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Two-mode squeezed vacuum and squeezed light in correlated interferometry

I. Ruo Berchera1, I. P. Degiovanni1, S. Olivares 3, N. Samantaray1,2, P.Traina 1, and M. Genovese1
1INRIM, Strada delle Cacce 91, I-10135 Torino, Italy

2 Politecnico di Torino and
3 Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, I-20133 Milano, Italy

We study in detail a system of two interferometers aimed to the detection of extremely faint
phase-fluctuations. This system can represent a breakthrough for detecting a faint correlated signal
that would remain otherwise undetectable even using the most sensitive individual interferometric
devices, that are limited by the shot noise. If the two interferometers experience identical phase-
fluctuations, like the ones introduced by the so called “holographic noise”, this signal should emerge
if their output signals are correlated, while the fluctuations due to shot noise and other independent
contributions will vanish. We show how the injecting quantum light in the free ports of the interfer-
ometers can reduce the photon noise of the system beyond the shot-noise, enhancing the resolution
in the phase-correlation estimation. We analyze both the use of two-mode squeezed vacuum or
twin-beam state (TWB) and of two independent squeezing states. Our results basically confirms
the benefit of using squeezed beams together with strong coherent beams in interferometry, even
in this correlated case. However, mainly we concentrate on the possible use of TWB, discovering
interesting and probably unexplored areas of application of bipartite entanglement and in particular
the possibility of reaching in principle surprising uncertainty reduction.

PACS numbers: 42.50.St, 42.25.Hz, 03.65.Ud, 04.60.-m

I. INTRODUCTION

The possibility of increasing the performances of interferometers by using quantum light represents one of the most
interesting use of quantum states for overcoming classical limits of measurements. The first approach proposed to
this aim is based on exploiting squeezed light for reducing the noise level in interferometers [1] and found recently
application in gravitational waves detectors [2, 3]. A second approach is considering the use of entanglement in phase
estimation and, in particular, the possibility offered by the use of NOON states [4]. However, even if this approach
presents a significant conceptual interest and could find very interesting applications in the future, nowadays the
difficulty in producing high N entangled states and the fragility to noise and losses of these schemes strongly limits
their real possible use. More recently, correlation in photon number in two-mode squeezed vacuum or twin-beam
state (TWB) [5] has been demonstrated to be an important tool for beating shot noise [6] and for realising a first
quantum protocol effectively robust against noise and losses [7]. These results prompted to study the possibility of
improving the so called “holometer” by exploiting quantum light, and in particular squeezed one or TWBs [8]. The
holometer is a double Michelson Interferometer (MI) addressed to detect the so called “holographic noise” (HN),
namely a basic form of noise conjectured in quantum gravity theories that would derive from a non-commutativity
of the spatial degrees of freedom at the Planck scale [9]. This noise, albeit very small, should be correlated when the
two MIs are parallel, such to be in the respective light cones, while should be uncorrelated when one arm is rotated
to be oriented in the opposite direction for the two MIs. The evident huge impact that the discovery of holographic
noise, the first eventual evidence of quantum gravity effects, would present, [10] motivates an accurate analysis of the
possibility of improving the holometer performances. In this paper we detail and complete the analysis of Ref. [8]
identifying operative situations where the use of quantum light would allow to greatly increase the performances of a
double interferometer like the holometer.

More in detail, in [8] we investigated an unusual but potentially powerful system consisting of two interferometers
whose correlation of output ports signals is measured (see Fig.1). This kind of double interferometric system can
represent a breakthrough for detecting a faint correlated signal that would remain otherwise hidden even using the
most sensitive individual interferometric devices, limited by the shot noise. On the other side if the two interferometers
are in the experience identical fluctuation, this signal should emerge in a correlation measurement of their output,
while the fluctuations due to shot noise and other independent contributions will vanish.

The first experimental realization of this scheme using coherent beams (stabilized lasers), exactly for HN detec-
tion, is already being implemented at Fermilab. Other applications can be envisaged such as for new generation of
gravitational wave detectors.

