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Quantum correlations become formidable tools for beating classical capacities of measurement.
Preserving these advantages in practical systems, where experimental imperfections are unavoidable,
is a challenge of the utmost importance. Here we propose and realize a novel quantum ghost
imaging protocol stemming from the differential ghost imaging, a scheme elaborated so far in the
limit of bright thermal light, particularly suitable in the relevant case of faint or sparse objects.
The extension towards the quantum regime represents an important step as quantum correlations
allow low brightness imaging, desirable for reducing the absorption dose. Furthermore, we optimize
the protocol in terms of signal-to-noise ratio, to compensate for the detrimental effects of detection
noise and losses. We perform the experiment using SPDC light in a microscope configuration. The
image is reconstructed exploiting non-classical intensity correlation in the low photon flux regime,
rather than photon pairs detection coincidences. On the one side, we validate the theoretical model
and on the other we show the applicability of this technique by imaging biological samples.

Introduction

Ghost imaging (GI) was theoretically proposed in
1994 [1] and experimentally demonstrated by Pittman
et al. one year later [2] by using quantum correlations
generated by spontaneous parametric down conversion
(SPDC). It was considered as the earliest quantum imag-
ing technique [3], but soon it has been shown that also
classical correlations, as present in split thermal beams,
can be successfully exploited, although with smaller vis-
ibility [4–10]. Two spatially correlated beams are used:
one is addressed to the object to be imaged and then to a
bucket detector, namely a detector without spatial reso-
lution, while the other is addressed directly to a spatially
resolving detector, without interacting with the object.
Neither of the two beams separately contains information
on the object absorption profile, nevertheless it can be
retrieved exploiting the correlation between them. Since
based on the evaluation of second-order momenta of the
joint distribution, GI is not a single-shot technique, in-
stead it requires the acquisition of several frames and the
signal-to-noise ratio (SNR) scales with the square root of
the number of frames [11, 12].

Initially motivated by a fundamental debate on the
boundary between classical and quantum resources, the
attention toward GI is justified by the fact that it can
be useful in various practical situations, as in the cases
where environmental constraints do not allow placing fine
optical system and pixeled detector behind the object
[13], and because it is robust in presence of atmospheric
turbulence or diffusive media on the object path [14–16].

Quantum photon number correlations, a tool of the
utmost relevance in quantum technologies [3, 11, 12, 17–
23], can add further advantages to GI as the possibility
to probe the sample with a wavelength which differs from
the one detected with spatial resolution [24, 25], in case

the first one is in a range where imaging system and
spatial detection is technologically demanding. More-
over, quantum correlation allows retrieving ghost image
at faint photon flux with a better SNR than by classical
beams [25–27], where the stronger than classical corre-
lation can be used also to reject external and detection
noise [18, 27, 28].

Several variations of GI, aiming at increasing its ap-
plicability in realistic scenarios have been proposed, as
for example back-scattering GI [29], computational GI
[30, 31], compressive GI [32, 33].

Among them, the so called ”differential GI” (DGI) pro-
posed in 2010 by Ferri et al. [34] has received a large
attention due to its relevant practical impact, addressing
the problem of reconstructing small or faint objects in
the field of view. In this situation the conventional GI
typically fails because it requires an unaffordable number
of acquisitions in order to reach a sufficiently high SNR.
Proposed and experimentally realized only with bright
thermal light [15, 34], DGI does not involve changes in
the typical GI optical setup, rather a more efficient use of
the available data. In particular also the integrated sig-
nal in the reference channel, from the spatially resolving
detector, is used in the data elaboration.

In this work we study the performance of a DGI ap-
proach when exploiting quantum resources, motivated by
their possible advantage in specific situations, for exam-
ple in low brightness regime. We develop a comprehen-
sive theoretical model of the SNR for both classical and
quantum sources, which takes into account non idealities
such as channels inefficiencies and electronic noise of the
detector. It comes out that the brightness of the source,
namely the number of photons per spatio-temporal mode,
has a fundamental role in determining DGI performances,
in terms of SNR, together with the photon losses. In par-
ticular, for low-brightness sources, the improvement pro-
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vided by DGI is dramatically affected by photon losses,
disappearing or becoming worse than GI for loss proba-
bility larger than 50%. These limitations of the DGI pro-
tocol cannot be derived from the classical description of
Ref. [34], where correlated beams are treated as identical
copies of the same classical stochastic process (an approx-
imation that is suitable only in case of intense thermal
beam).

