
19 May 2024

ISTITUTO NAZIONALE DI RICERCA METROLOGICA
Repository Istituzionale

The Spin Seebeck and Spin Peltier Reciprocal Relation / Basso, Vittorio; Kuepferling, Michaela; Sola,
Alessandro; Ansalone, Patrizio; Pasquale, Massimo. - In: IEEE MAGNETICS LETTERS. - ISSN 1949-307X. -
9:(2018), pp. 1-4. [10.1109/LMAG.2018.2852292]

Original

The Spin Seebeck and Spin Peltier Reciprocal Relation

IEEE

Publisher:

Published
DOI:10.1109/LMAG.2018.2852292

Terms of use:

Publisher copyright

© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic
description in the repository

Availability:
This version is available at: 11696/59936 since: 2021-03-02T16:31:13Z

IEEE

This is the author's submitted version of the contribution published as:



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

The spin Seebeck and spin Peltier reciprocal relation
Vittorio Basso, Michaela Kuepferling, Alessandro Sola, Patrizio Ansalone and Massimo Pasquale

Abstract—In this paper we derive the reciprocal relation
between electric and thermal quantities of the spin Seebeck
and the spin Peltier effects. For a Pt/YIG bilayer device, the
reciprocity assumes the remarkably simple form T∆Ve,y/Iq,x =
∆TSP,x/Ie,y where ∆Ve,y is the voltage generated at the Pt metal
in a spin Seebeck experiment under the heat current Iq,x and
∆TSP,x is temperature difference generated in a spin Peltier
experiment with an electric current Ie,y flowing in the Pt metal.
The ratios are related to intrinsic coefficients: the spin Hall angle
θSH of Pt and the thermomagnetic power coefficient εM of YIG.

Index Terms—Spin caloritronics, reciprocal relations, Pt/YIG
bilayers

I. INTRODUCTION

THE spin Seebeck and spin Peltier effects are the result
of two independent physical mechanisms: the spin Hall

effect in a metallic layer (i.e. Pt) and the thermomagnetic
effect in a ferrimagnetic insulator (i.e. yttrium iron garnet,
YIG) [1]–[4]. In the spin Seebeck effect, the presence of a
temperature gradient in YIG generates a magnetic moment
current (often referred to as spin current), carried by spin
waves. At the interface between YIG and Pt the current is
partially injected into the metal where it is carried by spin
polarized electrons. In Pt the diffusing electrons are partially
deflected in the perpendicular direction due to the inverse spin
Hall effect and are revealed as a transverse electric voltage.
In the spin Peltier effect the role of the two mechanisms is
reversed: Pt is the active layer while YIG is the passive one. A
transverse electric current in Pt is able to force the injection of
a magnetic moment current into YIG. Thermomagnetic effects
of YIG transform this current into a heat current which is
finally revealed as a temperature difference. Both effects have
already been experimentally observed [5]–[10] but, although
the reciprocity of the spincaloritronic effects has been already
discussed [11], [12], a quantitative reciprocal relation is still
missing.

The Onsager reciprocal relations are an outcome of non-
equilibrium thermodynamics [13]. For a thermoelectric device,
the reciprocity consists in the fact that for a given thermo-
electric conductor, the ratio between the measured voltage
∆V and the applied temperature difference ∆T in a Seebeck
experiment, and the ratio between the measured heat flux
Iq and the applied electric current Ie, in a Peltier one, are
related by the absolute temperature T : T∆V /∆T = Iq/Ie
[14]. Furthermore the ratios are both related to the absolute
thermoelectric power coefficient ε = ∇V /∇T which is a
material dependent property. In the case of a spin Seebeck and
spin Peltier device, the formulation of the Onsager reciprocity
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is not so straightforward, because there are two combined
mechanisms: the spin Hall effect of the metal and the ther-
momagnetic effect of the insulator. Furthermore, unlike the
electric charge, the magnetic moment is a non conserved
quantity. This fact requires a proper thermodynamic treatment.