In [8] we have introduced a rigorous quantum model for describing the system. As opposed to standard phase
measurement in a single interferometer, which involved first order expectation value of the output, in the double
interferometric scheme the quantity under estimation is the covariance of the two outputs, which is a second order
quantity, thus the associated uncertainty is a fourth order function. Notwithstanding this difference, we demonstrated
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how the injection of quantum light at the input ports, which would remain unused in classical Holometer configuration,
can boost the sensitivity of the device. In addition to the classical intense coherent beam, we considered both the use of
independent squeezed beam (SQB) and correlated state such as the TWB. The ideal experiment described theoretically
there, is however not suitable for a practical experimental implementation. In particular, the setting of the central
phases the two interferometers exactly at φ1,0 = φ2,0 = 0 which provides the optimal quantum enhancement, is indeed
critical, because minimal deviations from this working regime completely compromise the advantages of the quantum
strategy. Furthermore, the balanced readout configuration explored in SQB case would require simultaneously high
dynamic range, fast and high resolution detectors that are not yet available.

Here we present a framework in which a more complete and general study of the double interferometric system is
provided, leading also to the depiction of a more experiment-oriented configuration of the system in terms of readout
strategy and parameters choice.

In Sec. II we present the description of the scheme. In Sec. III we analyse the correlation properties at the output
ports of the interferometer in the case of TWB, demonstrating that for a proper choice of the relative phase ψ between
the coherent beam and the TWB, the energy transfer from the coherent beam due to the mixing allows the generation
of either bright quantum correlation (ψ = π/2) or anti-correlation (ψ = 0) in the photon number, as witnessed from
the Noise Reduction Factor (NRF) value below unity. Furthermore, we demonstrate that there are two regimes with
different behaviour of the system: (A), in which a strict choice of the central phases of the interferometers makes
the contribution to the coherent light at the dark port negligible, i.e. only quantum light is detected. In principle
it leads to the optimal correlation (only bounded by losses), but turns out quite challenging in practice, since would
require extremely precise stabilization of the interferometers, especially if the coherent beam is intense.(B), in which
the major component of the signal at the output ports is due to the coherent beam contribution. This is a more
common and realistic working condition. There is a sudden transition between these two regimes.

In Sec. IV we describe in detail a model establishing the connection between a generic measurement operator
(observable) and the estimation of the phase-covariance introduced by a correlated faint phase signal such as HN.
Then, we focus on two specific quantum strategies: either on the use of TWB state and the measure of the photons
number difference, of the use of two independent squeezed states and the measure of quadratures covariance. In
both cases we evaluate the lower bound to the uncertainty in the phase-covariance-estimation given by photon noise,
in function of the fundamental parameters: the interferometers central phases φi,0 (i = 1, 2), the quantum and
classical beam intensities λ and detection efficiency η. The Results are reported in Sec. V. For rather challenging
conditions, namely almost ideal efficiency and perfect control of the stability of the interferometers central phases
(regime (A)), TWB could deliver extraordinary advantage due to its photon number correlation at the quantum level
(entanglement). This regime corresponds to the situation analyzed in [8]. Conversely, there exists a less demanding
regime ((B)-regime described before), in which quantum strategies provide good enhancement in a more favorable
experimental condition. In this case,both for TWB and SQB the expression of the minimal uncertainty presents the
usual scaling with losses, (∝ 1− η), and with the quantum light intensity, (∝ 1/λ), typical of single phase estimation
using strong local oscillator and squeezed light.

