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This work proposes the use of H-matrices with Adaptive Cross Approximation for the solution of the very large sparse/dense block 
linear systems typically arising in hybrid differential/integral formulations applied to bioelectromagnetic problems which make use of 
large scale human models. The code implementing this approach is described in detail and the usefulness of the approach is first 
demonstrated on a benchmark provided with an analytical solution and then applied to a magnetic resonance imaging problem.  
 

Index Terms— Biomedical computing, Hybrid differential/integral formulations, Sparse matrices. 
 

I. INTRODUCTION 
HE INCREASING application of electromagnetic fields in 
medicine, in particular for Magnetic Resonance Imaging 

(MRI), has produced significant progress both in diagnostics 
and therapeutic treatments. However, the interaction of the 
electromagnetic fields with biological tissues has raised the 
need of verifying patient’s safety issues [1]. Excluding the 
possibility of in-vivo measurements, the problem has to be 
solved by computational means, making use of highly accurate 
anatomical models, like the one shown in Fig. 1, discretized into 
millions of volume elements (voxels), in order to correctly 
reproduce fine geometrical details.  

Hybrid differential/integral formulations, which are found to 
be particularly convenient for the solution of such problems [2], 
give rise to large sparse/dense block matrices, whose size may 
easily lead to impractical memory and computational time 
requirements. Therefore, a compression of the dense blocks, 
e.g. with libraries implementing Adaptive Cross 
Approximation (ACA) coupled with hierarchical matrix (H-
matrix) arithmetics [3]-[5], is required in order to solve realistic 
problems. While such approaches have been used successfully 
for dense systems, their application to sparse/dense block 
matrices is rare due to the difficulty of generating suitable 
preconditioners for the iterative solvers. Furthermore, their 
application to bioelectromagnetic problems, as the one 
presented in this paper, is novel.  

II. FORMULATION 
The electromagnetic analysis is performed within an 

unbounded, magnetically homogeneous domain Ωext, with 
vacuum magnetic permeability µ0, containing a conductive 
subdomain Ω (e.g. a geometrical solid or a human body). The 
conductive subdomain Ω is discretized with cubic voxels, 
directly exploiting the features of the anatomical datasets (e.g. 
[8]), while the surrounding space Ωext, which contains also the 
field sources, is unmeshed. The problem is formulated in the 
frequency domain (angular frequency ω), using phasors to 
represent the field quantities. 

Adopting a T-ϕ formulation, the magnetic field is 
decomposed into the unperturbed source field (Hs) and a 
reaction field, due to the total (i.e. ohmic and dielectric) current 
density distribution J induced in Ω. Expressing the reaction 
field in Ω through an electric vector potential T (J = ∇×T) and 
the gradient of a magnetic scalar potential ϕ, the total field H 
becomes: H = Hs + T + ∇ϕ. 

The solution of the eddy-current problem is obtained by 
means of a hybrid technique, which uses the Finite Element 
Method (FEM) inside the subdomain Ω and the Boundary 

T 
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Fig.  1. Anatomical human model ‘Duke’, belonging to the IT’IS Virtual Family 
[8], modified with the insertion of a realistic unilateral metallic hip prosthesis. 
The model includes more than 80 tissues (shown with different colors in the 
figure) and is discretized in more than 8⋅106 cubic voxels. 
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Element Method (BEM) for Ωext. In the FEM region, the 
unknowns are the nodal values of ϕ and the projections of T on 
the mesh edges. In the BEM external space, J is assumed to be 
null and T is not defined (H = Hs + ∇ϕ). The BE unknowns are 
the normal gradient of ϕ on each surface element, into which 
the bounding surface ∂Ω is discretized by the FE mesh. In order 
to bound J inside Ω, the tangential components of T on the FE-
BE interface (∂Ω) and the related edge unknowns are imposed 
to zero.  

