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Thermodynamics of the heat flux avalanches at the first order magnetic transition in
magnetocaloric materials

Marco Piazzi,1, ∗ Cecilia Bennati,2 and Vittorio Basso1

1Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, I-10135 Torino, Italy
2Istituto dei Materiali per l’Elettronica ed il Magnetismo – Consiglio Nazionale delle Ricerche,

Parco Area delle Scienze 37/A, I-43124 Parma, Italy

We investigate the kinetics of first order magnetic phase transitions by measuring and modelling
the heat flux avalanches corresponding to the irreversible motion of the phase boundary interface
separating the coexisting low- and high-temperature stable magnetic phases. By means of out-of-
equilibrium thermodynamics we encompass the damping mechanisms of the boundary motion in a
phenomenological parameter αs. By analyzing the time behaviour of the heat flux signals measured
on La(Fe-Mn-Si)13-H magnetocaloric compounds through Peltier calorimetry temperature scans
performed at low rates, we relate the linear rise of the individual avalanches to an intrinsic thermal
resistance associated to αs.

PACS numbers: 75.30.Sg, 05.70.Ln, 64.70.K-
Keywords: magnetocaloric effect; first order transitions; out-of-equilibrium thermodynamics

I. INTRODUCTION

Magnetic refrigeration around room temperature is
emerging as an environmental-friendly, efficient and in-
creasingly feasible alternative to the conventional vapour-
compression cooling technology1–5. The physical ef-
fect underlying this technique is the magnetocaloric ef-
fect (MCE), corresponding to the magnetic field in-
duced isothermal entropy change ∆Siso(H) and the adi-
abatic temperature change ∆Tad(H) occurring in mag-
netically ordered solid materials under a varying applied
magnetic field H

6,7. Recently, many results have been
achieved in the search for materials showing optimal
properties for applications, e.g. first order magnetostruc-
tural transitions finely tunable around room tempera-
ture, low thermal hysteresis, high entropy and tempera-
ture changes8–13. Nevertheless, the practical realization
of cooling engines based on active magnetic regenerative
refrigeration (AMRR) cycles still suffers from some open
issues, mainly dealing with the operation frequency of
the devices. Although the design of such devices has
been substantially improved by the contributions and
proposals of many different research groups14–32, the op-
eration frequency of AMRR-based engines has been only
partially worked out. In Ref. [33], Kuz’min has shown
that this frequency depends on the characteristic relax-
ation time constants related to the thermal conductiv-
ity of the solid refrigerant (τtc), to the viscosity of the
heat-exchange fluid (τfc) and to the magnetic processes
occurring in the MCE material during the AMRR cycles
(τmr). The conditions to reduce both τtc and τfc, relat-
ing them to the values of two parameters, dr and df ,
representing the cross sections of the refrigerator chan-
nels filled with the MCE material and the heat-exchange
fluid, respectively, are known33. However, the intrinsic
magnetic relaxation process has been neglected, assum-
ing that the MCE material magnetizes or demagnetizes
itself instantaneously when the applied magnetic field is
switched on or off. While this can be valid for materials

undergoing second order transitions34, it is known that
this is not usually the case when dealing with first or-
der ones35–47. In this case both the microscopic domain
nucleation events, driven by the defects present in the
material, and some extrinsic factors limit the kinetics of
the magnetization or demagnetization processes. Many
efforts have been done trying to clearly distinguish the
contributions of these different effects. In particular, it
has been shown that a viable route in this direction is
represented by the development of experiments in which
the MCE properties of the materials are measured by
varying the magnetic fields at a high sweep rate of about
10–100Hz, representing the typical working frequencies
of magnetic cooling devices48–50.

By performing magnetic measurements at different
field-rates on La(Fe-Si)13 samples, Moore et al.35 and
Lovell et al.39 have indeed succeeded in separating the
intrinsic and extrinsic factors contributing to the specific
heat of a MCE system. They have shown that the use of
magnetic fields varying in time at a fast enough rate, i.e.
� 5mT/s corresponding to a cycling frequency of about
10

−2
Hz/T, allows to determine how the MCE properties

of the system are affected by three major factors, namely
the geometrical properties of the MCE sample, the heat
diffusion processes occurring into the system and finally
the thermal contacts between the sample and the mea-
suring setup. However, a detailed quantitative analysis of
the intrinsic contributions to the transition kinetics due
to the nucleation and growth of a new stable magnetic
phase has not been performed.

Such an analysis has been instead reported in Ref. [44],
where a theoretical approach based on the Johnson-Mehl-
Avrami model51–54 has been applied to explain the exper-
imental features observed in the magnetic susceptibility
of La(Fe0.88Si0.12)13 compounds. This model relates the
kinetics of first order transitions to the dynamics of a
thermally activated process, by assuming the existence
of a barrier in the energy landscape between the ferro-
(FM) and paramagnetic (PM) states, that shall be over-
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come through random thermal fluctuations in order to
make the transition start. Later on, other authors46 have
shown that similar experimental results can be attributed
also to extrinsic effects, namely the presence of bad ther-
mal contacts between the sample and the external bath.
In view of these results, the role played by such extrinsic
effects on the model proposed by Yako and Fujita44 shall
be deeper investigated and better clarified.

A possible step forward on this topic can be done
by analyzing the heat flux behaviour obtained through
calorimetry scans performed on MCE materials at fixed
temperature by changing H at low rate37 or, vice versa,
by slowly varying the temperature at fixed H

47,55. It has
been shown that the heat flux signal presents sequences
of avalanches well separated in time close to the transi-
tion temperature. These avalanches vary in shape and
number by approaching the critical point (Tc, Hc) of the
system and they can be associated to the latent heat of
the system37,55. Above the critical point, they essentially
disappear leaving only a continuous background associ-
ated to the reversible specific heat of the material. The
key point to observe is that their time behaviour mirrors
the kinetics of the nucleation and pinning processes oc-
curring during the phase transition. However, since the
scan rates employed in the experiments are very slow,
both intrinsic and extrinsic factors contribute to deter-
mine this kind of behaviour.

In this paper we address this issue from a theoretical
point of view, by modelling the time behaviour of the
heat flux signals experimentally detected through tem-
perature scans performed at 1mK/s rate and various ap-
plied magnetic fields H on a series of La(Fe-Mn-Si)13-
H1.65 compounds. To approach the problem, the thermo-
dynamics of a moving front in a first order phase trans-
formation shall be described, by focusing in particular
on the factors limiting its velocity. In the classical Stefan
problem56–58, the phase front is described at the equilib-
rium temperature and the heat diffusion processes limit-
ing its growth are considered. Within this approach, the
thermodynamic equilibrium is maintained at the expense
of the emergence of strong local temperature gradients.
In the present case of solid-solid phase transitions occur-
ring in the MCE materials, we are dealing with metals
characterized by a high heat conductivity and a distribu-
tion of defects which suggest to use an out-of-equilibrium
description of the moving front. In this case, the latter is
allowed to be at a temperature different from the equilib-
rium one59 and the temperature gradients will be relevant
only on length scales much larger than the microstruc-
tural ones. For this reason, we propose a model, based
on the out-of-equilibrium theory of linear systems, able
to describe both the intrinsic microscopic processes gov-
erning the transition and giving rise to the appearance of
the latent heat, and the extrinsic contributions due to the
thermal contacts. In the paper we show that the intrinsic
microscopic processes can be associated to the motion of
the phase boundaries interface separating the PM and
FM stable phases coexisting during the transition, while

the thermal bath details fully determine the relaxation
behaviour of the system back to the thermodynamic equi-
librium after the transition is occurred. In particular, the
damping mechanisms governing the boundary interface
motion and giving rise to the latent heat of the system
∆uL are encompassed in a phenomenological parameter
αs that we evaluate by comparison of the experimental
data with the model. Within the uncertainty limits, we
find that αs/∆uL ≈ 0.5× 10

−3
(m/s)/K, independently

on both H and the material composition. Moreover, we
determine the time scales involved in the transition pro-
cess, showing that the intrinsic damping and the heat
exchange with the external thermal bath are governed
by time constants having the same order of magnitude.

