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Abstract. The paper introduces a non-equilibrium thermodynamic approach
to describe vector magnetization in presence of a magnetic moment current. The
Larmor term present in the theory describes in this case how the magnetization
dynamics can be a source of magnetic moment currents and vice versa. The model
here discussed is applied to describe the reciprocity between spin pumping and
spin Hall torque effects found in bilayers composed of a metal with large spin
Hall effect (e.g. platinum, Pt) and a ferromagnetic insulator (e.g. yttrium iron
garnet, YIG). The result is that the two effects are related to the transport of the
magnetic moment between layers of different materials. In particular for thin YIG
the two effects are related each other by two parameters: the diffusion length of
Pt, lPt, and the conductance of Pt, vPt = lPt/τPt, where τPt is a time constant.
Both parameters can be that can be determined by comparison with experiments.
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1. Introduction

There have been recently several efforts to identify reciprocity relations present in
spintronic effects [1, 2, 3]. The spin Seebeck and spin Peltier effects, found in bilayers
made of an insulating ferrimagnet, like yttrium iron garnet (YIG), and a non magnetic
metal with a large spin Hall effect, like platinum (Pt), are relevant examples of
phenomena linked by the Onsager reciprocity relations [4, 5]. The reciprocity is related
to the fact that the magnetic moment current (or equivalently, the spin current) in
the ferromagnet carries also an heat current. Similarly to thermoelectrics, both the
effects are described by a single parameter, the thermo-magnetic power coefficient
εM of YIG, which can be experimentally measured as well as computed by statistical
theories [6, 7]. Other two effects that are amenable to a detailed thermodynamic
investigation are the spin Hall torque and the spin pumping. In the spin pumping,
the ferromagnet, driven at the resonance by a radio frequency (RF) magnetic field,
is able to generate a spin polarized current in the metallic layer and an enhancement
of the damping in the ferromagnet [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. In
the spin Hall torque, the magnetic moment current, generated by the spin Hall effect
in in a metal like Pt, causes spontaneous self oscillations of the magnetization in the
ferromagnet above a threshold current [8, 20, 21, 22]. Since the magnetic moment
current has different carriers in the two layers, i.e. spin polarized electrons in the
metal and spin waves in the insulator, the phenomenon is different from the well
known spin transfer torque occurring in ferromagnetic metals because of the presence
of spin polarized electric currents [23, 24]. Spin pumping is often interpreted by
adapting the magneto-electronic theory of Tserkovnyak et al. [25] and the concept
of spin mixing conductance to the interface between an insulating ferromagnet and a
normal metal [26, 12]. Although there are attempts in the literature to address spin
currents in bulk insulating ferromagnets [27, 28] from a statistical point of view, it is
of interest to regard spin pumping and spin Hall torque from the viewpoint of non-
equilibrium thermodynamics. The reciprocity of spin pumping and spin Hall torque
is deeply rooted into the vector character of the magnetization of the ferromagnet and
into the possibility to excite a dynamic mode (uniform or magnetetostatic) because
of the presence of the Larmor term. The corresponding vector thermodynamic theory
has been the subject of a few recent efforts by the groups of Ansermet [29, 3] and
Saslow [1, 30, 31] and it is inspired by the thermodynamic theory of Johnson and
Silsbee [32]. The main difficulty to build up such thermodynamic approaches is to
properly address the typical length-scale of the theory.

On a small length-scale, micromagnetics is the relevant theory to be used [33].
The magnetization is defined as a local average over atomic magnetic moments and,
at temperatures well below the Curie point, it results in a vector of constant modulus
Ms(T ), depending on the temperature T only. In micromagnetics the spatially
extended excitations, like spin waves, are not averaged out, but explicitly described.
The thermal spin waves spectrum is therefore computed or numerically simulated
by introducing random fluctuations in the magnetization mimicking the effect of
temperature [34, 35, 36, 37, 38].

On a larger length-scale, the macroscopic thermodynamic approach of Johnson
and Silsbee is the relevant theory[32]. In such a theory, all thermal excitations are
averaged out and result in a scalar magnetization M that can be different from the
equilibrium value. The distance from equilibrium is described by introducing the
thermodynamic potential H∗ = H − Heq(M), which is the difference between the
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magnetic field H and the equation of state at equilibrium Heq(M). The gradient of
the potential H∗ turns out to be the generalized driving force for magnetic moment
currents and therefore it allows a careful description of thermodynamic effects like spin
Seebeck and spin Peltier [6]. The aim of developing a vector thermodynamic theory
should be to describe phenomena governed by characteristic length scales which are
intermediate between those of micromagnetics and those of the Johnson and Silsbee
thermodynamics.

