direction imposed by
the spin Hall effect layer and then by considering the
additional effects of the out-of-equilibrium dynamics
in the ferromagnet.

3. Magnetic moment current induced by the95

spin Hall effect

The spin orbit torque effects are realized in bilay-
ers in which the magnetic moment current is gener-
ated in a metal with a large spin Hall effect (such
as Pt, Ta and W) and is transmitted into an insu-100

lation ferromagnet (i.e. YIG) that will experience
an addition torque effect along the direction of the
magnetic moment brought by the current (see Fig.1).
Here we consider an electric current density in the
metal, jey, direct along y, so that the magnetic mo-105

ment current induced by the spin Hall effect results
to be along x and the direction of the magnetic mo-
ment along z. The intensity of the current source is
jMS = −(µB/e)θSHjey where µB is the Bohr magne-
ton, e is the elementary charge. θSH is the spin Hall110

angle that quantifies the efficiency of the conversion
between charge current and magnetic moment cur-
rent due to the spin Hall effect in metals with large
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spin-orbit coupling. The problem of the conduction
of the magnetic moment along z through the layers115

can be solved taking both the continuity equation
and the constitutive relationship in steady conditions.
Considering both the the magnetic field and the mag-
netization are along z, Eq.(1) reduces to

∂Mz

∂t
+∇ · jMz

=
Hz

∗

τM
(3)

For steady states, the result is a diffusion equation120

for the effective field l2i∇2
xH

∗
i,z = H∗

i,z, that can be
solved layer by layer containing as a parameter the
diffusion length li of each material [6]. We select
the following dimensions: material 1 (i.e. spin Hall
metal) from x = −t1 to x = 0 and material 2 (i.e.125

ferromagnetic insulator) from x = 0 to x = t2 (see
Fig. 1). With boundary conditions for the magnetic
moment currents (we drop the subscirpt M for sim-
plicity) j1(−t1) = j2(t2) = 0, j1(0) = j2(0) = j0 we
obtain the following expressions130

j1(x)= jMS

[
1+

sinh(x/l1)

sinh(t1/l1)

]
+(j0−jMS)

sinh[(x+t1)/l1]

sinh(t1/l1)
(4)

j2(x)=−j0
sinh[(x−t2)/l2]

sinh(t2/l2)
(5)

The corresponding potential is H∗(x) = τi∇xj(x).
We have therefore

H∗
1 (x)=

jMS

v1

cosh(x/l1)

sinh(t1/l1)
+
j0−jMS

v1

cosh[(x+t1)/l1]

sinh(t1/l1)
(6)

H∗
2 (x)=− j0

v2

cosh[(x−t2)/l2]

sinh(t2/l2)
(7)

where the parameter vi = li/τi, with the dimensions
of a velocity, represents the conductance of the layer.
By using the boundary condition for the fields at135

x = 0, H∗
1 (0) = H∗

2 (0), corresponding to a negligi-
ble interface resistance, we finally obtain the value of
the current at the interface j0 as

j0 = jMS

veff

v1 coth(t1/(2l1))
(8)

where veff , defined as

1

veff

=
1

v1 tanh(t1/l1)
+

1

v2 tanh(t2/l2)
(9)

is the total magnetic moment conductance of the bi-140

layer. The sought potential in the ferromagnet (2) is
therefore

H∗
2 (x) = H∗

2,0

cosh((x− t2)/l2)

cosh(t2/l2)
(10)

where

H∗
2,0 = − jMS

v1 coth(t1/(2l1))

veff

v2 tanh(t2/l2)
(11)

x

y
z

m
jey

H

YIGPt

jMx

t2=tYIGt1=tPt

M

Heff

jM

x

jMS

x

e-
jey < 0

Figure 1: Scheme of the bilayer composed by (1) a metal with
a large spin Hall effect (such as Pt, Ta and W) and (2) an insu-
lating ferromagnet (i.e. YIG). The magnetic moment currents
flows along x, the electric current is along y and the magnetic
field is along z.