The paper is organized as follows. In Sec. II we intro-
duce the out-of-equilibrium thermodynamic theory of lin-
ear systems that we have used to describe first order tran-
sitions. First we focus on the description of homogeneous
systems (Sec. II A), then extending the theory to the case
of macroscopic samples in which phase coexistence may
arise (Sec. II B) and finally deriving the kinetic constitu-
tive equation of the system by comprising the role of the
specific heat due to electrons and phonons (Sec. II C).
In Sec. III we apply the above theory to the analysis
of solid-state MCE samples in quasi-isothermal condi-
tions by adding the role of an external thermal reser-
voir (Sec. III A) and we find the theoretical behaviour of
the heat flux in the case of individual-avalanche events
(Sec. III B). In Sec. IV we compare the theoretical predic-
tions with the experimental data obtained by performing
Peltier calorimetry temperature scans at low rate and in
Sec. V we discuss the results obtained, suggesting also
possible routes for future works. Finally, in Sec. VI we
present our conclusions.

II. OUT-OF-EQUILIBRIUM
THERMODYNAMICS OF FIRST ORDER PHASE

TRANSITIONS

A. Homogeneous systems

Let us consider a magnetic system characterized by
the entropy S and the magnetic moment m. Since the
controlled magnetic variable is the magnetic field H, we
can describe the system through the enthalpy potential
Ue(S,H) = U−µ0Hm, where U is the internal energy60.
A first order phase transition will be characterized by a
non monotonic behaviour of the equation of state

Tp(S,H) =
∂Ue

∂S
, (1)

so that the temperature of the system T will not follow
everywhere the equilibrium temperature path defined by
Tp. The typical behaviour is depicted in Fig. 1, where we
show the out-of-equilibrium path as 1/Tp as a function of
the enthalpy Ue. Upon heating, after reaching the limit
of stability, i.e. point A in Fig. 1, T will pass through a
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sequence of high energy out-of-equilibrium states going
towards the first available equilibrium state, i.e. point B
in Fig. 1. The rate at which T relaxes towards the new
equilibrium state should be determined by means of non
equilibrium thermodynamics.

Fig. 1. Out-of-equilibrium first order transition in homoge-
neous systems: temperature 1/Tp (Eq. (1)) vs. enthalpy Ue.
Arrows show the path followed by the system upon heating
(D-A-B) and subsequent cooling (B-C-D); dash-dotted black
lines represent the out-of-equilibrium states explored during
the transition, after the limits of stability A and C are over-
come. 1/Tt (dashed red line) is the equilibrium transition
temperature path followed according to the Maxwell construc-
tion (see also Fig. 2). ∆UL is the enthalpy change at Tt, whose
volume density ∆uL appears in Eq. (8) and in Table I.

The main observation to take into account is that,
when T is in a non equilibrium state higher than Tp

(Eq. (1)), the entropy change per unit time dS/ dt is
(1/Tp) ∂Ue/∂t which is higher than (1/T ) ∂Ue/∂t. The
difference is associated to the presence of internal entropy
production processes. Therefore, by describing the in-
ternal entropy production processes through the entropy
production rate Σs ≥ 0, the entropy change rate reads:

dS
dt

=
1

T

dUe

dt
+ Σs. (2)

From Eq.(1) and Eq. (2) we immediately obtain the fol-
lowing expression for the entropy production rate:

Σs =

�
1

Tp
− 1

T

�
dUe

dt
. (3)

In Eq. (3) we can recognize two different terms. The
first one, dUe/ dt, represents the velocity of the relax-
ation process bringing the system temperature T back to
the equilibrium value. The second term, (1/Tp−1/T ), is
proportional to the distance of the system temperature
T from the equilibrium value Tp. Then, in the framework

of out-of-equilibrium thermodynamics of linear systems,
the latter term acts as the generalized force responsible
for the relaxation process, while the former term is a
generalized displacement. When the displacement term
is small enough, it is possible to assume that the dis-
placement and the force are linearly coupled and thus
the relaxation equation describing the rate at which any
generic out-of-equilibrium state reaches the equilibrium
one is given by

dUe

dt
= αT

2
p

�
1

Tp
− 1

T

�
, (4)

where the proportionality coefficient α has the units
W/K.

B. Phase coexistence state

In a macroscopic system composed by many internal
and interacting degrees-of-freedom a first order transition
may occur differently with respect to what described in
the previous section. Indeed, the system may build up a
mixture of the low (LT) and high temperature (HT) sta-
ble phases, because the phase coexistence may be more
favourable from an energetic point of view. In partic-
ular, the phase coexistence defines a transition temper-
ature at equilibrium Tt which is obtained by means of
the Maxwell construction. This construction consists in
replacing the non monotonic part of Tp(S), defined in
Eq. (1), with the constant temperature Tt, as shown
in Fig. 1 and Fig. 2. The latter is the temperature at
which the two minima in the Gibbs free energy represen-
tation have the same value, i.e. GL(S0;Tt) = GL(S1;Tt),
where GL(S;T ) = Ue(S)− TS and S0(T ), S1(T ) are the
temperature-dependent minima of GL(S;T ), satisfying
∂GL/∂S|S=S0

= ∂GL/∂S|S=S1
= 0. It is worth noting

that S0 and S1 represent the entropies of the LT and HT
stable magnetic phases which coexist at Tt. In partic-
ular, from Eq. (1) and from the Maxwell construction,
we obtain that the enthalpy change rate at equilibrium
and in the phase coexistence region can be expressed as
dUe/ dt = Tt dS/ dt.

However, this equilibrium picture is not always real-
ized. The nucleation and pinning of the individual do-
mains may occur at a sample temperature T different
from Tt, because of the local defects present in the mate-
rial microstructure. This means that when transforming
in heating from the LT to the HT, or viceversa in cooling
from the HT to the LT phases, a specific nucleation event
i will be characterized by a critical value Thi higher, or
Tci lower, than Tt (see Fig. 2). Being T different from the
equilibrium value Tt, we shall consider also in this case
the role of the entropy production processes introduced
in Sec. IIA. Analogously to Eq. (2), the entropy change
rate dSi/ dt associated to the i-th event will be in this
case

dSi

dt
=

1

T

dUei

dt
+ Σsi, (5)
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Fig. 2. Gibbs free energy GL(S;T = Tt) (top) and temper-
ature T = ∂Ue/∂S (bottom) vs. entropy S, in first order
transitions, for: (i) a homogeneous system (black dotted line)
in which the transition follows the Tp curve (Eq. (1)); (ii) a
macroscopic system (red dashed line) in which the transition
occurs through the Maxwell construction at the equilibrium
temperature Tt; (iii) an irreversible domain nucleation event
i (pale blue solid line) occurring around a defect at temper-
ature Thi (Tci) upon heating (cooling). Green lines highlight
the LT–HT phase coexistence region; ∆SL = S1 − S0 is the
entropy change at Tt between the entropies S0, S1 of the LT
and HT stable magnetic phases.

so that the entropy production rate will be given by

Σsi =

�
1

Tt
− 1

T

�
dUei

dt
. (6)

In the latter equation we recognize a velocity term, i.e.
dUei/ dt, and a displacement term, i.e. 1/Tt − 1/T . By

means of the same reasoning developed in Sec. II A to
obtain Eq. (4), we end up with the following linear ex-
pression for the enthalpy change rate occurring in the
phase coexistence region:

dUe

dt
= αT

2
t

�
1

Tt
− 1

T

�
. (7)

On the other hand, we can get another expression for
the enthalpy change rate dUe/ dt by relating the latter
to the microscopic events giving rise to the phase tran-
sition. We will assume that the transition is driven by
the motion of the phase boundary interface separating
the LT and HT magnetic states which is nucleated at
the defects present in the material microstructure. This
interface can be thought of as a surface of total area A

that moves with a certain velocity. If we assume to deal
with an ideally thin interface, the phase transformation
will be due to the displacement of the position of the in-
terface in time, x(t), and the enthalpy change rate can
be expressed as

dUe

dt
= ∆uLA

dx
dt

(8)

where ∆uL = Tt∆sL > 0 is the enthalpy change per
unit volume at Tt, i.e. the latent heat of the system (see
Fig. 1), and ∆sL is the isothermal entropy density change
at the transition.