However, we propose an optimized DGI protocol
(ODGI) able to partially compensate for experimental
imperfections, retrieving an advantage on GI for any
value of losses and brightness. The only further require-
ment for its application is the characterization of chan-
nels efficiencies. This protocol can have positive impact
where it is necessary to keep low the photon flux, as in X-
ray GI [35, 36]. The optimization procedure stems from
the one proposed and realized in the absorption estima-
tion framework [37, 38].

For demonstrating the performances of this method,
we perform an experiment using SPDC light in the low
brightness regime. However, rather than basing the GI
reconstruction on temporal coincidences among photon
pairs, as in the typical approach of almost all GI experi-
ments with quantum light, here we exploit non-classical
intensity correlation certified by the evaluation of a spe-
cific non-classicality parameter known as noise reduction
factor (NRF) [12, 39–42].

We validate the model comparing its prediction with
the SNR experimentally estimated for the GI, DGI and
the ODGI protocols. Besides that, in view of real appli-
cation, a biological object, a (285µm)2 wasp wing detail,
is reconstructed with spatial resolution of 5 µm.

Theory

We consider either equally split multi-mode thermal
beam (th) or multi-mode twin-beam (tw) generated by
SPDC. In both cases the two beams, used as probe and
reference respectively, present spatial correlation [12]. In
particular, referring to Fig. 1, the spatial selection per-

formed in the reference beam by the pixel in x
(2)
j au-

tomatically identifies a small area where the correlated
probe photons are expected to impinge on the object

plane, centered in x
(1)
j . This area represents the spa-

tial resolution of any GI scheme. This can be obtained,
for example, if the point-to-point far-field correlations of
SPDC are imaged at the detection plane for the refer-
ence beam, while at the object plane for the probe beam.
Similar condition can be obtained by pairs of correlated
spatial modes in split pseudothermal beams. We further
assume that the pixel is larger than the coherence area,
so that the resolution cells identified by two adjacent pix-
els do not overlap. Given this one-to-one correspondence
between object plane and reference detection plane, here-

Scheme of the correlations
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FIG. 1: Scheme of GI and DGI protocols. Spatial correlations
between two beams are exploited. The reference beam is de-
tected by a spatial resolving detector, the probe beam, after
interacting with the sample impinges on a detector without

spatial resolution. Every pixel x
(2)
j is in one-to-one correspon-

dence with a resolution cell x
(1)
j at the object plane. For the

image reconstruction the number of photons detected by the
bucket detector N1 and the one detected by each pixel in the

resolving detector, n2(x
(2)
j ), are used in the data elaboration.

In DGI protocol (dashed path) also the integrated signal N2

is exploited.

inafter we will omit the suffixes 1 and 2, identifying x
(2)
j

and x
(1)
j .

Each beam of the twin-beam follows thermal statis-
tics, therefore there is no difference between the thermal
and twin beam case when probe and reference beams are
considered separately. In particular, the mean number of
photons detected by the pixel in xj is:

〈n̂2(xj)〉th = 〈n̂2(xj)〉tw = n2 (1)

where we have assumed a spatially uniform beam. The
corresponding number of photons passing through the
resolution cell at the object plane and detected by the
bucket is:

〈n̂1(xj)〉th = 〈n̂1(xj)〉tw = n2 t(xj) (2)

with t(xj) the mean transmission profile of the object in
the resolution cell. Note that these expressions are ob-
tained assuming the same loss level on the two channels in
absence of the object η1 = η2 = η. This does not reduce
the generality of our model since possible unbalancement
between the channels can be included in the transmission
profile of the object. When M spatio-temporal modes are
collected per pixel per frame, the associated variances can
be written as [12]:

〈δ2n̂2(xj)〉th = 〈δ2n̂2(xj)〉tw =

n2(1 + n2/M) + ∆2
el

(3)
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〈δ2n̂1(xj)〉th = 〈δ2n̂1(xj)〉tw =

n2t(xj)(1 + n2t(xj)/M) + ∆2
el

(4)

In Eq.s (3) and (4) we have taken into account the elec-
tronic noise of the detector, ∆el. The crucial difference
between thermal and twin beam case is in the covariance
between two spatially correlated modes [12]:

〈δn̂2(xj)δn̂1(xi)〉th =
t(xi)n

2
2

M
δi,j (5)

〈δn̂2(xj)δn̂1(xi)〉tw = t(xi)

(
n22
M

+ ηn2

)
δi,j (6)

It is immediately clear that the correlation is always
higher for SPDC light. The ratio of the two expressions
is:

〈δn̂2(xj)δn̂1(xj)〉tw

〈δn̂2(xj)δn̂1(xj)〉th
= 1 + η

M

n2
(7)

showing that the correlations, at the base of GI protocols,
are significantly stronger for twin beam for small number
of photons emitted per mode, n2 � ηM . It follows that,
in this regime, only twin-beam light allows the object
reconstruction in practical situations. In the opposite
regime the performance of equally split thermal light and
twin beam is asymptotically the same.