In this paper we derive the spin Seebeck and spin Peltier re-
ciprocal relation on the base of the non-equilibrium thermody-
namics of Johnson and Silsbee [15] following the application
of the theory to ferromagnetic insulators of Refs. [16] and [17].
The result is that, for a Pt/YIG bilayer, the relation between
the integrated quantities assumes the remarkably simple form

∆Ve,y
Iq,x

T =
∆TSP,x

Ie,y
(1)

where the left hand side refers to the spin Seebeck experiment:
∆Ve,y is the voltage generated at the metal and Iq,x is the heat
current traversing the device, and the right hand side refers
to the spin Peltier experiment: ∆TSP,x is the temperature
difference generated and Ie,y is the electric current flowing
into the metal. The theory also permits to relate the ratios of
Eq.(1) to the intrinsic parameters: the spin Hall angle θSH

of Pt, the thermomagnetic power coefficient εM of YIG and
the magnetic moment conductance of the Pt/YIG interface vp.
In the paper we present the constitutive equations and the
continuity equations for the two materials and we solve the
magnetic moment conduction problem for the two cases of
spin Seebeck and spin Peltier.

II. CONSTITUTIVE EQUATIONS

A. Thermomagnetic effects in magnetic insulators

The constitutive equations for the joint transport of magnetic
moment and heat in ferromagnetic insulators in one dimension
(∇x = ∂/∂x) are

jM = σM (µ0∇xH
∗ − εM ∇xT ) (2)

jq = εMTjM − κ∇xT (3)

In the previous equations jM is the magnetic moment current
density and jq is the heat current density. Both currents are
along the x direction therefore the corresponding subscript
is omitted for simplicity. The coefficients are: the magnetic
moment conductivity σM , the absolute thermomagnetic power
εM and the thermal conductivity κ under zero magnetic
moment current. The magnetic field H , the magnetization M
and the transported magnetic moment are all directed along the
z direction. The Johnson and Silsbee thermodynamic potential
is H∗ = H − Heq(M) given by the difference between
the magnetic field H and the magnetic equation of state at
equilibrium Heq(M). The gradient ∇H∗ is the driving force
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of magnetic moment currents [16]. As the magnetic moment
is not conserved, the continuity equation is

∂M

∂t
+∇x jM =

H∗

τM
. (4)

In non-equilibrium stationary states we impose the condition
∂M/∂t = 0 to be true.

In a spin Seebeck-type experiment the temperature gradient
∇xT is controlled by external conditions. For a constant ∇xT
profile, the magnetic moment current of Eq.(2) becomes

jM = jMS + σM µ0∇xH
∗ (5)

where jMS = −σM εM ∇xT is a magnetic moment current
source. By using Eqs.(4) and (5) one finds the diffusion
equation for the potential

l2M∇2
xH
∗ = H∗ (6)

where lM = (µ0σMτM )1/2 is the diffusion length. The solu-
tion of this equation, with the appropriate boundary conditions,
provides the profiles of H∗(x) and jM (x) (see Appendix A).

In a spin Peltier-type experiment the temperature profile is
the result of the energy balance equation in which one has
to include the intrinsic thermal effect of YIG. As it is done
in the classical treatment [13], from the expression of the
entropy production rate, see Ref. [16], one finds, in stationary
conditions ∂T/∂t = 0, ∇x(jq−µ0H

∗jM ) = 0. This equation
has to be solved by using the continuity equation (4) and the
constitutive equations (2) and (3). The result is

−κ
(

(1 + ζT )∇2T − ζT
εM

µ0∇2H∗
)

=
j2M
σM

+
µ0 (H∗)

2

τM
(7)

Equation (7) involves at the left hand side the second deriva-
tives of the temperature T and of the potential H∗ and the
dimensionless parameter ζT = σM ε