By substituting Eq. (8) into Eq. (7) and by defining
the proportionality coefficient αs = α/A, having units
WK

−1
m

−2, we immediately get the following expression
for the velocity of the phase boundary interface:

dx
dt

=
αs

∆uL
T

2
t

�
1

Tt
− 1

T

�
. (9)

It is worth noting that Eq. (9), through the coefficient
αs, encompasses the details of the damping mechanisms
of the phase boundary motion, thus describing the ki-
netics of the relaxation processes occurring at first order
phase transitions in macroscopic systems. Finally, the
expression for the latent heat of the system is

dUe

dt
� αsA (T − Tt) , (10)

where Eq. (10) is obtained from Eq. (7) and holds only
if T � Tt.

C. Constitutive kinetic equation for the material

Magnetic phase transitions in solid-state systems are
characterized not only by the latent heat (Eq. (10)), but
also by electronic and structural reversible contributions
to the enthalpy that are proportional to the heat capac-
ity Cs of the region of the sample involved by the phase
transformation. The full enthalpy variation is then ob-
tained by simply adding the latent heat contribution and
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the reversible one, so that

dUe

dt
= Cs

dT
dt

+ αsA (T − Tt) . (11)

Here, we further consider that in the sample many irre-
versible events may occur concurrently, each one of them
involving the motion of a portion of the whole phase
boundary interface characterized by a surface area Ai,
so that A =

�
i Ai. Moreover, it is relevant to introduce

the typical linear size λ over which the temperature T is
uniform into the sample (see Fig. 3 for a schematic view
of the typical length scales involved in the description of
the irreversible events occurring in a first order magnetic
phase transition).

�

�

��
��

�

Fig. 3. Typical length scales involved in the irreversible events
driving a MCE system through a first order magnetic transi-
tion: L is the linear size of the sample, λ represents the linear
size of the region in which T is uniform and � is the linear size
of the region swept out by the i-th piece of boundary interface
of surface area Ai ∼ �i

2 during its motion at velocity v (see
Eq. (9)). The size λ depends on the heat diffusion properties
of the system and can be either � L for macroscopic samples
or � L for small fragments; the size � depends instead on the
material microstructure and in this work we assume �i � λ.

With the above assumptions, the expression for the
specific enthalpy rate becomes

due

dt
= cs

dT
dt

+

�

i

αs
Ai

λ3
(T − Tt) , (12)

where cs = Cs/λ
3 is the specific heat of the system and

ue = Ue/λ
3 is the enthalpy normalized to the volume

λ
3. It is worth pointing out that each of the microscopic

events i contributing to the sum in Eq. (12) is activated
at its own temperature Thi > Tt, in an heating process,
or Tci < Tt in the cooling case, as already described in

Sec. II B and depicted in Fig. 2. This fact means that
the motion of each portion of the boundary surface is
activated by overcoming different energy barriers. Then,
Eq. (12) shows that the events i within the volume λ

3

are correlated because the activation of a certain single
event will cause the decrease, upon heating, or the in-
crease, upon cooling, of the temperature T within the
whole volume λ

3, therefore inhibiting the activation of
the other domains motion.

Finally, the enthalpy variation described by Eq. (12)
is coupled to the macroscopic heat current density jq
through the continuity equation

due

dt
+∇ · jq = 0. (13)

III. KINETICS OF HEAT FLUX AVALANCHES

A. Kinetics in quasi-isothermal conditions

In order to unveil the local variations of the sample
temperature T occurring in a phase transition caused by
the presence of a distribution of different activation tem-
peratures Tci, Thi, let us consider to connect the MCE
sample to a thermal reservoir having uniform tempera-
ture Tb, through a thermal contact. The latter is conve-
niently represented as a region characterized by a surface
area Ac and a thickness tc. The current density jq = �jq�
associated to the heat flowing through the contact along
the direction orthogonal to the surface Ac is then given
by

jq = −κc
Tb − T

tc
, (14)

where κc is the thermal conductivity of the contact and
in the equality we have assumed that the temperature
varies linearly inside the contact thickness tc.

On the other hand, the current density jq is also re-
lated to the enthalpy change rate due/ dt through the
continuity equation given by Eq. (13). In what follows,
we will limit ourselves to investigate the case in which the
temperature T can be considered as uniform in the whole
sample, so that we can neglect the role of the heat diffu-
sion processes occurring inside the sample itself. This as-
sumption is valid when the macroscopic linear size of the
sample L (see Fig. 3) is smaller than λ and the thermal
conductivity κ of the MCE material, appearing in the re-
lation jq = −κ∇T , is high. With the above assumptions,
we can explicitly express the heat current density jq as a
function of the enthalpy rate due/ dt by integrating the
continuity equation Eq. (13) over the volume λ

3. Since
the surface area through which the heat current flows
perpendicularly and which encompasses the integration
volume is λ

2, by means of the divergence theorem we
get the result jq = −λ due/ dt. By taking now the lat-
ter equation equal to Eq. (14) and by substituting the
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enthalpy rate due/ dt with Eq. (12), we obtain the dif-
ferential equation governing the time behaviour of T (t)

during the phase transition:

dT
dt

=
κc

λcstc
(Tb − T )−

�

i

αsAi

λ3cs
(T − Tt)

=
Tb − T

τc
−
�

i

T − Tt

τsi
.

(15)

In Eq. (15) we have defined the time constants τc =

λcs tc/κc and τsi = λ
3
cs/(αsAi). While the latter,

through the coefficient αs and the typical sizes λ and Ai,
is related only to the intrinsic kinetics and the damping
mechanisms governing the phase transition, the former
takes into account the role of the external thermal reser-
voir through the thermal contact resistance tc/(κcAc).

The solution of Eq. (15) is strictly dependent not only
on the initial conditions on T , but also on the time
behaviour of the thermal reservoir temperature Tb(t).
There are two cases of particular interest: (i) constant
Tb; (ii) Tb varying at constant rate Ṫb. The former con-
dition ensures that the motion of each piece of boundary
interface of surface area Ai is separated in time from the
other ones. This happens because when the surface Ai

starts to move, the temperature T becomes lower than
Thi upon heating, or higher than Tci upon cooling, in a
volume λ

3 which in our case corresponds to the whole
sample, since we are assuming L < λ, this way inhibiting
the occurrence of other events. This case is described in
details in the following Sec. III B and in Appendix A.

The case of a reservoir temperature Tb varying in time
at a constant rate Ṫb is also very interesting from both
a physical and a mathematical point of view. Indeed,
when Tb varies uniformly in time, many events i, each
one corresponding to the motion of a piece of boundary
surface Ai, may occur concurrently and collectively con-
tribute to the sum appearing on the right-hand side of
Eq. (15). This happens because the heat provided by the
thermostat to the MCE sample during the phase tran-
sition is enough to overcome the change in temperature
occurring within the λ

3 volume. The solution T (t) shows
in this case many qualitatively interesting features and it
is derived in Appendix B.