Finally we draw the conclusions in Sec. VI

II. THE INTERFEROMETRIC SCHEME

Let us consider a system as depicted in Fig.1. Two interferometers Ii (i = 1, 2) are injected at the ports denoted
by the mode annihilation operators bi by a couple of identical coherent beams |√µeiψ〉bi , while the remaining ports
identified by the mode operator ai (unused in the classical scheme) are fed with a quantum state |Ψ(λ)〉a1,a2 , where
λ is the mean number of photon in each mode. The readout ports are denoted by the mode operator ci which will
be function of the phases shifts φi among the arm of each interferometer, ci = ci(φi). Therefore, a final combination

of the outputs results in an observable Ĉ (c1, c2, h.c.) = Ĉ (φ1, φ2). A proper choice of the operator Ĉ leads to an
estimation of the phase-noise correlation. Here, it is useful to recall the properties that the input-output operator
relations of a linear interferometer (for example a Michelson-type) are equivalent to the ones of a beam splitter (BS)
with transmission coefficient τ = cos2(φ/2).

The losses in the system are taken into account by considering in both channels two identical detectors with quantum
efficiency η, formally re-defining the output operators with the substitution ci →

√
ηci in the normal-ordering products.

For example the photon number operator will be Ni ≡ ηc†i ci.
If only the classical field is injected, the photon counting statistics at the output ports is simply the one of coherent
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FIG. 1: Ideal scheme of the proposed experiment. The two modes of a twin beam are mixed with two identical coherent states
at the input beam-splitters of two coupled interferometers (holometer). The covariance of the phase noise at the outputs is
studied in order to detect very faint (but correlated) noise.

beams after reflection probability (1− τi) and detection probability η,

〈N〉cohητi = η(1− τi)µ, (1)

〈δN2〉cohητi = 〈Ni〉cohητi = ηµ(1− τi),
〈δN1δN2〉cohητ1τ2 ≡ 0.

Now we consider two possible quantum states feeding the free input ports of Ii and two related readout strategies.
Readout strategy 1: TWB – The TWB correlated state can be expressed in the Fock bases {|m〉ai} as

|Ψ(λ)〉a1,a2 =
1√

1 + λ

∞∑
m=0

(
eiθ
√

λ

1 + λ

)m
|m,m〉a1,a2 (2)

where θ is the global phase, which we set in the following to θ = 0 without loss of generality. The TWB presents

perfect correlations in the photon number mi ≡ a†iai meaning that a1,a2〈〈TWB|(N̂a1 − N̂a2)M |TWB〉〉a1,a2 = 0,
∀M > 0. It implies for example that variance of the photons numbers difference 〈δ(m1−m2)2〉 (with δm ≡ m−〈m〉)
is identically null if losses are neglected. It also suggests to choose the measurement operator in the same form

Ĉ (φ1, φ2) = 〈(N1 − N2)M 〉, since this should correspond to a reduction of the photon noise in the measurement,
finally improving the sensitivity.

By using the equivalence between interferometers and BSs mentioned before, we can calculate the photon statistics
of TWB transmitted to the output ports (in absence of classical coherent field) and detected with quantum efficiency
η. The mean photon number, the variance and the covariance are respectively:

〈N〉TWB
ητi = ητiλ (3)

〈δN2〉TWB
ητi = ητiλ(1 + ητiλ)

〈δN1δN2〉TWB
ητ1τ2 = η2τ1τ2λ(1 + λ)

Readout strategy 2: two squeezed states – The product of two single mode squeezed vacuum states writes:

|ξ〉a1 ⊗ |ξ〉a2 = Sa1(ξ)Sa2(ξ)|0〉a1 ⊗ |0〉a2

where Sai(ξ) = exp[ξ (a†i )
2 − ξ∗ (ai)

2] is the squeezing operator. If we set ξ = |ξ|eiθξ , then λ = sinh2 |ξ| represents
the average number of photons of the squeezed vacuum, taken equal in both the modes.