2
MT/κ which is analogous

of the ZT parameter of thermoelectrics [14]. On the right
hand side, Eq.(7) contains the squares of the current and
the potential. At this point two approximations can be made.
First, for sufficiently small magnetic moment current jM and
potential H∗, the quadratic terms at the right hand side of
Eq.(7) can be disregarded. Second, we make the approximation
of small ζT � 1. Both approximations are valid in the case of
spin Seebeck and spin Peltier experiments [16]. The result is
that the relation between temperature and potential becomes

εM∇2
xT = ζTµ0∇2

xH
∗ (8)

By substitution of Eq.(8) into the stationary Eq.(4) where one
has used the appropriate constitutive equation (2) one finds that
the potential H∗ is still given by the solution of a diffusion
equation of the type Eq.(6) but with a different diffusion length
(l′M )2 = µ0σMτM/(1+ζT ) which is slightly smaller than the
spin Seebeck case. From the integration of Eq.(8) we also
obtain the spin Peltier temperature difference between the two
sides of the YIG layer: ∆TSP = (ζT /εM )µ0∆H∗ which is
related to the difference of the potential ∆H∗ between the two
faces of YIG.

B. Spin Hall effect in non-magnetic metals

In order to define a set of constitutive equations for the spin
Hall effect in a non magnetic metal with a negligible Hall
effect, we select the conditions in which the electric current
je is along y, the magnetic moment of the electrons is along
z and the magnetic moment current jM is along x. Then we
have

jey = −σe∇yVe + σeθSH

(µB

e

)
µ0∇xH

∗ (9)

jMx = σeθSH

(µB

e

)
∇yVe + σMµ0∇xH

∗ (10)

where σe is the electric conductivity, Ve is the electric poten-
tial, e is the elementary charge, µB is the Bohr magneton and
σM = σe(µB/e)

2 is the conductivity for the magnetic moment
current. The equations contain the spin Hall effect in the non
diagonal terms which couple different directions and different
currents. The spin Hall angle is θSH and for the magnetic
moment has opposite sign with respect to the one for the spin
angular momentum (i.e. θSH is negative for Pt and positive for
W and Ta) [16]. Also in metals the magnetic moment is not a
conserved quantity, therefore a continuity equation analogous
to Eq.(4) holds.

In a spin Seebeck-type experiment the Pt is used to detect
the magnetic moment current injected from YIG. For an open
electric circuit along y (jey=0) we integrate Eq.(9) along x
and find that the gradient of the electric potential along y,
averaged over the thickness tPt, is

∇yVe = θSH

(µB

e

)
µ0

∆H∗

tPt
(11)

where the difference of the potential ∆H∗ between the two
faces of the Pt layer is caused by the side YIG layer.
The potential H∗ in Pt is given by taking the continuity
equation (4) in stationary conditions with the constitutive
equation (10). The result is the diffusion equation (6) where
lM = (µ0σMτM )1/2 is the diffusion length of Pt.

In a spin Peltier experiment Pt is used to generate a magnetic
moment current. In the case of an imposed driving current
density jey , the equation for the magnetic moment current is

jM = jMS + σ′Mµ0∇xH
∗ (12)

with jMS = −θSH (µB/e) jey and σ′M = σM (1 + θ2SH). The
potential is given by the solution of the diffusion equation (6)
with lM = (µ0σ

′
MτM )1/2 being the diffusion length for the

spin Hall metal.