B. Individual avalanches

Let us address now the case of a thermal reservoir
temperature Tb kept constant in time during the phase
transition. Then, as explained in Sec. IIIA, we can fur-
ther simplify Eq. (15) because in this case the individ-
ual events i, associated to the motion of the portions of
boundary interface of surface area Ai, are well separated
in time. For the sake of simplicity, we will assume from
here on that Ai ∼ �i

2, meaning that the surface area
of each portion of the boundary interface scales as the
square of the typical linear size �i covered by the inter-
face during its motion (see Fig. 3). It is worth noting that

the �i value is strictly related to the sample microstruc-
ture determining the nucleation and pinning centres for
the formation of a new phase and we will assume �i � λ.
This way, we can consider these events as independent
one of each other and we can investigate the effect that
each of them, taken one at a time, has on the time evolu-
tion of T . This assumption means that the sum appear-
ing in Eq. (15) reduces to only one term and therefore, by
defining ti, tf as the times at which the event starts and
ends, we can conclude that the time behaviour of T dur-
ing a first order transition driven by a single irreversible
event is governed by the following differential equation:

dT
dt

=
Tb − T

τc
− T − Tt

τsi
for ti ≤ t ≤ tf, (16)

For t > tf, once the transition is ended, the contribu-
tion of the latent heat associated to the boundary motion
will not be present anymore in Eq. (12) and the differ-
ential equation governing the behaviour of the sample
temperature T (t) will be:

dT
dt

=
Tb − T

τc
for t > tf. (17)

It is worth noting that Eq. (16) describes the system
during the phase transition, when T varies because of
both the effect of the external thermal contacts and of
the intrinsic kinetics of the moving boundary interface
which absorbs or releases heat, depending on whether we
are dealing with an heating or a cooling process, thus
reducing or enhancing T with respect to its initial value.
On the other hand, Eq. (17) describes the behaviour of
the system once the transition is ended and the temper-
ature T relaxes back to the thermodynamic equilibrium
value governed only by the heat exchanged with the ther-
mal reservoir.

The solutions of Eqs. (16)–(17) for constant Tb and
tf − ti � τc, τsi are analytically derived in Appendix A.
It is worth pointing out that the condition tf−ti � τc, τsi
ensures that the sample temperature T , and consequently
the heat flux qs(t), are far from the thermodynamic equi-
librium during the whole phase transition and that the
transformation will thus occur through a sequence of out-
of-equilibrium states far from Tt (see also Fig. 2). In par-
ticular, the time behaviour of the heat flux qsi(t) for an
individual avalanche is given by:

qsi(t) =






± λ
3
cs

τcτsi

∆T
hyst

2
(t− ti) for ti ≤ t ≤ tf;

± |qsi(tf)| e
− t−tf

τc for t > tf
(18)

where the “+” sign holds in a heating process so that
qsi(t) > 0, the “-” sign holds for the cooling case so that
qsi(t) < 0, |qsi(tf)| = λ

3
cs∆T

hyst
(tf − ti) / (2τcτsi) is the

heat flux at the end of the phase transition when t = tf
and ∆T

hyst
= Thi − Tci > 0 is the temperature hystere-

sis between the heating, i.e. Thi, and cooling, i.e. Tci,
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transition temperatures of each avalanche. In particu-
lar, for the sake of simplicity, in what follows we will
assume ∆T

hyst to be the same for all the avalanches de-
tected at a given field H, meaning that the temperature
hysteresis depends only on H but not on the single mi-
croscopic irreversible events i driving the transition, and
moreover we will choose Thi and Tci to be symmetric
around Tt (see Fig. 2). This way Tt = (Thi + Tci) /2 and
∆T

hyst
/2 = Thi − Tt = Tt − Tci.

It is important to point out that in the case of slow scan
rates and far-from-equilibrium avalanches that we are
considering, the theoretically expected behaviour of the
heat flux signal during the transition, i.e. for ti ≤ t ≤ tf,
is linear in time and governed by both the time constants
τsi and τc, while the subsequent relaxation towards the
equilibrium is described by an exponential law governed
by the time constant τc alone, related to the thermal
contact details only.

IV. COMPARISON WITH EXPERIMENTS

We have analyzed the experimental data obtained by
performing Peltier calorimetry temperature scans at dif-
ferent rates and at various applied magnetic fields H on
a series of La(Fe-Mn-Si)13-H1.65 samples. Indeed, this
kind of experiments, in which a calorimeter evaluates the
heat flux exchanged between the sample and the external
thermostat by performing temperature or magnetic field
scans at different rates61,62, are the right ones to apply
the theoretical model developed in Sec. III. The sample
preparation and the experimental procedure followed to
detect the heat flux signals are detailed in Ref. [55]. In
particular, in Ref. [55] it has been shown that the heat
flux signals present well separated avalanches only when
the temperature scans are performed at very low rates,
i.e. lower than 20mK/s, on small fragments of the ma-
terial under investigation characterized by a mass of few
milligrams. We have focused our analysis on the data ob-
tained through scans performed in heating at the lowest
scan rate, i.e. dTb/ dt = 1mK/s, on two samples of the
series characterized by nominal compositions Mn=0.18
and Mn=0.30. The mass of the samples is m1 = 4.79mg

and m2 = 5.26mg for the two compositions 0.18 and 0.30,
respectively. It is worth noting that such small masses al-
lows us to assume from here on that λ = L, meaning that
the sample temperature T will be considered as uniform
within the whole sample.

The resulting heat flux signals as a function of time
for different fields H varying between 0T and 1.5T and
around the transition temperature Tt are reported in
Fig. 4. The data clearly show the presence of avalanches
separated in time in both the samples, increasing in num-
ber and changing in shape by approaching the critical
field Hc of the system, at which the phase transition
becomes second order, given by Hc � 2.3T and Hc �
1.2T for Mn=0.18 and Mn=0.30, respectively63. All the
avalanches are characterized by a fast linear growth fol-

lowed by a longer exponential decay. To interpret theo-
retically this kind of behaviour we can notice that since
the experimental temperature scans are performed at a
very low rate for each field H, we can safely treat the
thermostat temperature Tb as constant during the phase
transition. Then, we have described the time behaviour
of the avalanches by Eq. (18) of Sec. III B.
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Fig. 4. Heat flux qs as a function of time at differ-
ent magnetic fields µ0H. Experimental data obtained by
Peltier calorimetry temperature scans performed at dTb/ dt =
1mK/s rate, upon heating, on LaFe11.60Mn0.18Si1.22-H1.65

(top) and LaFe11.41Mn0.30Si1.29-H1.65 (bottom) samples.

We have first of all obtained the values of τc by per-
forming the fit of the exponential decays observed in se-
lected avalanches of both samples at various H, as shown
in Fig. 5. The resulting average values �τc� for the vari-
ous H and Mn compositions are reported in Table I. We
have then fitted the linear rises with the function qsi(t) =
a (t− ti). From the first equation in Eq. (18), the slope
a can be written as a = (Rsi/τc)∆T

hyst
/2, where we

have defined the quantity Rsi = (αsAi)
−1

=
�
αs�i

2�−1,
having the units of a thermal resistance, i.e. K/W. In
particular, from the definition of Rsi we can notice that it
accounts only for the internal damping mechanism driv-
ing the system through the phase transition, but not for
the contact details. The choice of evaluating Rsi instead
of τsi lies on the difficulty to estimate the reversible con-
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tribution to the specific heat of the system cs close to the
transition temperature Tt. By using the values of τc and
those of the temperature hysteresis ∆T

hyst
/2 experimen-

tally determined55,63 and reported in Table I and Fig. 7,
it is possible to evaluate Rsi. The behaviour of Rsi for
the avalanches analyzed is reported in Fig. 6, panel (a).