Inside the subdomain Ω the FE field equations, written in the 
weak form, for the scalar and vector potentials are respectively: 

� ∇𝜑𝜑 ∙ ∇υ 𝑑𝑑𝑑𝑑
Ω

− � υ(∇𝜑𝜑 ∙ n)(𝒊𝒊)𝑑𝑑𝑑𝑑
∂Ω

+ � 𝐓𝐓
Ω

∙ ∇υ 𝑑𝑑𝑑𝑑 = 0     (1) 

�
1
𝜎𝜎� ∇ × 𝐓𝐓 ∙ ∇ × 𝐰𝐰 𝑑𝑑𝑑𝑑

Ω

+ 𝑗𝑗𝑗𝑗𝜇𝜇0 �(𝐓𝐓 + ∇𝜑𝜑) ∙ w 𝑑𝑑𝑑𝑑
Ω

= −𝑗𝑗𝑗𝑗𝜇𝜇0 � 𝐇𝐇𝒔𝒔
Ω

∙ 𝐰𝐰 𝑑𝑑𝑑𝑑                             (2) 

where υ and w are respectively the nodal and the edge shape 
functions, 𝜎𝜎� = 𝜎𝜎 + 𝑗𝑗𝑗𝑗𝑗𝑗 is the complex conductivity (σ: 
conductivity, ε: permittivity, j: imaginary unit), n is the local 
normal unit vector on the body surface ∂Ω and the superscript i 
indicates the internal side of ∂Ω. In the external region Ωext, the 
following BEM field equation holds: 

𝜉𝜉𝜑𝜑 + � (∇𝜑𝜑 ∙ n)(𝒆𝒆)Ψ𝑑𝑑𝑑𝑑
∂Ω

− � 𝜑𝜑(∇Ψ ∙ n)𝑑𝑑𝑑𝑑
∂Ω

= 0            (3) 
 

where Ψ is the Green’s function for quasi-stationary problems, 
ξ = 0.5 a BEM coefficient and e indicates the external side of 
∂Ω. Since relation n × T = 0 on ∂Ω is the only constraint applied 
to T, the formulation is ungauged and leads to indeterminate 
systems, which can be solved through a GMRES algorithm, 
anyway. The formulation based on equations (1) – (3) gives rise 
to a matrix structure composed of nine blocks, according to the 
following scheme:  

 

�
𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛
𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 0
𝐹𝐹𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛 0 𝐹𝐹𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛

�                         (4) 

 

where S or F indicate that a block is sparse or full, respectively, 
nbn is the number of boundary nodes (on ∂Ω), nint is the total 
number of internal nodes and edges, while nf is the number of 
boundary faces. Fig. 2 shows a typical sparsity pattern of the 
linear system (4) in which the blocks are of the real relative 
sizes.  

III. H-MATRIX LOW RANK APPROXIMATION 
An original way of handling the linear system (4) was 

proposed in [6], adopting a massively parallelized solver. 
Anyway, in order to allow the solution of realistic large 
problems, it is mandatory to compress the linear system (4), and 
in particular its dense matrix blocks, with suitable techniques. 
Among others, the fast multiple method (FMM) is maybe the 
most popular for both low and high frequency problems. One 
more recent approach for integral operators with asymptotically 
smooth kernels is based on the Adaptive Cross Approximation 
(ACA) coupled with hierarchical matrix (H-matrix) 
representations [3],[5]. In contrast with the FMM, where the 
kernel is approximated by a sum of spherical multipole 
functions, ACA generates low-rank approximations of far-field 
blocks from the entries of the original matrix. From an 
implementation viewpoint, ACA can directly use the 
computational routines of the existing code without any major 
change. The specific implementation within our code has been 
achieved through the HLIBpro library [5]. A useful feature of 
this library is that it natively supports the assembly of a block 
H−matrix where the single blocks are H−matrices computed by 
different routines like in the present case. 