In the conventional GI protocol the transmission pro-
file of the object is retrieved considering the covari-
ance between each pixel of the reference channel n̂2(xj)

and the bucket detector on the other channel, N̂1 =∑N
i=1 n̂1(xi), as represented in Fig. 1. Here, N is the

number of resolution cells at the object plane which corre-
sponds to the number of pixels at the resolving detector.
Indeed, from either Eq. (5) or Eq. (6) it comes out that
for both thermal and twin beam case, the reconstructed
image is:

SGI(xj) = 〈δN̂1δn̂2(xj)〉 ∝ t(xj) (8)

In [34], Ferri et al. propose the DGI protocol, where
the bucket detector signal N̂1 is replaced by N̂DGI =

N̂1 − 〈N̂1〉
〈N̂2〉

N̂2, with N̂2 =
∑N
i=1 n̂2(xi) the integrated sig-

nal from the spatial resolving detector. This alternative
protocol is depicted by the dashed path in Fig. 1. Note
that 〈N̂1〉/〈N̂2〉 = t̄, where t̄ is the average transmission

of the object, i.e. t̄ = (1/N )
∑N
i=1 t(xi). For DGI the

reconstructed image is given by:

SDGI(xj) = 〈δN̂DGIδn̂2(xj)〉 = SGI(xj)− t̄〈δ2n̂2(xj)〉
(9)

In the last equality we have used the fact that modes
collected by different pixels of the resolving detector are

uncorrelated. Making use of Eq. (3, 5, 6) we get

SthDGI(xj) = n2

[n2
M
δt(xj)− t̄

]
(10)

StwDGI(xj) = n2

[(n2
M

+ η
)
δt(xj)− t̄(1− η)

]
(11)

From Eq. (10), in the limit n2/M � 1, one retrieves
the main feature of DGI as proposed in [34], namely its
sensitivity to the spatial change in the transmission of
the object, δt(xj) = t(xj) − t̄, rather than to the abso-
lute value t(xj). This explains its significant advantages
in the reconstruction of small or highly transparent ob-
jects. However, it is also clear that in the opposite regime
of small number of photons detected per spatio temporal
mode, the information on the transmission profile of the
object is substantially lost. With twin beam, the trans-
mission profile can be reconstructed even for n2/M � 1,
provided that the efficiency η is sufficiently high. Any-
way, the possibility to practically get a faithful image is
determined by the SNR. It is important to reduce the
noise as much as possible on the reconstruction. For this
reason, following the method developed in [37, 38], we
propose a generalization of the DGI protocol by replac-
ing N̂DGI with N̂k = N̂1 − kN̂2, leading to

Sk(xj) = 〈δN̂kδn̂2(xj)〉 = SGI(xj)− k〈δ2n̂2(xj)〉 (12)

where k is a constant that can be set in order to mini-
mize the noise in the estimation of Sk(xj), approximately
given by:

δ2Sk(xj) ≈ 〈δ2N̂k〉〈δ2n̂2(xj)〉 (13)

〈δ2N̂k〉 = 〈δ2N̂1〉+ k2〈δ2N̂2〉 − 2k〈δN̂1δN̂2〉

For k = 0, i.e. for conventional GI, the variance reduces
to δ2SGI(xj) = 〈δ2N̂1〉〈δ2n̂2(xj)〉 and making use of Eq.
(3) and (4),

δ2SGI(xj) = Nn22
(
t̄+

n2
M
t̄2
)(

1 +
n2
M

)
(14)

Eq. (14) shows that in the limit of n2/M � 1 we find
the same noise dependence from the mean transmittance
squared reported in [34], although the general expression
predicts a linear dependence in the opposite regime.