Fig. 5. Example of the fit of an individual avalanche: fitting
curve according to Eq. (18) (red dotted line) and experimen-
tal data (black solid line). The fit of linear rise, exponential
decay, and area under the curve, allow to determine the pa-
rameters Rsi, τc and �i, respectively. Inset : example of the
fit in the case of a multiple avalanche.

In order to evaluate the damping coefficient αs we
need to evaluate the linear size �i associated to each
resistance value Rsi. �i has been obtained by comput-
ing the latent heat exchanged by each region of the
sample involved in the phase transition with the sur-
roundings. As shown in Sec. II B, the latent heat is re-
lated to the volume �iAi ∼ �i

3 covered by the bound-
ary interface during its motion through Eq. (8), so that
�i =

���
qsi(t) dt

�
/∆uL

�1/3. Thus, by integrating the
individual heat flux avalanches detected experimentally
(see Fig. 4) between the times corresponding to the be-
ginning of the avalanche and to the end of its exponential
decay (see Fig. 5), and by using the experimental values
for ∆uL = Tt∆sL reported in Table I (see also Fig. 7), we
have found �i values reported in the panel (b) of Fig. 6.

Finally, we have evaluated the damping coefficient αs
through the internal resistance Rsi and the size �i as
αs = 1/

�
Rsi�i

2�. This way we can estimate also the
starting velocity of the boundary interface v = dx/ dt =
(αs/∆uL)∆T

hyst
/2, a relation obtained by approximat-

ing Eq. (9) for T � Tt. The behaviour of v, together with
the values of the ratio αs/∆uL, are shown in the panels
(c) and (d) of Fig. 6 at various magnetic fields H and
different Mn compositions .

Δ

Fig. 6. Damping resistance Rsi (a), linear size �i (b), velocity
v = dx/ dt (c) and ratio αs/∆uL (d), as a function of the
applied field µ0H, for La(Fe-Mn-Si)13-H samples with nomi-
nal compositions Mn=0.18 (red squares) and Mn=0.30 (green
circles). Points obtained by fitting the avalanches shown in
Fig. 4 through Eq. (18) with the parameters reported in Ta-
ble I. Dash-dotted lines connecting the average values among
points are guides to the eyes.

V. DISCUSSION

As a first result of the fitting of the experimental
avalanches with the model, we can observe that Rsi, be-
yond depending on the Mn composition, increases by
increasing the applied magnetic field H (panel (a) in
Fig. 6). The opposite behaviour characterizes the typical
size �i swept out by each piece of the domain boundary
interface during its motion (panel (b) in Fig. 6). Such a
decrease in �i, and hence in the volume �i

3 of each in-
dividual avalanche, is consistent with the increase in the
number of avalanches which are experimentally detected
when approaching the critical point of the system (see
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Mn=0.18 Mn=0.30

µ0H

[T]
Tt
[K]

∆T
hyst

/2
[K]

∆uL
[×106 J/m3]

�τc�
[s]

µ0H

[T]
Tt
[K]

∆T
hyst

/2
[K]

∆uL
[×106 J/m3]

�τc�
[s]

0 321.4 0.45 31.2 4.0 0 295.8 0.2 21.9 6.1

0.5 323.1 0.3 30.2 4.1 0.4 297.6 0.1 20.1 5.8

1 325.1 0.2 29.3 4.2 0.7 298.6 0.1 18.3 10.5

1.5 326.7 0.15 28.2 4.6 1 300.5 0.05 16.9 22.0

Table I. Experimental values of Tt, ∆T
hyst

/2 and ∆uL = Tt∆sL, obtained by Peltier calorimetry temperature scans at different
magnetic fields µ0H on La(Fe-Mn-Si)13-H samples with Mn=0.18 and Mn=0.30 (density ρ = 7200 kg/m

3), after Refs. [55,63].
The average values �τc� are evaluated by fitting the decay parts of the heat flux avalanches (Fig. 4) with the exponential law
of Eq. (18), as depicted in Fig. 5.
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Fig. 7. Experimental values of entropy change per unit mass
∆sL at Tt (squares; scale on left axis) and of temperature
hysteresis ∆T

hyst (circles; scale on right axis), as a function of
the applied field µ0H, for La(Fe-Mn-Si)13-H compounds with
nominal compositions Mn=0.18 (red) and Mn=0.30 (green).

Fig. 4), since the volume that transforms during the tran-
sition from a certain phase to a new one is λ

3 ∼
�

i �i
3.

This kind of behaviour is not trivial and it may be in-
terpreted as the consequence of the assumption that the
transition is driven by the heterogeneous nucleation and
pinning of the boundaries of the new phase at the defects
present in the MCE sample. The applied field H can be
thought of as acting on the typical energy profile charac-
terizing a first order transition (Fig. 2) by modulating the
energy barrier between the stable phases S0 and S1 and
hence by decreasing the temperature hysteresis ∆T

hyst,
as shown in the bottom of Fig. 7, without affecting the
material microstructure. This way it is possible to dis-
tinguish three different regimes according to the values
of the applied field H. When H is far below the criti-
cal point and eventually H ∼ 0, the energy barrier and
the hysteresis are high enough to prevent many defects
of the sample to be active as nucleation centres of the
new phase. As a consequence, when the new phase nu-
cleates at a certain point, the subsequent transformation

involves the whole sample and a single avalanche is ob-
served. At higher H but still below Hc, the energy barrier
and ∆T

hyst are reduced and the nucleation and growth
of new domains may occur in several points of the sam-
ple. Then, more avalanches, still well separated in time,
come into play and are experimentally detected. Finally,
by further increasing H and getting closer to Hc or even
above it, the hysteresis reduces essentially to zero and a
proliferation of avalanches superimposing each other is
observed. The number of avalanches is so high that they
are blurred in an almost continuous background and the
single peaks cannot be distinguished anymore.

The situation here described can be efficiently enlight-
ened by choosing several samples having different critical
points Hc, so that a given applied field H may be ei-
ther well below Hc, or at an intermediate level between
0 and Hc, or finally close or higher than Hc, according
to the specific sample under investigation. This situation
is well represented by the compounds of the La(Fe-Mn-
Si)13-H1.65 series that we have considered here. Indeed,
an applied field H ∼ 1.5T is already higher than Hc ∼
1.2T for the Mn=0.30 sample, but it is still below Hc ∼
2.3T in the case Mn=0.18. This circumstance is well
reflected in the behaviour of the heat flux signals de-
tected at this field on the two compounds. These signals
show indeed a pattern already structured in separated
avalanches for Mn=0.18 and, on the contrary, a rather
continuous background for Mn=0.30 (Fig. 4 and inset
therein).

Interestingly, the increase in Rsi and the decrease in
�i observed by increasing H compensate each other, so
that the parameter αs/∆uL =

�
Rsi�i

2
∆uL

�−1 appearing
in Eq. (9) is essentially constant, independently on H and
on the material composition (Fig. 6, panel (d)). The av-
erage value of this parameter, representing the starting
velocity of the moving phase boundary interface corre-
sponding to a variation in temperature of 1K, amounts
to αs/∆uL ≈ 0.5× 10

−3
(m/s)/K.

Another important feature to mention is that the ve-
locity v = dx/ dt of the heat flux avalanches shows a
clear decrease by enhancing H and getting closer to Hc
(panel (c) in Fig. 6), meaning that the associated bound-
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ary motion slows down by approaching the critical point
of the system. This kind of behaviour may be inter-
preted as a manifestation of the critical slowing down
known to appear around the critical point of a phase
transition64,65 and it can be ascribed to the disappear-
ance of the avalanches above Hc.