Defining the the quadrature of the field as xi ≡
ai+a

†
i√

2
and yi ≡

ai−a†i
i
√
2

, and supposing yi the squeezed and xi the

anti-squeezed one, it is known that in the single interferometer the injection of the squeezed field provides a fixed
factor 〈δy2i 〉 = e−2|ξ| of resolution enhancement for arbitrary brightness of the coherent beam [1]. It is expected that
the increased resolution in the estimation of the phase shifts φ1 and φ2 separately reflects in a better estimation
of their correlation if the correlation of the squeezed quadrature Xi of the output modes ci are considered, namely

Ĉ = X1 ·X2.
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III. CORRELATIONS AT THE READOUT PORTS

As a figure of merit for the correlations at the read-out ports, we study the noise reduction parameter NRF± ≡
〈δ(N1±N2)2〉/〈N1 +N2〉 [11–14]. It represents the ratio between the variance of the photon number sum (difference)
and the corresponding shot noise limit. The NRF− < 1 it is a well known condition of non-classicality for the
correlations of a bipartite state and its value also determines the quantum enhancement achievable in certain sensing
and imaging protocols [6]. For the same reason, NRF+ < 1 could be be interpreted as strong signature of anti-
correlation of the photon number beyond classical limits. The BS-like transformation allows evaluating the fluctuation
of the fields at the output ports in function of the input field. In particular one gets

〈Ni〉 = 〈N〉TWB
ητi + 〈N〉cohητi (4)

〈δN2
i 〉 = 〈δN2〉TWB

ητi + 〈δN2〉cohητi + 2〈N〉TWB
ητi 〈N〉

coh
ητi (5)

〈δN1δN2〉 = 〈δN1δN2〉TWB
ητ1τ2 − 2

√
〈δN1δN2〉TWB

ητ1τ2 〈N〉cohητ1 〈N〉cohητ2 cos[2ψ] (6)

and the explicit expression, function of the parameters, can be directly obtained by substituting the quantities
according to Eq.s (1) and (3). In particular Eq. (6) shows that the covariance is composed by the TWB covariance
〈δN1δN2〉TWB

ητ1τ2 and a second term containing the phase of the coherent field ψ, originated by the BS interaction of
the two fields. Interestingly, the choice of ψ = π/2 maximize the covariance, while for ψ = 0 the covariance can even
be negative (anti-correlation of photon numbers).

The NRF± can be easily calculated from Eq.s (4,5,6) by exploiting the identity 〈δ(N1 ±N2)2〉 = 〈δN2
1 〉+ 〈δN2

2 〉 ±
2〈δN1δN2〉. Using the same notation we have

NRF± =
〈δ(N1 ±N2)2〉TWB

ητ + 2〈N〉cohητ
(

1 + 2〈N〉TWB
ητ ± 2

√
〈δN1δN2〉TWB

ητ cos[2ψ]
)

2〈N〉cohητ + 2〈N〉TWB
ητ

(7)

For simplicity, in Eq. (7) and in the following we have assume τ1 = τ2 = τ . We note that in general the NRF−
is minimized for ψ = π/2 (corresponding to the optimization of the photon number correlation), while NRF+ is
minimized when ψ = 0 (corresponding to the optimization of the anti-correlation). The NRF−(ψ = π/2) and
NRF+(ψ = 0) are plotted in Fig.2. In order to analyze the behaviour shown in the figures, and for the forthcoming
discussion of the results concerning the phase-covariance estimation in Sec. V, it is useful to distinguish two regimes:

Regime-(A): TWB-like correlations

Referring to Eq.(7), when the intensity at the read-out port is dominated by the TWB, i.e. 〈N〉cohητ � 〈N〉TWB
ητ

or explicitly k ≡ µ (1− τ) /τλ � 1, the noise reduction factor reduces to the one of TWB, NRF± ' 〈δ(N1 ±
N2)2〉TWB

ητ /2〈N〉TWB
ητ :

NRF− ' (1− ητ) + ητ(1 + 2λ− 2
√
λ(1 + λ))κ ' (1− ητ). (8)

NRF+ ' 1 + ητ(2λ+ 1) (9)

recovering the expression of noise reduction factor for TWB in presence of losses [6]. Of course the condition 〈N〉cohητ �
〈N〉TWB