Here we present a possible approach to such a vector thermodynamic theory
aiming to understand the reciprocity of spin Hall torque and spin pumping effects as
found in Pt/YIG bilayers. The theory is appropriate to understand the interaction
between thermal spin currents and the uniform or the magnetostatic modes excited
in a ferromagnet [21]. In Section 2 we outline the vector generalization of the
thermodynamic theory of Ref.[6]. In Section 3 we introduce the appropriate
generalized magnetization dynamics. Spin pumping and spin Hall torque effects arising
in YIG/Pt bilayers are discussed in Section 4. The outcome of the theory is discussed
in Section 5.

2. Non-equilibrium thermodynamics of magnetic systems

The starting point to build up a non-equilibrium thermodynamics theory is the
description of situations in which the extensive variables of the system, the
magnetization M , the entropy density s and the internal energy density u, are space
dependent. Therefore, an appropriate description of the system at coarse-grained level
is needed. Indeed, in non-equilibrium thermodynamics, the densities of the extensive
quantities must be the result of thermodynamic averages over a proper volume ∆v∗

centered around the considered point r. ∆v∗ must be small enough to allow description
of the system as a continuum and large enough for taking meaningful statistical
averages of the thermal effects, including thermal spin waves, to be averaged out.
Furthermore, it is necessary to introduce current densities, i.e. the magnetic moment
current jM (a second rank tensor), the entropy current js and the energy current ju,
to account for the flow of the extensive quantities from one point of the medium to
another one. By means of the non-equilibrium thermodynamics of fluxes and forces
it is possible to associate to each current density a generalized thermodynamic force
[39]. Finally, the kinetic constitutive equations of the medium, i.e. the relations
between current densities and generalized forces, are introduced by assuming linear
relations. This linear case valid as soon as the distance from the equilibrium state
caused by the presence of flows is not too large. For example, the charge current is
associated to the gradient of the electric potential and their product is the amount of
heat which is dissipated as entropy production. The application of non-equilibrium
thermodynamics to magnetic systems is not as straightforward as for the electric ones
because the magnetic moment is not a conserved quantity. Then, in a continuity
equation, it is always necessary to introduce an additional term describing sources
and sinks for the magnetic moment. In this section we outline the main features
concerning the non-equilibrium thermodynamic theory for vector magnetization by
making a straightforward generalization of the scalar theory presented in Ref.[6]. The
formal expression for the continuity equation is

∂M

∂t
+∇ · jM =

H∗

τM
(1)
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where at the right hand side of Eq(1) we find the source/sink term for the magnetic
moment expressed as a function of the Johnson and Silsbee potential

H∗ = H −Heq(M) (2)

The vector H∗ represents the distance of the actual magnetization state, at the
magnetic field H, from the equilibrium state characterized by the equation of state
Heq(M) = (1/µ0)∂u/∂M . In the latter equation µ0 is the magnetic permeability
of vacuum. In absence of currents (jM = 0), the continuity equation (1) expresses
the low of relaxation of the magnetization towards equilibrium. The law states the
proportionality between the generalized velocity, ∂M/∂t, and the generalized force,
H∗. The proportionality is characterized by the material dependent parameter τM ,
that has the units of a time constant. To derive the generalized force associated
to the magnetic moment current one follows the classical method and expresses the
entropy production rate σs in terms of a sum of products of each current density times
its conjugated thermodynamic force[39]. By generalizing the equations of Ref.[6] to
account for vector quantities, we obtain

σs = ∇
(

1

T

)
· jq +

1

T
µ0∇H∗ · jM +

1

T

µ0 (H∗)
2

τM
(3)

where the heat current is defined as jq = Tjs. Eq.(3) shows that the generalized force
conjugated with the magnetic moment current is the gradient ∇H∗ (a second rank
tensor) and it also contains an additional term which describes the entropy production
generated by local relaxation processes depending only on the modulus H∗.