A final comment concerns the role played by the in-
trinsic kinetics governing the transition, with respect to
extrinsic factors, in affecting the heat exchanged between
the MCE sample and the surroundings. A comparison
between the Rsi values and the contact resistance values
Rc can be made. A rough estimate of Rc can be obtained
from the average values �τc� reported in Table I for dif-
ferent fields H and nominal Mn compositions. In order
to relate Rc to �τc� we must take into account the fact
that for the particular measuring setup we have employed
to perform the temperature scans, the thermal contacts
comprise also the Peltier cells of the calorimeter which
are characterized by their own resistance and capacity RP
and CP, respectively. Both these quantities can be deter-
mined by calibrating the calorimeter and they evaluate to
RP = 75K/W and CP = 48mJ/K

62. Then, by including
also the contribution associated to CP, the thermal con-
tact resistance can be expressed as Rc = �τc�/ (Cs + CP).
The heat capacity Cs = λ

3
cs may be evaluated by ob-

serving that λ
3 represents in our case the whole sample

volume, since we have assumed λ = L, and the specific
heat cs around the transition temperature at various H

can be extrapolated from the experimental data reported
in Ref. [63]. With cs � 600 J/(kgK) for Mn=0.18, essen-
tially independent on H, and cs � 1000 J/(kgK) at H =

0T and cs � 1500 J/(kgK) at H = 1T for Mn=0.30,
we can conclude that Rc ∼ 80–90K/W in the Mn=0.18
case, while Rc ∼ 100–400K/W for Mn=0.30. We can
notice that the Rc and Rsi values have the same order
of magnitude for both the compositions here considered.
We can conclude that it would be attractive to envis-
age the development of experiments able to enhance Rc
with respect to Rsi, or viceversa, by choosing the right
MCE materials and measuring setup. This way it would
be possible to clearly distinguish the effects, on the heat
flux exchange, due to the intrinsic kinetics and to the
extrinsic factors, as the measurement system. Such an
investigation will be the matter of future works.

VI. CONCLUSIONS

In the present paper we have introduced a thermo-
dynamic model describing the out-of-equilibrium effects
proper of first order phase transitions to analyze the heat
flux signals experimentally observed by performing tem-
perature scans at low rate on a series of La(Fe-Mn-Si)13-
H1.65 fragments with Mn=0.18 and Mn=0.30. The phys-
ical picture arising from the comparison between the ex-
perimental data and the model is coherent with the as-
sumption of a defects-driven phase transition, in which
the system transforms from a magnetically ordered LT-

FM phase to a disordered HT-PM phase because of the
motion of the domain boundaries which nucleate at the
defects present in the material microstructure.

In particular, we have shown that when the scan rate
is low enough, the nucleation and pinning centres of the
sample are active one at a time and they give rise to char-
acteristic repeatable series of heat flux peaks which have
a typical linear growth followed by an exponential decay.
We have related the appearance of these avalanches to
individual, well time-separated, independent boundary
motion events associated to the latent heat of the sys-
tem. Furthermore, we have shown that the non trivial
patterns experimentally observed in the heat flux signals
can be interpreted as a consequence of the applied mag-
netic field H. The latter modulates the energy profile
and the hysteresis of the system by getting closer to the
critical point Hc and it affects this way the number of
nucleation centres that may be active into the sample.

Finally, we have evaluated the coefficient αs associated
to the internal damping of the boundary motion events
for the La(Fe-Mn-Si)13-H1.65 compounds. Although a
precise quantitative estimate of this parameter is lim-
ited by the low number of available experimental data,
we have found a value αs which is essentially independent
on both the applied magnetic field H and the Mn compo-
sition. This outcome suggests that αs may be considered
as a parameter related only to the intrinsic properties of
each class of MCE materials.

Appendix A: Constant Tb

The case of a constant thermal reservoir temperature
Tb allows to properly describe calorimetry measurements
in which the temperature scans are performed at very
low rates. In this regime the single avalanches observed
in the heat flux signal are well separated in time and
distinguishable from a uniform background, so that it
is possible to follow the time evolution of each of them.
The appearance of each avalanche is due to individual
nucleation and pinning events occurring in many differ-
ent regions of the sample which are active at different
subsequent times. The separation in time of these events
can be explained by supposing that when the transition
begins, the phase boundary interface will start to move
around a certain nucleation centre, exchanging heat and
causing the variation of the sample temperature T within
a typical volume λ

3 (see Fig. 3) around the nucleation
centre. This change in temperature will prevent the oc-
currence of other nucleation events and boundary mo-
tions inside the same volume, since T will be different
from the threshold value necessary for the motion of the
boundary interface, i.e. Thi in an heating process or
Tci in the cooling case (see Sec. II B). Once the phase
boundary will stop and the heat flux avalanche will end,
the whole region will relax again towards the equilibrium
temperature Thi or Tci, thus allowing a new avalanche to
start. The presence of an applied magnetic field H does
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not affect this picture, even if H is close to the critical
value Hc. Indeed, the increase in the H value is reflected
into a decrease of the temperature hysteresis ∆T

hyst and
in the consequent increase of the number of the active
regions of the sample in which an avalanche event may
occur. Therefore, by increasing H the number of individ-
ual avalanches experimentally detected is also increased.
However, the separation in time among these avalanches
depends on the heat exchanged by the boundary inter-
face with the surrounding region of the sample and with
the external thermal reservoir and this feature is related
only to the internal properties of the material and to the
external scan rate, but it cannot be affected by H.

The differential equations governing the time be-
haviour of the sample temperature T (t) have been de-
rived in Sec. III and are given by Eqs. (16)–(17). To solve
these equations we assume that the transition starts at
T (ti) = Thi for an heating process (T (ti) = Tci for the
cooling case). Then the constant Tb value is Tb = Thi in
heating (Tb = Tci in cooling). The solution of Eqs. (16)–
(17) for an individual avalanche is then

T (t) =






T (ti)∓
τc

τc + τsi

∆T
hyst

2

�
1− e

− t−ti
τsc

�

for ti ≤ t ≤ tf;

T (ti)∓ |T (ti)− T (tf)| e
− t−tf

τc for t > tf,

(A1)
where T (ti) = Thi and the “-” sign hold for an heating
process, while T (ti) = Tci and the “+” sign hold in the
cooling case and we have introduced the quantity |T (ti)−
T (tf)| = τc/(τc + τsi)

�
∆T

hyst
/2
� �

1− e
−(tf−ti)/τsc

�
> 0,

with ∆T
hyst

= Thi−Tci and ∆T
hyst

/2 = Thi−Tt = Tt−
Tci. Moreover, in Eq. (A1) we have defined the time con-
stant τsc = (1/τc + 1/τsi)

−1
= λ

3
cs

�
λ
2
κc/tc + αs�i

2�−1.
We observe that the time constant τsc, governing the be-
haviour of T during the transition, is the parallel of the
time constants τc, τsi defined in Sec. III B and therefore it
is dominated by the smaller one between them. This ob-
servation implies that the heat exchanged between the
boundary interface and the surrounding region of the
sample during the phase transition can be governed either
by the intrinsic damping (τsi � τc) or by external factors
only (τsi � τc). In particular, since we are assuming that
�i � λ (see Sec. III B and Fig. 3) and that the contact
resistance tc/(κcAc) for the samples here investigated is
low (see Ref. [55]), the internal time constant τsi shall be
expected to be higher than the τc for any event i, so that
τsc � τc. In this respect, it is worth noting that from an
analytical point of view the time constants τsi and τc can
be independently determined and do not mix together if
the individual heat flux avalanches associated to the tran-
sition event are far from equilibrium during the whole
transition, a condition which is realized if tf − ti � τsc.
Indeed, in this case we have that exp [− (t− ti) /τsc] �
1 + (t− ti) /τsc and the first row of Eq. (A1) assumes
the form T (t) − T (ti) � ∓

�
∆T

hyst
/2
�
(t− ti) /τsi in-

dependently on whether τsi � τc or τsi � τc. Then,

we can conclude that in the case of far-from-equilibrium
avalanches, the sample temperature T will vary linearly
in time with a slope determined only by the internal time
constant τsi for ti ≤ t ≤ tf, while it will relax back to the
equilibrium for t > tf with an exponential law governed
only by the time constant τc.