The method works as follows. In a first step the degrees of 
freedom are partitioned and clustered according to a 
geometrical criterion. Then each cluster pair (σ,τ), 
corresponding to the sub matrix A(σ,τ) is tested against the 
admissibility criterion min{diam(σ),diam(τ)} ≤ η dist(σ,τ) 
where diam(σ) is the cluster diameter, dist(σ,τ) is the distance 
between the clusters and η is the admissibility parameter. When 
the cluster pair satisfies the criterion, the corresponding matrix 
block is classified as belonging to the far-field, otherwise the 
clusters are halved and the procedure is applied recursively until 
the number of elements is larger than a specified threshold. The 
matrix blocks are then stored with a hierarchical H-matrix 
structure. The near-field sub-matrices are calculated exactly, 
whereas the far-field interactions are approximated with the 
ACA technique. Consider a matrix block 𝐌𝐌 ∈ ℂ𝒎𝒎×𝒏𝒏 that 
represents a far-field interaction; in principle, if the singular 
value decomposition (SVD) is applied to M, only a few singular 
values are needed to represent the matrix, obtaining the low 
rank approximation 𝐌𝐌�𝒌𝒌 such that 

 

�𝐌𝐌 −𝐌𝐌�𝒌𝒌�𝐹𝐹 ≤ 𝛼𝛼‖𝐌𝐌‖𝐹𝐹                               (5) 
where k < m,n is the number of singular values used to represent 
𝐌𝐌, α is a specified accuracy and ∥ • ∥F is the Frobenius norm. 
The low rank approximation can be obtained in a smarter way 
without the construction of the SVD by choosing a subset of 
rows and columns, forming a cross, of the matrix such that 
 

 
 
Fig.  2. Typical sparsity pattern of the linear system (4) 



ID 0426 
 

 

3 

𝐌𝐌�𝒌𝒌 = 𝐔𝐔𝐔𝐔𝑻𝑻,  𝐔𝐔 ∈ ℂ𝒎𝒎×𝒌𝒌,𝐔𝐔 ∈ ℂ𝒏𝒏×𝒌𝒌                      (6) 
 

where VT is the transpose of vector V. 
Since only a reduced number of entries of the original matrix 
must typically be computed, it can be proved that the 

computational cost, as well as the memory consumption, of the 
matrix partitioning and the ACA approximation have linear-
logarithmic complexity. 

In contrast to other compression methods, like the FMM, the 
H-matrix is indeed assembled. Thus, in addition to the matrix-
vector multiplication, a special version (called formatted) of H-
matrix addition and H-multiplication can be defined [3]. This 
H-matrix arithmetic can be used to define the inversion operator 
or the LU decomposition of the H−matrix. When Krylov-type 
solvers like GMRES are used, it is possible to choose a suitable 
𝛼𝛼′ <  𝛼𝛼 and perform an approximate LU decomposition to be 
used as preconditioner. 

In principle, two possibilities for clustering exist: the 
geometric one used for BEM dense blocks and an algebraic one 
which could in principle be applied for sparse FEM blocks. 
However, the admissibility of clusters can be checked only if 
row and column clusters are all geometric or all sparse, and 
therefore, by a cyclical application of this argument, all blocks 
have to be treated with geometric clustering. A typical result of 
the application of the H-matrix/ACA low-rank approximation 
technique is shown in Fig. 3. 

IV. CODE STRUCTURE 
The computer code implementing the proposed formulation 

with H-matrix/ACA low-rank approximation deserves some 
explanation due to its particular structure, as schematically 

shown in Fig. 4.  
First of all, it is noteworthy that the computation of the 

source terms needs to be parallelized with the PGI Fortran 
compiler, in order to make use of NVIDIA GPGPU cards. 
Indeed, the generation of the volume integrals of the source 
fields Hs is extremely expensive for the very large meshes 
typical of this kind of problems and the use of massively 
parallel computation becomes mandatory. As an example, the 
time needed to compute the contribution to field Hs by one 
source volume element (hexaedron) reduces from 1.1 s (CPU) 
to 1.7 ms (GPU), with an Intel XEON E5-2650 processor and a 
GPU NVIDIA Tesla K40. 

Furthermore, the generation of the H-matrix/ACA low-rank 
approximation of the dense blocks is also parallelized thanks to 
HLIBpro which adopts OpenMP to distribute the computation 
of the blocks on the individual threads of multicore processors 
(in our case 24 parallel threads).  

Profiling tools have showed that in both parallelized phases 
the GPGPU and the two Xeon E5645 6-core processors, each 
capable of performing 2 parallel threads per core, were fully 
loaded, while during the GMRES iterations the total load was 
50% on average. 