Once the generalized forces have been identified it is possible to directly state the
constitutive equations for a ferromagnetic insulator by writing down the most general
relation relating the magnetic moment current tensor jM and the heat current vector
jq with the generalized forces, i.e the gradients ∇H∗ (a tensor) and ∇T (a vector).
By restricting to the case of linear relations, we have

jM = σM (µ0∇H∗ − εMm∇T ) (4)

jq = εMT (m · jM )− κ∇T (5)

where σM is the magnetic moment conductivity, a tensor relating the components of
the magnetic moment current jM to the components of the gradient ∇H∗ and κ is the
thermal conductivity under zero magnetic moment current. As a consequence of the
Onsager reciprocity relations, the cross effects are described by a single parameter,
εM , the so called thermo-magnetic power coefficient, and by the direction of the
magnetization in the ferromagnet identified by the unit vector m [39].

The importance of the non-equilibrium thermodynamic approach to the
description of transport phenomena involving vector magnetization and magnetic
moment currents is appreciated by looking at the possibility to solve conduction
problems. In fact, the solution of the transport of the magnetic moment is obtained
by joining the continuity equation (Eq.(1)) with the constitutive equation (Eq.(4)).
Stationary states solutions are described by imposing the condition ∂M/∂t = 0 and,
in the isothermal case (∇T = 0), the two equations combine in a diffusion equation
for the potential: l2M∇2H∗ = H∗, where lM = (µ0σMτM )1/2 is the diffusion length.
As the solution of the diffusion equation is straightforward, the problem reduces to a
boundary value problem in which appropriate boundary conditions for the magnetic
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moment current and for the potential shall be imposed. A relevant case is obtained
by joining different media and studying the the conditions for the passage of the
magnetic moment current from one medium to the other one. To address the problem
in such a case, the diffusion equation is solved independently for each layer, each one
characterized by its own diffusion length (see Ref. [6] for the diffusion equation in Pt
and Appendix B for the solutions), and then proper boundary conditions are imposed
at the interfaces. The amount of current traversing the interface is determined by
the balance between the action of the active source layer and the counteraction of the
passive layer. This counteraction is due to the appearance of a non zero value of H∗ in
the passive layer and is equivalent to the effect of a backflow spin current flowing from
the passive to the active layer, a concept often used in the literature employing the
micromagnetic viewpoint with fluctuations [34, 36]. Although the theory developed
up to now is appropriate to describe the spin Seebeck and spin Peltier effects [6], it is
not sufficient yet to deal with the spin pumping and spin Hall torque effects, because
they both depend on the precession of the magnetization arising from the Larmor term
present in the equation of magnetization dynamics. Therefore the continuity equation
(1) needs to be generalized by adding the conservative Larmor term.

3. Generalized magnetization dynamics in the thermodynamic framework

The precession of the magnetization is the result of the torque exerted on the
magnetization vector by an effective field non collinear to it [40, 41, 33]. From
the point of view of the conservation of the physical quantities, one has to better
specify the physical system into consideration. In magnetic solids one has to consider
the joint presence of a magnetic subsystem (M) and a reservoir subsystem (R). The
magnetic subsystem (M) is characterized by the magnetization vector M and by the
angular momentum JM associated to it. The reservoir subsystem (R) includes all the
non magnetic degrees of freedom of body and the externally applied magnetic fields
and is characterized by the angular momentum JR. Between the two subsystems
the torque T exerted by R on M will produce a change in the angular momentum
JM as ∂JM/∂t = T . Since the angular momentum JM is also the source of
the magnetization M , we can write ∂M/∂t = γM × δue,L/δM , where γ is the
gyromagnetic ratio (γ = |e/me| = 1.76 · 1011 s−1T−1 for electrons) and δue,L/δM
is a term having the meaning of an effective field (see Appendix A). The previous
equation expresses the precession of the vector M around the effective field in which
the component of the magnetization parallel to the effective field, M‖, is constant in
time, while the perpendicular component M⊥ varies in time. Since the total angular
momentum J = JM +JR is conserved, the change in time of the transverse component
M⊥ is a purely reversible effect between the two subsystems.

The possibility of a change in time of the component M‖ is related to the presence
of damping forces able to relax the system towards equilibrium. The inclusion of these
damping forces into the dynamics of M is commonly done by writing the combined
equation in the Landau-Lifshitz form or in the Gilbert form [24]. The two forms are
equivalent if the modulus of the magnetization is conserved, while they are not if
the magnetic moment can also flow from one point of the medium to another one.
The issues has been carefully discussed by Saslow [30], who showed that the Landau-
Lifshitz form is the appropriate one to be included in a thermodynamic framework.