The solution given by Eq. (A1), combined with
Eq. (14), allows to determine the time behaviour of the
heat current density jq(t) flowing through the thermal
contact for an individual avalanche event, which reads:

jq(t) =






∓ λcs

τc + τsi

∆T
hyst

2

�
1−e

− t−ti
τsc

�
for ti ≤ t ≤ tf;

∓ |jq(tf)| e
− t−tf

τc for t > tf,

(A2)
with |jq(tf)| = λcs|T (ti)−T (tf)|/τc being the modulus of
the heat current density at t = tf, the “-” sign holding
for an heating process and the “+” sign holding for the
cooling case.

Finally, from Eq. (A2) and by integrating the conti-
nuity equation Eq. (13) on the volume λ

3 enclosed in
a surface area λ

2, we obtain the time behaviour of an
individual heat flux avalanche qsi(t) = −λ

2
jq(t):

qsi(t) =






± λ
3
cs

τc + τsi

∆T
hyst

2

�
1−e

− t−ti
τsc

�
for ti ≤ t ≤ tf;

± |qsi(tf)| e
− t−tf

τc for t > tf,

(A3)
where, in this case, |qsi(tf)| = λ

3
cs|T (ti)−T (tf)|/τc is the

modulus of the the heat flux at t = tf, the “+” sign holds
in heating so that qsi(t) > 0 and the “-” sign holds in
cooling so that qsi(t) < 0. Again, if the avalanches are
far from equilibrium and hence tf − ti � τsc, the heat
flux behaviour during the transition becomes linear in
time and governed by both the time constants τsi and τc,
while the subsequent relaxation towards equilibrium will
still be described by an exponential law governed by the
time constant τc related to the thermal contact details
only:

qsi(t) =






± λ
3
cs

τcτsi

∆T
hyst

2
(t− ti) for ti ≤ t ≤ tf;

± |qsi(tf)| e
− t−tf

τc for t > tf

(A4)

with |qsi(tf)| = λ
3
cs∆T

hyst
(tf − ti) / (2τcτsi).

Appendix B: Tb varying at constant rate Ṫb

The case of a thermal reservoir temperature Tb vary-
ing at a constant rate Ṫb applies to the description of
calorimetry experiments performed at high scan rates.
Contrary to the case discussed in Appendix A, the high
scan rate allows many regions surrounding different do-
main nucleation centres inside the MCE sample to be
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active at the same time and not independent one of each
other. As for Appendix A, each of these regions will con-
tribute to develop the phase boundary interface with a
portion of surface having area Ai and it will affect the
sample temperature T within a volume λ

3 around the
nucleation centre. However, the main difference with re-
spect to the case of a thermal reservoir kept at a constant
temperature Tb treated in Appendix A is represented by
the fact that many irreversible events i, each one asso-
ciated to the motion of a single piece of surface Ai, will
occur concurrently within the volume λ

3. This happens
because the heat provided by the reservoir at high scan
rates is high enough to balance the change in temperature
occurring in the λ

3 volume because of the phase bound-
ary motion, so that the threshold temperatures Tci, Thi
(see Sec. II B) will be overcome almost simultaneously
by many nucleation centres. Then, all the terms propor-
tional to Ai appearing in the sum on the right-hand side
of Eq. (15) must be taken into account and, since the
damping coefficient αs, the typical size λ and the transi-
tion temperature Tt are the same for all the events, we
can wright the area of the phase boundary interface as
A =

�
i Ai =

�
i �i

2 (see also Sec. II C). The time con-
stant related to the damping mechanism associated to the
motion of the whole surface A is in this case denoted as
τs and it reads τs = λ

3
cs/

�
αs

�
i �i

2�
=

�
i τsi, where τsi

is the time constant, defined in Sec. III B, which refers to
the damping of a portion Ai only of the whole boundary
interface. It is worth noting that depending on the upper
limit in the previous sum, it can be either Ai ∼ A if the
limit is low or Ai � A if the limit is high enough. In
the former case we can assume τs ∼ τsi = λ

3
cs/

�
αs�i

2�,
while in the latter case we have τs � τsi. More impor-
tant, although Ai � λ

2 since we are assuming �i � λ, it
may happen that A, being the sum of many Ai, will be
greater than λ

2, so that also τc > τs. Hence, with respect
to the constant Tb case, in the fast scan rate regime there
is also the possibility that the heat exchanged between
the MCE sample and the external thermal reservoir may
be primarily governed by the thermal contact details in-
stead of the intrinsic kinetics of the phase transition.

From the experimental point of view, the heat flux
signal qs(t) detected in this regime is not characterized
anymore by individual peaks well separated in time asso-
ciated to the different events i as it was for the case of a
constant Tb, but it rather shows a continuous behaviour
due to the superposition of many concurrent events. It
is worth noting that in this case also the times ti, tf at
which the phase transition begins and ends, respectively,
identify the length in time of the whole heat flux sig-
nal composed by many superimposed avalanches and not
only the time span of an individual single avalanche, as it
was in Sec. III B and in Appendix A. Moreover, the shape
of qs is also highly affected by the magnetic field H which
plays here a prominent role, since it determines the num-
ber of irreversible events i occurring in the sample at the
same time. Indeed, as discussed in Appendix A, while
H is approaching the critical value Hc, the temperature
hysteresis ∆T

hyst reduces and thus the number of active
regions in which new domains nucleate and growth is in-
creased. This means that also the number of terms con-
tributing to the sum appearing in Eq. (15) is increased
and this fact is reflected on the behaviour of the sample
temperature T (t) and of the heat flux signal qs(t).

To solve Eqs. (16)–(17) in the case of a thermal bath
temperature varying in time as Tb(t) = Tb(ti)+ Ṫb(t− ti)

for t > ti, with Ṫb > 0 in an heating process or Ṫb < 0 in
a cooling case, we must determine first of all the initial
value Tb(ti). To this aim, we observe that before the
transition starts, i.e. for t ≤ ti, the sample temperature
T has a small leg behind Tb due to the contact resistance
tc/(κcAc) between the MCE sample and the reservoir.
Then, we can conclude that Tb(t) = T (t)+τcṪb for t ≤ ti.
At t = ti, the sample temperature reaches the threshold
value T (ti) = Th in an heating process or T (ti) = Tc in
the cooling case, so that the initial condition on Tb reads
Tb(ti) = Th + τcṪb in heating and Tb(ti) = Tc + τcṪb =

Tc − τc|Ṫb| in cooling.
With the above conditions and the time constant τsc

defined as in Eqs. (A1)–(A2)–(A3) but with τsi replaced
in this case by τs, the solution T (t) of Eqs. (16)–(17) and
the heat flux qs(t) read

T (t) =






T (ti) +
τs

τc + τs
Ṫb (t− ti)∓

τc

τc + τs

�
∆T

hyst

2
−τsc|Ṫb|

��
1−e

− t−ti
τsc

�
for ti ≤ t ≤ tf;

T (ti)−
�
T (ti)− T (tf)

�
e
− t−tf

τc + Ṫb (tf − ti)

�
1− e

− t−tf
τc

�
+ Ṫb (t− tf) for t > tf;

(B1)

qs(t) =






± λ
3
cs

τc

�
τc|Ṫb|+

τc

τc+τs
|Ṫb| (t− ti) +

τc

τc + τs

�
∆T

hyst

2
−τsc|Ṫb|

��
1− e

− t−ti
τsc

��
for ti ≤ t ≤ tf;

qs(tf)e
− t−tf

τc + λ
3
csṪb

�
1− e

− t−tf
τc

�
for t > tf.