III. SPIN SEEBECK EFFECT

The magnetic moment conduction in the Pt/YIG bilayer
is described by taking the solution of the diffusion equa-
tion (6) for each layer with the magnetic current source
jMS = −σY IGεY IG∇xT in YIG and setting the appropriate
boundary conditions (see Appendix A). An example of the
resulting profile is shown in Fig. 1. The resulting electric effect
in Pt, Eq.(11), is

∇yVe = −θSHµ0

(µB

e

) 1

vp

εY IGσY IG

tPt
∇xT (13)
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Fig. 1. Spin Seebeck effect. Sketch of the cross section of the whole stack
including thermal reservoirs, thermal resistances %h and %c and Pt and YIG
layers, along the diffusion direction x of the heat and magnetic moment
current. The profiles of the magnetic moment current density jM and the
potential H∗ are shown for a uniform temperature gradient in YIG.

where

1

vp
=

veff
vPt coth(tPt/(2lPt))vY IG coth(tY IG/(2lY IG))

(14)

and

1

veff
=

1

vPt tanh(tPt/lPt)
+

1

vY IG tanh(tY IG/lY IG)
(15)

are magnetic moment conductances for the bilayer (see Ap-
pendix A) depending on the intrinsic conductances of YIG,
vY IG = lY IG/τY IG, and Pt, vPt = lPt/τPt, and on the
thicknesses tY IG and tPt.

IV. SPIN PELTIER EFFECT

For the spin Peltier case the procedure is similar to
the previous case but the magnetic current source jMS =
−θSH (µB/e) je in now in the Pt layer. A sketch of the
resulting profiles are shown in Fig.2 and the analytic expres-
sions are given in Appendix A. The temperature profile in
YIG is then obtained by integrating Eq.(8) and setting the
thermal boundary conditions. For example T (0) = T0 and
T (tY IG) = T2. The simplest case is the one in which the
temperatures at the boundaries are not constrained. In that case
the difference between the boundaries is T2−T0 = ∆TSP with

∆TSP = θSHµ0

(µB

e

) 1

vp

εY IGσY IGT

κY IG
je (16)

This is the temperature difference that one would measure in
presence of the spin Peltier effect alone. However in presence
of the Pt layer, one has to add the Joule heat dissipation caused
by the flowing electric current. As a first approximation we
neglect the dissipation due to magnetic moment current and
obtain directly the temperature profile in Pt as due to the
conventional electric Joule heat

x0 tYIG

-tPt
TT

jM

*H

cold 
bath

hot 
bath

DTSP

rc rh

YIGPt
r r

cont,c cont,h
rr

Fig. 2. Spin Peltier effect. Sketch of the cross section of the whole stack as in
Fig.1. The profiles of the magnetic moment current density jM , the potential
H∗ and the temperature T are shown for a uniform electric current density
in the Pt layer.

∇2
xT = − j2e

σeκPt
(17)

where κPt is the thermal conductivity of Pt. The temperature
profile in Pt is then obtained by integrating the previous
equation and setting the boundary conditions T (−tPt) = T1
and T (0) = T0. We have therefore obtained the temperature
and the heat current profiles in both YIG and Pt layers. We
impose now the continuity of both quantities at the interfaces.
In order to obtain a sensible estimate, we assume perfect
thermal interface between Pt and YIG, while we add non ideal
thermal contacts between the bilayer itself and the external
thermal baths. We introduce the thermal contact resistance
%cont,c between the Pt side and the cold reservoir at Tc and
%cont,h between the YIG side and the hot reservoir at Th (see
Fig.2). If Th = Tc = T we have

jq,c =
1

%
∆TSP −

%h
%
jq,JH (18)

jq,h =
1

%
∆TSP +

%c
%
jq,JH (19)

where %h = %Y IG + %cont,h + %Pt/2, %c = %cont,c + %Pt/2,
% = %c + %h and jq,JH = tPtj

2
e/σe. The thermal resistances

are expressed per unit surface area, i.e. %i = ti/κi. The ∆TSP

and the Joule heat jq,JH can then be extracted and separated
by the joint measurement of the two heat currents jq,c and jq,c
once the thermal resistances %c and %c are known.