Within the thermodynamic theory derived in Section 2, we have seen that the
internal energy of the system is expressed as a function of a magnetization vector
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which is the result of the local average of the magnetic moments over a large enough
volume ∆v∗. Therefore the role of the effective field is taken by the field H∗ defined
in Eq. (2) (see Appendix A) and we are allowed to take the Larmor term present
in the Landau-Lifshitz equation as −µ0γM ×H∗ [42]. The continuity equation for
the magnetization derived in Section 2 (see Eq.(1)), which takes into account only
relaxation effects, is generalized to include the reversible Larmor term and takes the
form [43]

∂M

∂t
+∇ · jM = −µ0γM ×H∗ +

H∗

τM
. (6)

The left-hand side of Eq.(6) describes the time variation of the magnetization and the
divergence of the magnetic moment current jM , while at the right-hand side there
are the conservative torque and the damping-like term. It is worth to notice that the
Larmor term −µ0γM ×H∗, present in Eq.(6), expresses the presence of a reversible
exchange of magnetic moment between the magnetic subsystem (M) and the reservoir
(R, lattice, applied field, etc.), while the damping-like term, H∗/τM , describes the
changes of magnetic moment related to the irreversible processes. Because of the
presence of the Larmor term, the thermodynamic effective field H∗ can be different
from zero either because the magnetization is dynamically driven out of the equilibrium
state or because the boundary conditions with a side layer are forcing the presence of
a non zero magnetic moment current.

It is interesting to project Eq.(6) along different directions. We can choose z as the
direction where the symmetry is broken either because of a large applied magnetic field
or because of the magnetic moment current injected by a side layer. A particularly
simple case is obtained by assuming to deal with an isotropic system, i.e. where
Heq = Heq(M)m. With the latter condition the projection along z reads

∂Mz

∂t
+∇ · jMz

= −µ0γ M ×H|z +
H∗z
τM

(7)

One can also choose to project Eq.(6) onto the plane perpendicular to the
magnetization. In the second case we find the Landau-Lifshitz type equation

∂m

∂t
= −µ0γm× [H + αm× (H∗ − τM∇ · jM )] (8)

where α = (µ0γMτM )−1 is the dimensionless damping constant.
A complete solution of the problem would require to jointly solve Eqs.(7) and

(8). Here we test the model by first solving the magnetic moment current problem
along the specific direction imposed by the layer responsible for the spin Hall effect
(i.e. Eq.(7)) and then by considering the dynamics in the ferromagnet (i.e. Eq.(8)).

4. Spin pumping and spin Hall torque effects

In this section we apply the thermodynamic theory derived in Sections 2 and 3 to
explore the reciprocity between the spin Hall torque and the spin pumping effects,
experimentally found in bilayers made of an insulating ferrimagnet (i.e. YIG) and a
non magnetic metal with a large spin Hall effect (i.e. Pt). In spin pumping, the YIG,
driven at the ferromagnetic resonance by a RF magnetic field, is able to generate a
spin polarized current in Pt and its magnetic damping results to be larger than the one
without the Pt layer. In spin Hall torque a magnetic moment current, generated by
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the spin Hall effect of Pt, causes spontaneous self oscillations of the magnetization in
the ferromagnet when the electric current flowing in Pt overcomes a certain threshold
[8, 21].

4.1. Spin pumping

x

y
z

jey

H

YIGPt

t2=tYIGt1=tPt

M

m

jMx

H*z

jM

x

H*MS,z

e-

x

-t1 t20

Figure 1. Spin pumping effect. Top: geometry of the bilayer composed by a
spin Hall metal (Pt) and an insulating ferromagnet (YIG). The main field and
the magnetic moment are oriented along z, the direction of the magnetic moment
current is along x and the electric effects are along y. The exciting RF field is
perpendicular to z. Bottom: sketch of the solution of the conduction problem
(Appendix B.1) for the potential H∗

z (x) and for the current jM (x). H∗
MS,z is the

source potential due to the RF driving magnetic field of Eq.(9).