(B2)

where the “-” sign in Eq. (B1) and the “+” sign in Eq. (B2) hold in heating, while the opposite signs in the
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same equations hold for cooling. Moreover, in analogy
with Appendix A, we have set ∆T

hyst
= Th − Tc and

∆T
hyst

/2 = Th − Tt = Tt − Tc. In particular, we ob-
serve that Eq. (B2) is evaluated by combining Eq. (B1)
with Eqs. (13)–(14), following the same procedure used
in Appendix A to obtain Eq. (A3). The heat current
density jq(t), analogous to Eq. (A2), is simply obtained
from Eq. (B2) as jq(t) = −qs(t)/λ

2.
There are two special limits of Eqs. (B1)–(B2) that

deserve attention and allow to simplify the above expres-
sions, namely the case in which the sample temperature
T (t) and the heat flux signals qs are far from their equi-
librium values for the whole phase transition, a condition
realized whenever tf − ti � τsc, and, on the opposite, the
case in which T and qs can be close and even reach the
thermodynamic equilibrium during the transformation,
i.e. tf − ti � τsc.

 dTb/dt = 1
 dTb/dt = 5
 dTb/dt = 10
 dTb/dt = 15

T

Tb

Tb

l i n e a r  
d e c r e a s e : s

e x p o n e n t i a l
r e l a x a t i o n : c

Fig. 8. Qualitative behaviour of T vs. Tb, for far-from-
equilibrium signals at different rates Ṫb = dTb/ dt > 0, ac-
cording to Eq. (B3) for the linear decrease and Eq. (B1) (sec-
ond row) for the exponential relaxation. The dotted red line
shows the temperature Tb. Ṫb values in the legend are ex-
pressed in arbitrary units.

a. Far-from-equilibrium signals. When the signals
are far from the thermodynamic equilibrium, the be-
haviour of both T (t) and qs(t) during the phase tran-
sition, i.e. for ti ≤ t ≤ tf, becomes linear in time, as it
was for Eq. (A1) and Eq. (A3), and it is given by:

T (t) =T (ti) + Ṫb (t− ti)∓
∆T

hyst

2τs
(t− ti) ; (B3)

qs(t) =± λ
3
cs

�
|Ṫb|+

∆T
hyst

2τcτs
(t− ti)

�
, (B4)

where in Eqs. (B3)–(B4) we have used the same con-
vention on the signs as in Eqs. (B1)–(B2). Therefore,
the far-from-equilibrium regime allows to clearly distin-
guish the role played by the time constants τs and τc in

determining the behaviour of T (t) and qs(t) during and
after the phase transition. Indeed, as shown in Eq. (B3),
the slope in the linear behaviour of T during the phase
transition is governed by the internal time constant τs
only, independently on whether τc � τs or, viceversa,
τc � τs. For what concerns qs(t), Eq. (B4) shows fur-
thermore that its linear behaviour is characterized by a
slope determined by both the time constants τs and τc.
When the transition is ended, i.e. for t > tf, both T and
qs relax back to the thermodynamic equilibrium with an
exponential law governed by τc only and described by
Eqs. (B1)–(B2). The major difference with respect to
the case of a constant Tb treated in Appendix A is that
the behaviour of both T (t) and qs(t) depends now also on
the constant rate Ṫb. This fact is qualitatively depicted
in Fig. 8 and Fig. 9 where the sample temperature T

and the heat flux qs are reported, upon heating, as a
function of the thermal bath temperature Tb at different
rates Ṫb > 0.

Tb

 dTb/dt = 1
 dTb/dt = 5
 dTb/dt = 10
 dTb/dt = 15

qs

Tb

l i n e a r  
g r o w t h : c , s

e x p o n e n t i a l
d e c a y : c

Fig. 9. Qualitative behaviour of qs vs. Tb, for far-from-
equilibrium signals at different rates Ṫb = dTb/ dt > 0, ac-
cording to Eq. (B4) for the linear growth and Eq. (B2) (sec-
ond row) for the exponential decay. A constant offset λ

3
csṪb

has been subtracted from all the curves. For the values in the
legend see Fig. 8.

b. Close-to-equilibrium signals. The case of signals
that can be close or even reach the thermodynamic equi-
librium arises interestingly when the applied magnetic
field H approaches the critical point Hc. Indeed, for
H � Hc we have already noticed that τc > τs, so that
τsc � τs, being τsc the parallel between τc and τs. Since in
this case we have also pointed out that τs � τsi and we
know from the experimental results reported in Sec. IV
that τsi = λ

3
csRsi = CsRsi is of the order of 10–100ms,

we may suppose that the heat flux signals last in time
more than τs, i.e tf−ti � τsc � τs. The linear approxima-
tion derived for the far-from-equilibrium signals regime
does not hold anymore, but we can also in this case sim-
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plify Eqs. (B1)–(B2) noting that now τs is negligible with respect to τc. Then we obtain:

T (t) =






T (ti)∓
∆T

hyst

2

�
1− e

− t−ti
τs

�
± τs|Ṫb|

�
1− e

− t−ti
τs +

t− ti

τc

�
for ti ≤ t ≤ tf;

T (ti)−
�
T (ti)− T (tf)

�
e
− t−tf

τc + Ṫb (tf − ti)

�
1− e

− t−tf
τc

�
+ Ṫb (t− tf) for t > tf;

(B5)

qs(t) =






± λ
3
cs

�
|Ṫb|+

∆T
hyst

2τc

�
1− e

− t−ti
τs

�
+ |Ṫb|

t− ti

τc
− τs

τc
|Ṫb|

�
1− e

− t−ti
τs

��
for ti ≤ t ≤ tf;

qs(tf)e
− t−tf

τc + λ
3
csṪb

�
1− e

− t−tf
τc

�
for t > tf.

(B6)

We can notice from Eqs. (B5)–(B6) that T (t) and qs(t)
show in this regime an exponential behaviour both during
and after the transition, governed by τs and τc separately.
Even in this case, Eqs. (B5)–(B6) can be linearized as a
function of the thermal reservoir temperature Tb(t), if
the time constant τs is small enough, so that we can
consider t − ti � τs and we can safely neglect the ex-
ponentials appearing in these equations for ti ≤ t ≤ tf.
Then, the solutions describing the temperature and heat
flux behaviour as a function of Tb(t) during the phase

transition, i.e. for ti ≤ t ≤ tf, read:

T � τs

τc
Tb + Tt −

τs

τc
T (ti) � Tt; (B7)

qs �
λ
3
cs

τc
(Tb − Tt) . (B8)

In particular, the most important feature encompassed in
Eq. (B8) is represented by the fact that the heat flux qs
has a linear dependence on the thermal bath temperature
Tb characterized by a slope which is independent on the
rate Ṫb.

A similar linear behaviour is obtained, but as a func-
tion of the time t, also at times well beyond the end
of the transition, i.e. at t � tf. In this case the time
behaviour of T and qs becomes again linear, as it was
for t ≤ ti before the transition started, and it is given

by T (t) = Tb(t) −
�
T (ti)− T (tf) + Ṫb (tf − ti)

�
e
− t−tf

τc −
τcṪb � Tb(t)− τcṪb and qs(t) = λ

3
cs [Tb(t)− T (t)] /τc =

λ
3
csṪb.
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