V. APPLICATION TO BENCHMARKS 
As a validation benchmark, the proposed technique is applied 

to the computation of the electric field and the related specific 
absorption rate (SAR) produced in a homogeneous sphere 
(diameter d = 100 mm; electrical conductivity σ = 1 MS/m) 
subjected to a uniform sinusoidal magnetic field (frequency f = 
1 kHz). This benchmark was chosen for several reasons: it 
emulates the exposure of a metallic implant to the MRI gradient 
coil fields, an analytical solution is available for comparison 
and validation [7], and finally the number of voxels can be 
regularly changed enabling controlled testing. The sphere is 
discretized into voxels (similarly to the anatomical models). In 
the example of Fig. 5, the diameters along the Cartesian axes 

 
Fig.  3. Low-rank approximation of the linear system (4). 

 
Fig.  4. Code structure 

 
 

Fig.  5. Example of discretization of the sphere (50 elements along the 
diameter) used as validation benchmark and map of the surface induced 
electric field. 
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are uniformily subdivided into 50 elements (cubic voxel size: 2 
mm). For this benchmark the dense blocks of (4), if fully 
assembled, would occupy 173 GB of memory each. Table I 
shows the threshold parameter α, the size and compression 
ratios (compr.) for the (3,1) and (3,3) dense matrix blocks and 
the time and iterations required by GMRES. A diagonal 
preconditioner was used in all these cases. To generate the table, 
the threshold parameter was reduced until the solver no longer 
converged. In all converged cases the solution was almost 

identical with the analytical one, so that results of comparison 
are not reported for brevity. Almost similar results were 
obtained by increasing the number of unknowns (100 and 150 
elements along the sphere diameter). 

VI. APPLICATION TO A MRI DOSIMETRY PROBLEM 
The considered computational method was then used to 

estimate the spatial distributions of the electric and magnetic 
fields and power deposition in a human body model radiated by 
the gradient coils of a MRI scanner. In particular, the analysis 
is performed on the waist of the anatomical human model 
“Duke” provided by the IT’IS Foundation [8], modified to 
include a metallic hip prosthesis and discretized into 3,189,606 
cubic voxels (size: 2 mm × 2 mm × 2 mm). The electric 
properties of the tissues are obtained from the database made 

available by the same IT’IS Foundation [9]. The problem 
involves in total 12,884,049 unknowns, divided into 3,313,672 
nodal values of the magnetic scalar potential, 9,325,117 edge 
values of the vector electric potential and 245,260 value of the 
normal components of scalar potential gradient on the boundary 
faces. For this second benchmark the dense blocks of (4), if 
fully assembled, would occupy 914 GB and 922 GB of 
memory, respectively. They largely dominate the memory 
occupation of the system. Table II shows the threshold 
parameter α, the size and compression ratios for the (3,1) and 
(3,3) dense matrix blocks and the time and iterations required 
by GMRES. To generate the table, the threshold parameter was 
set to the minimum allowable value identified with the sphere 
benchmark. A diagonal preconditioner was used also in this 
case. The accuracy of the obtained solution was checked against 
a reference one obtained on a coarser discretization which 
allowed the solution of the full problem without compression. 
In this case the compression is even higher than in the previous 
case. This behaviour is typical of the H-matrix/ACA low-rank 
approximation technique, which produces increasing benefits 
as the problem size grows. The obtained spatial distributions of 
B and E fields in a coronal section of the body model, as well 
as the power density in the metallic implant, are shown in Fig. 
6. 

VII. CONCLUSION 
This paper has demonstrated the applicability and usefulness 

of H-matrix techniques for the bioelectromagnetic analysis of 
large scale human models. The code presented here is currently 
being applied also to non-MRI dosimetric evaluation cases (e.g. 
wireless power transfer for automotive applications) and for the 
simulation of Transcranial Magnetic Stimulation (TMS) for 
both diagnosis and treatment. On the algorithmic side, work is 
in progress to implement alternative formulations and 
preconditioners. 
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