The YIG/Pt bilayer under investigation is shown in Figure 1. The external RF
magnetic field pushes the system in an out-of-equilibrium dynamic steady state which
corresponds to the appearance of a non zero thermodynamic potential H∗ along z.
As any gradient of H∗z is also the driving force of the magnetic moment current (see
Section 2), the presence of an absorbing Pt layer allows to absorb some of this current.
In the chosen geometry, such a current will be directed along x and it will carry a
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magnetic moment pointing along z. Therefore, we are allowed to take the projection
of Eq. (6) along z and, in stationary conditions (∂Mz/∂t = 0), we obtain the diffusion
equation:

H∗MS,z = H∗z − l2M∇2H∗z (9)

where the term H∗MS,z = α−1 m×H|z is the source potential due to the RF driving
magnetic field. The amount of current which is absorbed by Pt depends on the
geometrical conditions of the space where the flow takes place, on the thicknesses
and on the conducting and absorbing properties of both materials. To address the
problem, we independently solve Eq.(9) and the analogous diffusion equation for Pt
(see Ref.[6]) and we set the boundary conditions. The final solution (see Appendix
B.1 for the one dimensional case) provides the space profiles of the potential H∗z (x)
and of the current jM (x). As part of the magnetic moment is absorbed by Pt, this
circumstance corresponds to an enhancement of the damping. To see this fact we take
the vector equation (6) and we include all dissipations in the form of an effective local
damping

α (H∗ − τM∇ · jM ) ' α′ <H∗ > (10)

where α′ = (µ0γMτ ′M )−1, τ ′M being an effective time constant describing the effects
of the side layers. In the particularly simple case of a one dimensional current flow
with an active YIG layer of thickness tY IG and an absorbing Pt layer of thickness tPt

( see Appendix B.1), the effective time constant is found to be

τ ′M = τM

(
1− veff

vY IG(tY IG/lY IG)

)
. (11)

The effective magnetic moment conductance veff of the bilayer appearing in Eq. (11)
is given by (see also Eq. (B.6))

1

veff
=

1

vPt tanh(tPt/lPt)
+

1

vY IG tanh(tY IG/lY IG)
(12)

It should be noted that the total conductance is the series of the contributions of
YIG and Pt and that each layer contributes with its intrinsic and material dependent
conductance vM = lM/τM , given by the ratio between the diffusion length lM and the
time constant τM , and with the ratio between the layer thickness and lM . For the
enhanced damping constant, in the case of thin YIG, i.e. tY IG � lY IG, we obtain

α′ − α =
vPt tanh(tPt/lPt)

µ0γLMtY IG
. (13)

This expression is formally identical to the one for the spin mixing conductance
reported in the literature, however in our thermodynamic case it expresses explicitly
the dependence on the conductance of Pt, vPt, and on the ratio tPt/lPt. The
hyperbolic tangent dependence, present on Eq.(13), implies a saturation of the effect
which is indeed found in experiments of spin pumping as a function of the thickness of
Pt [14]. Finally we can compute the inverse spin Hall effect in Pt. In order to do this
we have to first compute the H∗MS,z source potential by solving the precession equation
with enhanced damping. This can be done by taking Eq.(6), using the approximation
of Eq. (10) and finally taking the projection of the result in the direction perpendicular
to the magnetization. We obtain the Landau-Lifshitz type equation

dm

dt
= −µ0γL m× (H + α′m×H) (14)
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with the enhanced damping constant of Eq.(13). Eq.(14) can be solved under RF
excitation by standard methods [40, 41, 33]. The inverse spin Hall effect in Pt voltage
can be immediately computed (see Appendix B.1) and it results:

∇yVe =
θSH

σe

(
e

µB

)
veffH

∗
MS,z

(tPt/lPt) coth(tPt/(2lPt))
. (15)

This expression has the same Pt thickness dependence which is found in the literature
[10, 11, 15, 19] while the source potential, given by H∗MS,z = (α′/α) m×H|z, is
computed from the solution of Eq.(14). By neglecting demagnetizing effects one finds
that, at the resonance frequency, H∗MS,z = H2

⊥/(αHz).