ητ appears quite challenging to achieve in the relevant case of practical interest in which the coherent mode is
largely populated. Larger is µ, closer to unity have to be the equivalent-transitivity τ of the interferometers. In Fig.
2 it corresponds to the region τ ∼ 1, where NRF− drops to zero, clearly behaving as a singular point. We observe
that in the same regime, as indicated by Eq. (9), the NRF+ (marking the anti-correlation) rapidly grows accordingly.
This regime has been studied in [8]. Even if in principle it allows exploiting the perfect TWB-like correlation, with a
large classical power circulating into the interferometer, thus obtaining surprising quantum enhancement in the phase
correlation estimation, the fragility of this regime has demanded for a more extended exploration of the parameter
space. This is one of the motivation of this extended work.
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FIG. 2: Noise Reduction Factor versus the transmission coefficient τ of the TWB modes at the read-out ports of the interfer-
ometers. Different colored-lines stand for different mean number of photons of the TWB (λ): a) is the noise reduction factor
(NRF−) exploiting quantum correlation at the output ports, for ψ = Π/2, while b) is the noise reduction factor (NRF+)
exploiting quantum anti-correlation, for ψ = 0. Here we consider the ideal lossless case, η = 1, and we set µ = 106.

Regime-(B): bright quantum correlation

When the coherent power reflected to the measuring port is much higher than the transmitted power of TWB
〈N〉cohητ � 〈N〉TWB

ητ , i.e µ (1− τ) >> λτ , Eq.(7) reduces to

NRF± ' 1 + 2〈N〉TWB
ητ ± 2

√
〈δN1δN2〉TWB

ητ cos[2ψ].

Introducing the explicit expressions of the various moments of the photon number distribution distributions we have

NRF−(ψ = π/2) = NRF+(ψ = 0) ' 1 + 2ητ
(
λ−

√
λ(1 + λ)

)
' 1− τη +

ητ

4λ
, (10)

where in the last equality we have also considered the limit of high intensity TWB, i.e. λ � 1. It is worth to be
notice that the NRF , for the proper choice of the phase of the classical fields, is always smaller than 1, whatever
the intensity of TWB and losses. Thus, N1 and N2 are always correlated (or anti-correlated) beyond the classical
limit. It is possible to switch between quantum correlation and quantum anti-correlation just by acting on the phase
ψ of the classical fields. Even more interesting, the correlation can be extremely bright, because the mean number
of photon at the read-out ports is determined by the brightness of the classical beam 〈N〉cohητ = η(1− τ)µ, which can
be increased almost arbitrarily in real experiments. It is clear from Eq. (10) that the highest correlation is obtained
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when λ� 1 and at the same time τ ∼ 1. For example in Fig. 2 for plausible values of τ ∼ 0.90 and λ = 10 the NRF
is 0.1, and the mean intensity of the output signal is (1− τ)µ = 105 photons.

IV. ESTIMATION OF PHASE CORRELATION (HOLOGRAPHIC NOISE)

Since we the phase fluctuations due to the holographic noise are expected to be extremely small, we can expand

Ĉ(φ1, φ2) around the chosen central values φ1,0, φ2,0, namely:

Ĉ(φ1, φ2) = Ĉ(φ1,0, φ2,0) + Σi ∂φiĈ(φ1,0, φ2,0) δφi +
1

2
Σi ∂

2
φi,φiĈ(φ1,0, φ2,0) δφ2i

+∂2φ1,φ2
Ĉ(φ1,0, φ2,0) δφ1δφ2 +O(δφ3) (11)

where δφi = φi − φi,0, and ∂h+k
φh1 ,φ

k
2
Ĉ(φ1,0, φ2,0) is the (h + k)-th order derivative of Ĉ(φ1, φ2) calculated at φi = φi,0,

i, j = 1, 2
In order to reveal the HN, the holometer exploits two different configurations: the one, “‖”, where HN correlates

the interferometers, the other, “⊥ ”, where the effect of HN vanishes. The statistical properties of the phase-shift (PS)
fluctuations due to the HN may be described by the joint probability density functions f‖(φ1, φ2) and f⊥(φ1, φ2). We

make two reasonable hypotheses about fx(φ1, φ2), x =‖,⊥. First, the marginals F (i)
x (φi) =