For the sake of simplicity, we focus on the case of a two
level object, with εN resolution cells of transmission t−
and (1− ε)N of transmission t+. Therefore, ε represents
the fraction of the detection area occupied by the lower
transmittance portion of the object. Note that t̄ can be
written in terms of 0 ≤ ε ≤ 1 as t̄ = (1− ε)N t+ + εN t−.
Under these assumptions the SNR is defined as:

SNR =
|〈S+〉 − 〈S−〉|√
δ2〈S+〉+ δ2〈S−〉

, (15)
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where 〈S±〉 and δ2〈S±〉 are respectively the mean value
of the reconstructed image in correspondence of t± and
its associated variance. Considering t+ = 1, t− = 0 and
no electronic noise, the SNR in the thermal and SPDC
case for the GI protocol are:

SNRth
GI =

√
H

1√
2N (1− ε)

n2
n2 +M

, (16)

SNRtw
GI =

√
H

1√
2N (1− ε)

n2 +Mη

n2 +M
(17)

Note that in this case ε simply becomes the fraction of
the detection area occupied by the object. In the SNR
expression the factor

√
H, being H the number of frames

used to estimate S, simply comes from the central limit
theorem, where the uncertainty on a mean value scales
as
√
H, e.g. δ2〈S(xj)〉 = δ2S(xj)/H. From Eq.s (16)-

(17) it emerges one of the weakness of the conventional
GI, namely that for small ε the SNR drops down, making
difficult the reconstruction of small objects in the field of
view.

In Fig. 2 we report an example of GI reconstruction
for a two level object, for different values of ε. From
these reconstructions it is possible to experimentally es-
timate the SNR. 〈S±〉 and δ2〈S±〉 are estimated as the
mean value and the variance on the reconstructed im-
ages, in correspondence of the regions of transmittance
t± respectively. It can be appreciated how the object, a
totally absorbing deposition on the right side of the field
of view, better emerges from the noise as ε increases.

𝜖 = 0.18 𝜖 = 0.29 𝜖 = 0.41

𝜖 = 0.53 𝜖 = 0.65 𝜖 = 0.76

SNR = 0.84 SNR = 0.88 SNR = 1.00

SNR = 1.13 SNR = 1.27 SNR = 1.58

50 𝜇m

FIG. 2: Experimental GI reconstructions of a binary object
(t+ = 1, t− = 0) for N = 952 and H = 2000, using SPDC
light. The object consists in a totally absorbing deposition
occupying a variable fraction ε of the reconstructed area. Dif-
ferent values of ε are considered and the corresponding SNR
estimated; for small ε, e.g. ε = 0.18, SNR<1 and the deposi-
tion on the right side is almost hidden in the noise.

This issue of the conventional GI can be overcome
by considering the generalized protocol Sk(xj). Indeed,

from Eq. (13) we argue that exploiting the spatial corre-
lations between the two beams, i.e. 〈δN̂1δN̂2〉 6= 0, and
choosing k appropriately, the noise can be reduced. This
idea is at the basis of the optimization procedure we im-
plemented. In particular, we maximize the SNR respect
to k, and define the ODGI protocol as:

SODGI(xj) = Skopt(xj) = 〈δN̂optδn̂2(xj)〉,
N̂opt = N̂1 − koptN̂2.

(18)

The general expression for kopt, in the twin-beam case,
is:

ktwopt =
n2(n2 +Mη)t̄

n22 +M(n2 + ∆2
el)

(19)

while for the thermal case a similar expression holds but
without the term Mη at the numerator. Focusing on the
twin-bem case, we have:

n2/M � 1 : ktwopt = t̄ =
〈N̂1〉
〈N̂2〉

(20)

n2/M � η : ktwopt =
n2

n2 + ∆2
el

η · 〈N̂1〉
〈N̂2〉

(21)

Eq. (20) shows that for high number of detected photons
per mode SODGI coincides with SDGI. Remarkably, in
this case kopt does not depend on experimental imperfec-
tions.

For low brightness sources, as shown in Eq. (21), SDGI

coincides with StwODGI only in the ideal case of η = 1
and ∆el = 0; in all other cases ODGI performs better.
However, in order to evaluate ktwopt, absolute values of the
channel efficiency η and the detection noise ∆el should
be known [38, 44].