4.2. Spin Hall torque

Spin Hall torque effects are realized in Pt/YIG systems in which the Pt layer is the
spin Hall conductor able to inject a magnetic moment current tensor into YIG (see
the scheme of the YIG/Pt bilayer in Fig.2). A constant magnetic field Hz is applied
to YIG along the z direction. As a result of the magnetic moment current injected
by the Pt layer, a potential H∗z is generated into the YIG layer by absorption of the
current. In this case, to address the problem, we need to solve the transport equation
for magnetic moments pointing along z. The solution for the one dimensional case
is given in Appendix B.2. In the present paper we limit ourselves to observe what
happens if we plug the solution obtained, τM∇ · jM = H∗SH , into Eq.(8). We find:

dm

dt
= −µ0γL m× [H + αm× (H −H∗SH)] . (16)

The spin Hall torque term, H∗SH = H∗SH(x)ez, where H∗SH(x) is given by Eqs.(B.16)
and (B.17), is directed along z. Therefore the spin Hall torque term can act either
as a damping or an anti-damping contribution depending on whether the magnetic
moment injected into YIG is parallel or antiparallel to the magnetization. By taking
the approximation of thin YIG thickness, i.e. tY IG � lY IG, we find that the spin Hall
torque field, at zero order in the tY IG/lY IG expansion, is constant though the layer
and is equal to

H∗SH = − jMS

vPt coth(tPt/(2lPt))
. (17)

As the magnetic moment current source of Pt is related to the electric current along
y, jMS = −(µB/e)θSHjey (where µB is the Bohr magneton, e is the elementary
charge and θSH is the spin Hall angle) from Eq.(17) we obtain a condition for the
compensation of the damping expressed as a critical electric current. The same
result has been found in the experiments performed on Pt/YIG bilayers reported
in Refs.[8, 21]. At currents above the threshold the system is pushed in a far-from-
equilibrium state where the approximation of linear systems on which Eqs. (1) and (4)
are based, may not be valid anymore. If there are non linear terms in the dependence
between the generalized velocity, ∂M/∂t, and the generalized force, H∗, then the
concepts of linear thermodynamics do not apply anymore. Glansdorff and Prigogine
have shown that around a far-from-equilibrium state the behavior of a thermodynamic
system is highly influenced by the non-linear terms and it may give rise to spatially
organized dynamic patterns called dissipative structures [44, 45].
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Figure 2. Spin Hall torque effect Top: geometry of the bilayer composed by a
spin Hall metal (Pt) and an insulating ferromagnet (YIG). The main field and
the magnetic moment are oriented along z, the direction of the magnetic moment
current is along x and the electric effects are along y. Bottom: sketch of the
solution of the conduction problem (Appendix B.2) for the potential H∗

z (x) and
for the current jM (x). jMS is the magnetic moment source in Pt due to the spin
Hall effect.

5. Discussion and conclusions

The reciprocity underlaying the spin pumping and spin Hall torque effects can be
tested by using the expression for the enhancement of the damping (Eq.(13) and
the equation for the critical current threshold above which self oscillations start to
appear. Indeed, in both cases the only unknown parameter of the equations is the
conductance of Pt, vPt. In Ref.[21] both experiments have been performed with the
same device, so that the results are amenable to a detailed verification. Experiments
were conducted on thin YIG disks (20 nm in thickness, 2µm and 4µm in diameters).
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Spin pumping experiments report a damping enhancement of α′ − α ' 15 ·10−4. By
taking the saturation magnetization of the YIG film as µ0Ms = 0.215 T and the
Pt layer thickness as tPt = 8 nm, the only two remaining free parameters are the
diffusion length of Pt, lPt, and its conductance, vPt. Spin Hall torque experiments
were conducted by an applying a magnetic field, Ha,z, along a diameter, so that the
total magnetic field H is the sum of the applied and of the demagnetizing fields. It
can be assumed the demagnetizing coefficien to be t Nd,x ' 1, so that the condition for
the compensation of the damping is expressed as H∗SH = (Ha,z + (1/2)Ms)C0, where

C0 = 1 + (∆H0/α
′)/
√
Ha,z(Ha,z +Ms) is a correction factor related to the presence

of an inhomogeneous contribution to the linewidth ∆H0 [21]. The threshold current
for the appearance of self oscillations in the ferromagnet, in this approximation, can
be predicted by using the spin diffusion parameters of Pt only and it results to be
jey = (e/(µBθSH))vPt coth(tPt/(2lPt))H

∗
SH . By taking θSH = −0.056 from Ref.[21]