4. Magnetization dynamics

In view of the application of the non equilibrium145

thermodynamic theory to magnetization dynamics
problems it is appropriate to derive the projections of
Eq.(1) onto the plane perpendicular to the magneti-
zation direction. By assuming negligible anisotropy,
we take Heq of Eq.(2) along the magnetization direc-150

tion. Then, by defining m = M/M , Eq.(1) reduces
to
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∂m

∂t
= −µ0γLm× [Heff − αm× (H− τM∇ · jM)]

(12)

where α = (µ0γLMτM)−1 is the damping constant. It
is worth to notice that the term ∇ · jM describes the
absorption of magnetic moment in the ferromagnet155

which is generated in the other layer, then the term
can be is written as an additional field Hsot = τM∇ ·
jM representing the spin orbit torque. If H = Hsot

one has the compensation of the damping and the
magnetization dynamics reduces to the precessional160

equation ∂m/∂t = −µ0γLm×Heff .

In the present paper we limit to observe what hap-
pens if we just take, for the divergence of the mag-
netic moment current, the solution previously ob-
tained in section 3 for the bilayer. We have Hsot(x) =165

H∗
YIG(x)ez where the space dependence is given by

Eqs.(10) and (11). The direction of the moment in-
jected is along z, then the spin orbit torque term
is also along z and it can be either a damping or an
anti-damping contribution depending on whether the170

magnetic moment injected is parallel or antiparallel
to the magnetization of the ferromagnet. By taking
the approximation of thin YIG thickness, tYIG � lYIG,
we find at zero order in a tYIG/lYIG expansion, the spin
orbit torque field constant though the layer175

Hsot = − jMS

vPt coth(tPt/(2lPt)).
(13)

The condition of the compensation of damping can
be used to predict the critical current as a function
of the magnetic field and can be compared with ex-
perimental data on the bilayer Pt/YIG of Ref.[2].
Experiments were conducted on thin YIG disks (20180

nm thickness, 2µm and 4µm diameters) with applied
magnetic field along a diameter (Ha,z). The mag-
netic field H is due to the sum of the applied and
the demagnetizing field. Assuming the demagnetiz-
ing coefficient Nd,x ' 1, we derive the condition for185

instability as Haz + Ms = Hsot. In this condition
the magnetization m may be driven to an instability
leading to self oscillations. The threshold current, in
this approximation, can be predicted by using only
the spin diffusion parameters of Pt190

jey =
e

µB

1

θSH
vPt coth(tPt/(2lPt))(Haz +Ms) (14)

By taking the saturation magnetization of the YIG
film µ0Ms = 0.215 T, the Pt layer of thickness tPt = 8
nm, θSH = −0.056 from [2] (the spin Hall angle for
the magnetic moment is opposite with respect to the
spin one) and by using the Pt values lPt = 7.3 nm195

and vPt = 3 m/s [6] we obtain the plot of Fig.2. The
nice agreement at large magnetic field shows that the
magnetic moment conductivity between layers can be
well described by the thermodynamic approach pre-
sented here. At low magnetic fields, the fact that200

magnetization of the YIG may not be perfectly par-
allel to z due to incomplete saturation then giving
a different type of magnetic moment conductivity,
can explain the differences between model end exper-
iments. This point can be improved by considering205

the injection of moments perpendicular to the mag-
netization.
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Figure 2: Threshold electric current density jey of Pt corre-
sponding to the onset of self oscillations in YIG due to the spin
orbit torque effect. Points: experimental data after Ref.[2] on
YIG disks (20 nm thickness, 2µm and 4µm diameters). Line:
theory, Eq.(14) with parameters given in the text. The mag-
netic field is H = Haz +Ms

4



5. Conclusions

In this paper we have extended the non equilib-
rium thermodynamic transport approach of Johnson210

and Silsbee [5] to describe vector magnetization. The
resulting model is able to jointly describe magnetiza-
tion dynamics and transport property. In the present
study we have applied this model to the prediction of
the magnetization instabilities that can be induced in215

an insulating ferromagnets because of the spin Hall
effect in an adjacent Platinum layer. We have first
solved the magnetic moment transport problem for
the bilayer Pt/YIG with magnetization aligned along
the z axis. Next we have projected the full equation220

into the plane perpendicular to the magnetization
and we have used the previous result on the transport
as a constraint. In this way the effect of the magnetic
moment current injected in YIG can be interpreted as
an extra thermodynamic field which depends on the225

penetration depth and may have the direction oppo-
site to the damping. We have applied the model to
the case of thin YIG with a uniform thermodynamic
effective field and we have derived the critical val-
ues corresponding to the instability of YIG in good230

agreement with experimental results of Ref.[2]. Fu-
ture efforts will be devoted to derive the details of
the magnetization dynamics beyond the instability
threshold.
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