The improvement offered by DGI versus the conven-
tional GI protocol can be quantified in terms of SNR. For
the sake of simplicity we report the expressions neglecting
the electronic noise, namely ∆2

el � n2, and considering
a binary object (t+ = 1, t− = 0):

n2/M � 1/ε :
SNRtw

DGI

SNRtw
GI

=
SNRth

DGI

SNRth
GI

=
1√
ε

(22)

n2/M � 1 :
SNRtw

DGI

SNRtw
GI

=
1√

2(η − 1
2 )(ε− 1) + 1

(23)

These results can be graphically appreciated in Fig. 3.
In the high-intensity regime, corresponding to Eq. (22)
and reported in Fig. 3a, SPDC and thermal light show
the same performance and the SNRs for both GI and
DGI are independent from the channel efficiency. Note
that the validity condition of Eq. (22) requires higher
and higher values of detected photons per mode as ε de-
creases. For small ε the DGI advantage is relevant, an
extremely interesting feature in view of real applications.
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GItw ≡ GIth

[𝜂 = 1, 0.7, 0.2]

ϵ

DGItw ≡ DGIth

[𝜂 = 1, 0.7, 0.2]

SNR ൗ𝑁 𝐻
𝑛2
𝑀

≫ 1SNR

(a)

SNR ൗ𝑁 𝐻
𝑛2
𝑀

≪ 𝜂

ϵ

DGItw [𝜂=1]

GItw [𝜂=1]

DGItw [𝜂=0.7] GItw [𝜂=0.7]

DGI𝑡𝑤 [𝜂=0.2]

GItw [𝜂=0.2]

SNR

(b)

FIG. 3: SNR, normalized per the number of frames H and
the number of pixels in the reconstructed area N , in func-
tion of the object occupation fraction ε, for different values
of the channel efficiency η (t+ = 1, t− = 0, ∆el = 0). (a)
High brightness regime. (b) Low brightness regime, twin-
beam case.

On the contrary, losses in the low intensity regime have
a significant impact. From Eq. (23) comes out that,
despite we find the same result of Eq. (22) for η = 1,
the improvements offered by DGI over GI decreases with
losses. In particular, for η < 1/2, DGI performs even
worse than the conventional protocol. The dependence
of the SNR from the channel efficiency, at low brightness,
is evident in Fig. 3(b).

The ODGI protocol can partially compensate for
losses, in particular:

n2/M � η :
SNRtw

ODGI

SNRtw
GI

=
1√

η2(ε− 1) + 1
(24)

From Eq. (24) it emerges that, for low brightness sources,

ODGI performs always better than the conventional GI,
but it is also permanently better than DGI, as it emerges
comparing Eq. (24) with Eq. (23). Note that in these
equations we don’t report the expressions for thermal
light since in this regime thermal correlations are order
of magnitude weaker than for twin-beam light (see Eq.
(7)), thus requiring an unfeasable number of frames for
achieving a sufficiently high SNR.

The general performance of DGI and ODGI with re-
spect to conventional GI, for the SPDC case, is reported
in Fig. 4 in function of the channel efficiency η and
the number of detected photons per mode n2/M , fix-
ing ε = 0.1. Considering the front plane, correspond-
ing to n2/M = 0.01, one can observe that the highest
ODGI advantage over both the other protocols occurs
when SNRtw

DGI = SNRtw
GI, i.e. for η ∼ 0.5. Moreover, it

emerges that increasing the brightness of the source al-
lows obtaining an advantage with respect to GI for lower
value of the channels efficiency η, so that, depending on
the experimental condition, the optimal trade-off can be
designed.

0.01

5

0.10
0.50

1

0.05

10

1

0.5

0

1

1.5

2

2.5

𝜂
𝑛2/𝑀

SNRODGI
tw

SNRGI
tw

SNRDGI
tw

SNRGI
tw

FIG. 4: DGI and ODGI are compared in terms of SNR with
GI, at varying both the channel efficiency η and the number of
detected photons per mode n2/M . The surfaces are obtained
for the twin-beam case, considering a binary object (t+ =
1, t− = 0) and ε = 0.1.

Experiment

Here we present an experiment comparing GI, DGI
and ODGI protocols in the low brightness regime using
twin-beam generated by SPDC.

The experimental set-up is reported in Fig. 5. A
twin-beam state with degeneracy wavelength λ1 =
λ2 = 810nm is produced pumping a 1cm Type-II-Beta-
Barium-Borate (BBO) non linear crystal with a CW
laser-beam (100mW at λp = 405nm). In this process,
with a certain small probability, a photon of the pump is
down-converted into two photons. The momentum con-
servation implies that the two downconverted photons
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Experimental set-up

BBO IF 𝑓𝐹𝐹

CCD

𝑁2

𝑛2(𝑥𝑖)

𝑛1(𝑥𝑖)𝑓𝐼𝑀

Bucket 
Detectors

𝜆𝑝𝑢𝑚𝑝 =

405 nm
Σ

Σ 𝑁1

FIG. 5: Scheme of the experimental set-up. In the BBO crys-
tal two beams with perfect correlation in the photon number
(twin-beam state) are generated. The probe beam interacts
with the sample and is detected by a half of a CCD camera
chip, while the other beam goes directly to the second half of
the chip. The equivalent bucket detector on both channels are
simulated by integrating (summing pixels signal) over the two
regions. Two different samples are used: a set of uniform de-
positions of different transmittance t− and a biological object,
i.e. a wasp wing.