(the spin Hall angle for the magnetic moment is opposite with respect to that of
the spin), the only free adjustable parameters are again lPt and vPt. By using the
experimental data from Ref.[21] we find that they evaluate to lPt ' 10 nm and vPt ' 2
m/s. These results provide a diffusion length slightly larger than the value determined
in previous measurements (lPt = 7.3 nm from [15]) and a conductance which is slightly
lower than those found from the spin Seebeck experiments (vPt = 3 m/s from Ref.[6]).
In conclusion, in this paper we have extended the non-equilibrium thermodynamics of
Johnson and Silsbee [32] to describe vector magnetization. The resulting model is able
to jointly describe the magnetization dynamics and the magnetic moment transport
between different layers. The application of the model to the spin pumping and spin
Hall torque effects arising in YIG/Pt bilayers has shown that the two effects occur
because of diffusion processes allowing for the transport of currents between the two
layers. In the case of thin YIG the two effects are related by two parameters only: the
diffusion length of Pt, lPt, and the conductance of Pt, vPt. Both these parameters can
be determined by comparison with experimental data. Future efforts will be devoted
to derive the details of the magnetization dynamics beyond the instability threshold
by taking into account possible non linear effects in the framework of the Glansdorff
and Prigogine non linear thermodynamics [44, 45].

Appendix A. The thermodynamic potential H∗ for a ferromagnet

A central role in the energetics of ferromagnets is played by the effective field
which is defined as the derivative of the enthalpy of the magnetic system. In the
thermodynamic theory of Section 2 the magnetization M is defined as the result of a
statistical average over a volume ∆v∗ small enough to permit the description of the
system as a continuum but large enough to allow for all the thermal effects, including
thermal spin waves, to be averaged out. If we assume small deviations from a given
direction (i.e. we aim to study the uniform mode and the magnetostatic modes) we
can express the enthalpy as

ue,L = ue,T (s,M) +KANfAN (m)− 1

2
µ0HM ·M − µ0Ha ·M(A.1)

where m = M/|M | is the magnetization unit vector and the terms at the right
hand side represent the thermodynamic, anisotropy, magnetostatic, and applied field
term, respectively. ue,T (s,M) is the thermodynamic energy term. The dimensionless
function fAN (m) is an appropriately normalized function describing the angular
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dependence of local anisotropy effects and KAN is the anisotropy constant. The
vector Ha is the applied field whereas HM is the magnetostatic field, solution of
magnetostatic Maxwell equations:

∇ ·HM = −∇ ·M (A.2)

∇×HM = 0 (A.3)

As the Landau enthalpy ue,L does not contains the derivatives of the magnetization,
the effective field is given by the simple derivative with respect to the magnetization
vector M and it is found to be µ0H

∗ = −δue,L/δM with H∗ = H − Heq (i.e.
equation 2) where H = HM + Ha and Heq = (1/µ0)∂ue,T (s,M)/∂M − HAN

is the equation of state at equilibrium with the anisotropy field being HAN =
HAN ∂fAN/∂m and HAN = 2KAN/(µ0M). In micromagnetics [24], the effective
field is defined as the functional derivative of

ue,L = ue,M (s,M)+A (∇m)
2
+KANfAN (m)−1

2
µ0HM ·M−µ0Ha·M(A.4)

where the first two terms at the right hand side of equation(A.4) differs from the first
terms at the right hand side of equation(A.1). The two terms are the thermodynamic
and exchange terms. As the magnetization vector field M is the result of a statistical
average over a volume ∆vM much smaller than ∆v∗, the energy ue,M (s,M) is
characterized by a minimum at M = Ms so deep that one can safely assume the
magnetization modulus to be the constant value Ms. In the exchange term, (∇m)

2
is

a short-hand notation for |∇mx|2 + |∇my|2 + |∇mz|2 and A is the exchange stiffness
constant. Therefore from the definition µ0Heff = −δue,L(s,M)/δM we have

Heff = l2EX∇2M −HAN + HM + Ha (A.5)

where the length parameter lEX is the so-called exchange length lEX =
√

2A/(µ0M2
s ).

It is worth to observe that the potential H∗ appears as a coarse grained version of
the micromagnetic effective field Heff .