∫
dφjfx(φi, φj), i, j = 1, 2

with i 6= j, are exactly the same in the two configurations, i.e. F (i)
‖ (φi) = F (i)

⊥ (φi): one cannot distinguish between

the two configurations just by addressing one interferometer. Second, only in configuration “⊥” it is f⊥(φ1, φ2) =

F (1)
⊥ (φ1)F (2)

⊥ (φ2), i.e., there is no correlation between the PSs due to the HN. Now, the expectation of any operator

Ô(φ1, φ2) should be averaged over fx, namely, 〈Ô(φ1, φ2)〉 → Ex
[
Ô(φ1, φ2)

]
≡
∫
〈Ô(φ1, φ2)〉 fx(φ1, φ2) dφ1 dφ2. In

turn, by averaging the expectation of Eq. (11), we have:

Ex
[
Ĉ(φ1, φ2)

]
= 〈Ĉ(φ1,0, φ2,0)〉+

1

2
Σi 〈∂2φi,φiĈ(φ1,0, φ2,0)〉 Ex

[
δφ2i
]

+〈∂2φ1,φ2
Ĉ(φ1,0, φ2,0)〉 Ex [δφ1δφ2] +O(δφ3) (12)

where we used Ex [δφk] = 0. Then, according to the assumption on fx(φ1, φ2) we have E‖
[
δφ2k
]

= E⊥
[
δφ2k
]

and
E⊥ [δφ1δφ2] = E⊥ [δφ1] E⊥ [δφ2] = 0, and from Eq. (12) follows that the phase-covariance may be written as:

E‖ [δφ1δφ2] ≈
E‖
[
Ĉ(φ1, φ2)

]
− E⊥

[
Ĉ(φ1, φ2)

]
〈∂2φ1,φ2

Ĉ(φ1,0, φ2,0)〉
, (13)

that is proportional to the difference between the mean values of the operator Ĉ(φ1, φ2) as measured in the two
configurations “‖ and “⊥”.

Indeed, one has to reduce as much as possible the uncertainty associated with its measurement:

U(δφ1δφ2) ≈

√√√√√√Var‖

[
Ĉ(φ1, φ2)

]
+ Var⊥

[
Ĉ(φ1, φ2)

]
[
〈∂2φ1,φ2

Ĉ(φ1,0, φ2,0)〉
]2 , (δφ1, δφ2 � 1) (14)

where Varx

[
Ĉ(φ1, φ2)

]
≡ Ex

[
Ĉ2(φ1, φ2)

]
− Ex

[
Ĉ(φ1, φ2)

]2
.

Under the same hypotheses used for deriving Eq. (13) we can calculate the variance of Ĉ(φ1, φ2) as

Varx

[
Ĉ(φ1, φ2)

]
= Var

[
Ĉ(φ1,0, φ2,0)

]
+ Σk Akk Ex

[
δφ2k
]

+A12 Ex [δφ1δφ2] +O(δφ3) (15)

where:

Akk = 〈Ĉ(φ1,0, φ2,0)∂2φk,φk Ĉ(φ1,0, φ2,0)〉 (16)