emerge with opposite transverse momenta q1 = −q2. In
the far field of the emission, realized at the focal plane of a
lens with fFF = 1cm, momentum correlation is mapped
in position correlation, x1 = −x2, with xi = λiqifFF

2π . To
detect only photons around the degeneracy and to cut
the pump, an interference filter with 20nm bandwidth
centered at 800nm is placed after the crystal. To take
advantage of the point-to-point far-field correlations, the
object is placed directly at the focal plane of the fFF
lens , and a second lens with focal length fIM = 1.6cm,
is used to image this plane to the camera sensor, with a
magnification factor M = 7.8.

The detector is a charge-coupled-device (CCD) cam-
era Princeton Inst. Pixis 400BR Excelon operating in
linear mode, i.e. the signal is proportional to the in-
cident number of photon (intensity) in the acquisition
time, and cooled down to −70◦C. It presents high quan-
tum efficiency, nominally > 95% at 810nm, 100% fill fac-
tor and low noise (read-noise has been estimated to be
∆el = 5e−/(pixel · frame) at 100kHz acquisition rate,
and ∆el = 13e−/(pixel · frame) when the higher 2MHz
digitization rate is used). The detector area measures
(13.3mm)2 and the size of a physical pixel is 13 µm, nev-
ertheless for this experiment we use 3× 3 hardware bin-
ning. It is known that the ultimate resolution achievable
in ghost imaging is given by the second order coherence
area of the light at the object plane. In particular, fol-
lowing the procedure in [43], we estimated this coherence
area to be (5µm)2. The binned pixel size corresponds
roughly to the coherence area, taking into account the
7.8 magnification factor from the object plane to the de-
tection plane, so that pixels collect independent optical
mode thus remaining statistically uncorrelated to each
other. Note that in our experimental configuration there
is no physical bucket detector. The equivalent bucket de-

tectors on both the beams are simulated by integrating
over the respective regions of the sensor.

The average number of photons detected per pixel per
frame is n2 ∼ 103 and the corresponding number of
modes is M = MspMtemp, where Msp and Mtemp are
the number of spatial and temporal modes. Being the
acquisition time of a single frame 50 ms, and the coher-
ence time of the SPDC process around 10−12s, it fol-
lows Mtemp ∼ 5 · 1010. The dimension of a binned pixel
is chosen in order to have Msp ∼ 1 incident. It fol-
lows that the condition of very low brightness is fulfilled:
n2/M ∼ 2 · 10−8 � η.

In order to demonstrate the non-classicality of the de-
tected intensity correlation, we evaluate the NRF param-
eter defined as NRF = 〈∆2(n̂1 − n̂2)〉/〈n̂1 + n̂2〉, that is
the variance of the photon number difference between a
pair of correlated pixels normalized by their sum (the
shot noise bound). Only non-classical correlation allows
to have 0 < NRF < 1 [3, 12]. In our case we estimated
NRF = 0.77 ± 0.02. Note that NRF, in our setup, de-
pends on the pixel size with respect to the coherence area,
thus it is possible to reach lower value of NRF integrat-
ing the signals over larger areas. However, this is not the
scope of the present work.

To experimentally validate the theoretical model we
image four different objects, each of them presenting
two levels of transmittance (t+ ∼ 1 for all cases, t− =
0, 0.25, 0.34, 0.52 respectively). These samples consist in
a AR-coated glass-slide with thin metallic depositions.
For each sample 3 · 104 frames are acquired at 100 kHz
acquisition rate. In the data processing, a cropped re-
gion of N = 28 × 34 binned pixels is reconstructed,
including each time an increasing fraction ε of the low
transmittance part of the object. The reconstruction is
performed using the three different protocols SGI, SDGI,
SODGI. An example of the corresponding reconstructions
is presented in Fig. 2 in case of the conventional GI. The
dependence of SNR, in Eq. (15), from ε is evaluate per-
forming spatial statistics on this kind of images.

Fig. 6 (a) and (b) report the results for two different
transmittances, t− = 0 and t− = 0.52 respectively. The
dashed lines are obtained fitting the experimental data
with the theoretical model, considering η as free param-
eter.