V. RECIPROCAL RELATION

From the equations for the spin Seebeck, Eq.(13), with jq =
−κY IG∇T , and the equation for the spin Peltier, Eq.(16), we
find the reciprocal relation sought

∇yVe
jq

tPt =
1

T

∆TSP

je
= θSHµ0

(µB

e

) 1

vp

εY IGσY IG

κY IG
(20)
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that is expressed in terms of current densities and gradients.
To move to integrated quantities we have to specify the di-
mensions of the sample. We use a parallelepiped with electric
effects occurring along the length Ly and through the cross
section Lz × tPt and with thermal effects occurring along the
thickness tY IG and through the cross section Ly×Lz . As the
spin Seebeck is characterized by the transverse electric volt-
age, ∆Ve,y = Ly∇yVe and by the heat current Iq,x = LyLzjq
and the spin Peltier effect is driven by the electric current
Ie,y = LztPtje, we find Eq.(1) which is valid for a given
bilayer device.

VI. CONCLUSION

The main result of this paper is the derivation of the
reciprocal relation between the spin Seebeck and the spin
Peltier effects. The relation can be expressed both in terms of
current densities and gradient of the electric potential, Eq.(20),
which is independent of the size of the device, and in its
integral form, expressed as a function of currents and voltage,
Eq.(1), which depends on the size of the device. The merit
of Eq.(20) is to express both the spin Seebeck and the spin
Peltier effects as a function of the intrinsic coefficients: the
spin Hall angle for the metal θSH , the thermomagnetic power
coefficient εM , the magnetic moment conductivity σM , the
thermal conductivity κ of YIG and the magnetic moment
conductance of the Pt/YIG interface vp. The maximization of
Eq.(20) will lead to the determination of the optimal condition
for both effects. This will be the subject of a future work. On
the other hand Eq.(1) permits to pass from the spin Seebeck
effect to the spin Peltier one for a given device. Work is in
progress to test the experimental validity of the integrated
relation on a bilayer device by using the setup described in
Ref. [10].

APPENDIX A
SOLUTION OF THE MAGNETIC MOMENT DIFFUSION

PROBLEM IN ONE DIMENSION

The magnetic moment current jM and the potential H∗ of
a layer are given by the solution of Eq.(6) with the boundary
conditions given by Eqs.(5) or (12). We consider a generic
layer (i) from x = −t/2 to t/2 and take magnetic moment
current at the boundaries as j− = j(−t/2), j+ = j(t/2) (we
have dropped subscript M for compactness of the symbols).
The solutions are

j(x) = jMS + (js − jMS)
cosh(x/l)

cosh(t/(2l))
+ jd

sinh(x/l)

sinh(t/(2l))
(21)

H∗(x) = (js − jMS)
1

v

sinh(x/l)

cosh(t/(2l))
+ jd

1

v

cosh(x/l)

sinh(t/(2l))
(22)

with js = (j+ + j−)/2, jd = (j+ − j−)/2 and v = lM/τM .
With reference to the bilayer of Figs.1 and 2 we set layer 1=Pt
and layer 2=YIG and the boundary conditions: j1− = j2+ = 0,
j1+ = j2− = j0 and H∗1+ = H∗2− = H∗0 . The solution for the
bilayer is

j0 = veff

(
jMS,1

v1 coth(t1/(2l1))
+

jMS,2

v2 coth(t2/(2l2))

)
(23)

with veff given by the Eq.(15). The spin Seebeck effect
corresponds to a magnetic moment current source in 2 (YIG),
so jMS,2 = −σ2ε2∇xT while the layer 1 (Pt) is passive
(jMS,1 = 0). The quantity of interest is ∆H∗ in layer 1. We
find

∆H∗1 =
1

vp
jMS,2 (24)

with vp given by the Eq.(14). The spin Peltier effect cor-
responds to a magnetic moment current source in 1 (Pt),
jMS,1 = −θSH (µB/e) jey while the layer 2 (YIG) is passive
(jMS,2 = 0). The quantity of interest is ∆H∗ in layer 2. We
find

∆H∗2 =
1

vp
jMS,1 (25)

with vp given by the Eq.(14).
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