Appendix B. Solutions of the diffusion equation in one dimension

Appendix B.1. Spin pumping

In spin pumping, material 1 is a non magnetic metal (from x = −t1 to x = 0) while
material 2 is a ferromagnet (from x = 0 to x = t2), see Figure 1. We solve the
diffusion equations with the following boundary conditions (we drop the subscript M
for simplicity) j1(−t1) = j2(t2) = 0, j1(0) = j2(0) = j0. The equation for H∗2 (x) is
H∗2 − l22∇2

xH
∗
2 = H∗MS,2 where H∗MS,2 is a parameter. The boundary condition for the

potential at x = 0 is H∗2 (0) = H∗1 (0) which corresponds to a transparent interface.
The currents are

j1(x) = j0
sinh((x+ t1)/l1)

sinh(t1/l1)
(B.1)

j2(x) = j0
sinh((x− t2)/l2)

sinh(t2/l2)
(B.2)

and the potantials are
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H∗1 (x) =
j0
v1

cosh((x+ t1)/l1)

sinh(t1/l1)
(B.3)

H∗2 (x) = H∗MS,2 −
j0
v2

cosh((x− t2)/l2)

sinh(t2/l2)
(B.4)

where the parameter vi = li/τi, with the dimensions of a velocity, represents the
conductance of each layer. The current at the interface is

j0 = veffH
∗
MS,2 (B.5)

where

1

veff
=

1

v1 tanh(t1/l1)
+

1

v2 tanh(t2/l2)
(B.6)

is the total magnetic moment conductance of the bilayer. The average value of the
field H∗2 (x) over the layer is

< H∗2 (x) >= H∗MS,2

(
1− veff

v2(t2/l2)

)
(B.7)

The Inverse spin Hall effect in Pt (1) can be computed by taking the equation for the
spin Hall effect relation the electric current along y and the magnetic moment current
tensor along x [6]

jey(x) = −σe∇yVe + θSH

(
e

µB

)
j1(x) (B.8)

As the thickness is small we consider the potential uniform and, for an open circuit
measurement, we ask that integral, over the layer 1, of the electric current density
jey(x) to be zero. Then we find

∇yVe =
θSH

σe

(
e

µB

)
< j1 > (B.9)

where < j1 >= t−11

∫ 0

−t1 j1(x)dx. From the magnetic moment current, equation (B.1)
we find the gradient of the voltage as

∇yVe =
θSH

σe

(
e

µB

)
veffH

∗
MS,2

(t1/l1) coth(t1/(2l1))
(B.10)

Appendix B.2. Spin Hall torque

In spin Hall torque (see Figure 2) an electric current density jey is driven into the
metal (1) along y, so that the magnetic moment current induced by the spin Hall
effect results to be along x and the direction of the magnetic moment along z.
The intensity of the current source is jMS = −(µB/e)θSHjey where µB is the Bohr
magneton, e is the elementary charge. θSH is the spin Hall angle that quantifies the
efficiency of the conversion between charge current and magnetic moment current due
to the spin Hall effect. With boundary conditions for the magnetic moment currents
j1(−t1) = j2(t2) = 0, j1(0) = j2(0) = j0 we obtain the following expressions for the
currents
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j1(x) = jMS

[
1 +

sinh(x/l1)

sinh(t1/l1)

]
+ (j0 − jMS)

sinh[(x+ t1)/l1]

sinh(t1/l1)
(B.11)

j2(x) = − j0
sinh[(x− t2)/l2]

sinh(t2/l2)
(B.12)

and the corresponding expressions for the potentials

H∗1 (x) =
jMS

v1

cosh(x/l1)

sinh(t1/l1)
+
j0 − jMS

v1

cosh[(x+ t1)/l1]

sinh(t1/l1)
(B.13)

H∗2 (x) = − j0
v2

cosh[(x− t2)/l2]

sinh(t2/l2)
(B.14)

By using the boundary condition for the potenatials at x = 0, H∗1 (0) = H∗2 (0),
corresponding to a negligible interface resistance, we obtain the value of the current
at the interface j0 as

j0 = jMS
veff

v1 coth(t1/(2l1))
(B.15)

where veff , given by equation(B.6). The sought potential in the ferromagnet (2) is
therefore

H∗2 (x) = H∗2,0
cosh((x− t2)/l2)

cosh(t2/l2)
(B.16)

where

H∗2,0 = − jMS

v1 coth(t1/(2l1))

veff
v2 tanh(t2/l2)

(B.17)
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