In Fig. 7, at fixed ε = 0.52, the SNR for different t−
is reported. Also, in this case data are fitted using the
theoretical curves with the efficiency η as free parameter.

For comparing the three protocols in presence of higher
losses a neutral filter is placed on the twin-beam path.
Two different values of channel efficiency are considered:
η ∼ 0.5 and η ∼ 0.3. The results corresponding to these
experimental situations are reported in Fig.s 8 and 9 re-
spectively. In particular for η = 0.3, the DGI proto-
col performs worse than the conventional one, while the
ODGI always offers an advantage.

In all the cases considered, see Fig.s 6-7-8-9, the curves
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SN
R

FIG. 6: SNR in function of ε, the fraction of the detection
area occupied by the deposition, for (a) t− = 0 and (b) t− =
0.52. Green color refers to GI, purple to DGI and yellow
to ODGI. The dots are the experimental data, obtained for
H ∼ 3 ·104 frames and an ares of N = 952 pixels. The dashed
lines are obtained fitting the data with the theoretical model,
considering η as free parameter. The confidence region at 1σ
is also reported as colored bands around the curves.

fit the experimental data properly, falling almost all the
data in the 1σ confidence region. A further element of
consistency of the model is the accordance between the
value of η obtained from the fit and the one indepen-
dently estimated with the absolute technique described
in [43–46], which extends the Klyshko method [47, 48].
Indeed, referring for example to Fig. 6 (a), the val-
ues of η obtained from the fit and their standard un-
certainty are: ηGI = 0.798± 0.004, ηDGI = 0.786± 0.003,
ηODGI = 0.786 ± 0.003, being the value independently
estimated η = 0.794± 0.003. The values are compatible
with a confidence level of 95%. Analogous results are
obtained in all the other fits.

Finally, in order to demonstrate that our system can
be interesting in view of real application, two different
biological samples are imaged, in particular, a polistes
wasp wing and a green bug wing. The details cover a
region of N = 57 × 57 binned pixels, corresponding to

DGItw

ODGItw

GItw

𝑡−

𝑡−

SNR SNR

FIG. 7: SNR in function of t−, fixed ε = 0.52. Green color
refers to GI, purple to DGI and yellow to ODGI. The dots
are the experimental data, obtained for H ∼ 3 · 104 frames
and an area of N = 952 pixels. The dashed lines are obtained
fitting the data with the theoretical model, considering η as
free parameter. The confidence region at 1σ is also reported
as colored bands around the curves.

DGItw

ODGItw

GItw

𝜂 = 0.5
𝑡− = 0

SNR

ϵ

SNR

ϵ

FIG. 8: SNR in function of ε, for η ∼ 0.5. Green color refers
to GI, purple to DGI and yellow to ODGI. The dots are the
experimental data, obtained acquiring H ∼ 3 ·104 frames and
considering an area of N = 952 pixels. The dashed lines are
obtained fitting the data with the theoretical model, consid-
ering η as free parameter. The confidence region at 1σ is also
reported as colored bands around the curves.

an area of (285µm)2 in the object plane. The resolu-
tion achieved with our set-up is 5µm, corresponding to
the size of the second order coherence area at the object
plane reached in the actual setup. The resolution is not
the main concerns of our paper, focused on the SNR, but
we mention that it is aligned with other recent ghost mi-
croscopy experiment [25]. In Fig. 10 the polistes wasp
wing reconstructions, obtained for 2 ·105 frames acquired
at 2MHz, are reported. Fig. 10(a) is the direct image.
To obtain the reconstructed images via SGI and SODGI, in
Fig. 10(b)-(c) respectively, the total region is divided into
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ϵ

SNR 𝜂 = 0.3
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FIG. 9: SNR in function of ε, for η ∼ 0.3. Green color refers
to GI, purple to DGI and yellow to ODGI. The dots are the
experimental data, obtained acquiring H ∼ 3.5 · 104 frames
and considering an area of N = 525 pixels. The dashed lines
are obtained fitting the data with the theoretical model, con-
sidering η as free parameter. The confidence region at 1σ is
also reported as colored bands around the curves.

Direct Image 𝑆GI 𝑆ODGI

50 𝜇m50 𝜇m 50 𝜇m

(a) (c)(b)

FIG. 10: Images of a wasp wing with spatial resolution of
(5µm)2. (a) direct image, obtained averaging 5000 frames.
(b)-(c) reconstruction using the GI and ODGI protocol re-
spectively. The total region is divided into 9 sub-region, the
protocol is applied to each of them and finally the complete
image is recovered. 40 block of 5000 images acquired at 2MHz
are processed.

9 sub-regions and the protocol applied to each of them.
At this digitization rate the presence of higher electronic
noise lowers the improvement offered by ODGI, by the
way few more details can be appreciated in Fig. 10(c)
rather than in Fig. 10(b) (see for example the increased
visibility of the edge of the wing in the left side). In Fig.
11(b) the reconstruction of the green bug wing is shown
(Fig. 11(a) is the direct image). In this case we acquired
4 ·104 frames at 100 kHz. In particular, in Fig. 11(c)-(d)
we report the reconstruction of two different details. In
Fig. 11(c), the edge of the wing is more defined when
using SODGI with respect to the conventional protocol.
In Fig. 11(d) the SGI and SODGI reconstructions of a
second detail are reported for different number of frames:
it can be appreciated that using the ODGI protocol the
spot emerges from the noise for a lower number of frames.

5.000 10.000 20.000 40.000

𝑆𝐺𝐼 𝑆𝑂𝐷𝐺𝐼Direct Image

50 𝜇m

ODGI 
reconstruction(a) (b) (c)

(d)

𝑆 𝐺
𝐼

𝑆 𝑂
𝐷
𝐺
𝐼

𝟓𝟎 𝝁m

FIG. 11: Images of a green bug wing with spatial resolution
of (5µm)2. (a) direct image, obtained averaging 5000 frames.
(b) reconstruction using the ODGI protocol. The total region
is divided into 9 sub-region, the protocol is applied to each
of them and finally the complete image is recovered. 8 blocks
of 5000 images acquired at 100 kHz are processed. (c) SGI

and SODGI reconstruction of the border detail squared in (a).
(d) SGI and SODGI reconstruction of the spot detail squared
in (a). The reconstruction for different number of frames is
reported.

In particular, note that the detail for 40.000 frames using
SGI is comparable with the one obtained for 20.000 by
SODGI . This result is in agreement with the prediction
of our model for these specific conditions. This means
that the photon dose can be reduced of a factor 2 while
providing the same information, an important improve-
ment when considering delicate samples (e.g. for X-ray
ghost imaging).

Conclusion

In this work, we extended the differential ghost imag-
ing protocol [34] in the unexplored regime of low bright-
ness sources and quantum correlation. The attention to-
ward the DGI is justified since it offers significant SNR
improvements over the conventional GI, in particular in
presence of small or highly transparent objects. How-
ever, this advantage has been demonstrated in previous
works within the implicit assumption of classical intense
thermal beams. In this paper in particular we point to
the investigation of the low-intensity regime, including
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quantum resources, which is of great interest since there
are practical situations where it is worth to keep low the
photon dose, e.g. biological, delicate or photo-sensitive
samples. For example, this represents an issue in X-ray
imaging and spectroscopy [35, 36]. We note that in this
contest, improving the SNR performance at fixed expo-
sure time, i.e. without increasing the photon dose, is of
utmost importance.

A theoretical model in terms of experimental quan-
tities has been developed, both for thermal and SPDC
light, for any value of the source brightness. Also exper-
imental imperfections such as losses and electronic noise
in the detector has been considered. It comes out that
DGI performances in the regime of small number of pho-
tons per spatio temporal mode (n2/M � η) are highly
affected from experimental imperfections. For example,
the DGI advantage in terms of SNR is almost washed
away even for relatively high efficiency as the one in our
set-up, η = 0.8 and the model shows that for lower effi-
ciencies, namely η < 0.5, DGI is worse than GI.

Therefore, inspired by what done in the absorption es-
timation framework in [37], we propose an optimized pro-
tocol (ODGI) able to partially compensate for detrimen-
tal effects of experimental imperfections such as channel
efficiencies and electronic noise, but requiring their esti-
mation. In the high brightness regime ODGI is always
equivalent to the original DGI protocol. In the opposite,
low brightness, case it coincides with DGI when η = 1
while in the realistic condition of η < 1 it performs always
better than both DGI and GI.

The theoretical model has been experimentally vali-
dated in the low brightness regime using quantum corre-
lated beams produced by SPDC. The number of photons
collected per pixel was n2 ∼ 103: this regime allows to
reconstruct the images by performing intensity correla-
tions, without the need of any time-coincidence scheme.
Finally, in view of possible real applications, the opti-
mized protocol has been successfully employed in the re-
construction of a complex biological object, demonstrat-
ing that a reduction of the photon dose is possible while
maintaining the same SNR of the conventional GI proto-
col.
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