+ 〈[∂φk Ĉ(φ1,0, φ2,0)]2〉 − 〈Ĉ(φ1,0, φ2,0)〉〈∂2φk,φk Ĉ(φ1,0, φ2,0)〉

A12 = 2〈Ĉ(φ1,0, φ2,0)∂2φ1,φ2
Ĉ(φ1,0, φ2,0)〉

+ 2〈∂φ1
Ĉ(φ1,0, φ2,0)∂φ2

Ĉ(φ1,0, φ2,0)〉 − 〈Ĉ(φ1,0, φ2,0)〉〈∂2φ1,φ2
Ĉ(φ1,0, φ2,0)〉
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Analyzing expression (15), we note the presence of a zeroth-order contribution that does not depend on the PSs in-

trinsic fluctuations, and represents the quantum photon noise of the measurement described by the operator Ĉ(φ1, φ2)
evaluated on the optical quantum states sent into the holometer. The statistical characteristics of the phase noise enter
as second-order contributions in Eq. (15) from each interferometer plus a contribution coming from phase correlation
between them.

This work addresses specifically the problem of reducing the photon noise below the shot noise in the measurement
of the HN, therefore in the following, we will assume the zero-order contribution being the dominant one. Of course,
this means to look for the HN in a region of the noise spectrum that is shot-noise limited. Since the HN is expected
up to frequencies of tens MHz, it follows that all the sources of mechanical vibration noise are suppressed. Therefore,
the zero-order uncertainty that we will study here is

U (0) =

√
2 Var

[
Ĉ(φ1,0, φ2,0)

]
∣∣∣〈∂2φ1,φ2

Ĉ(φ1,0, φ2,0)〉
∣∣∣ , (17)

A. TWB

As we argue in Sec. II, when TWB state is injected it should be promising to define the observable operator in

the form Ĉ (φ1, φ2) = (N1 −N2)
M
, (M > 0) because of the perfect photon number correlation of TWB. Indeed, in

the Sec. III we show that at least up to the second order M = 2, the strong non-classical correlations are preserved
at the output ports of the interferometers (for ψ = π/2), justifying the conjecture that an advantage in terms of
noise reduction would be obtained if we can estimate the phases covariance starting from the measurement of an
observable of that form. We notice immediately that for M = 1, corresponding to the photon numbers subtraction,
the proportional coefficient in Eq. (13), containing the double derivative with respect to both the phases will be null.

Thus, we have to move to the second order measurement i.e. Ĉ(φ1, φ2) = (N1(φ1)−N2(φ2))
2

= N2
1 +N2

2 − 2N1N2.
Hereinafter we also consider the same central phase of the two interferometers φ1,0 = φ2,0 = φ0.

According to Eq. (13) we get:

E‖ [δφ1δφ2] ≈
E‖ [N1N2]− E⊥ [N1N2]

〈∂2φ1,φ2
N1(φ0)N2(φ0)〉

, (18)

where we have used again the symmetry of the statistical properties of the two interferometers, in particular
E‖(⊥)

[
N2

1

]
= E‖(⊥)

[
N2

2

]
. The covariance of the phase noise is proportional to the difference between the photon

number correlation when the phase noise is correlated (‖) and when it is not (⊥), as one could expect.

The uncertainty of the measurement, due to photon noise can be obtained by Eq. (17) where Var[Ĉ(φ1,0, φ2,0)] =

〈(N1(φ0)−N2(φ0))
4〉 − 〈(N1(φ0)−N2(φ0))2〉2.

B. Independent Squeezed States

It is rather intuitive that the most simple form of the measurement operator Ĉ(φ1, φ2), that combines the squeezed

quadratures measured at the read-out port, and has non-null mixed derivative with respect to the phases, ∂2φ1,φ2
Ĉ 6= 0,

would be the product Y1·Y2 (where Yi are the squeezed quadratures). However, to avoid the presence of a dc-component
in the measurement it turns out more useful to consider the fluctuation of the quadratures around their central value,

therefore defining Ĉ = (Y1(φ1)−E [Y1])·(Y2(φ2)−E [Y2]), where we have taken into account that E‖[Yi] = E⊥[Yi] = E [Yi].
The covariance of the phases is estimated according to Eq. (13) as:

E‖ [δφ1δφ2] ≈
E‖ [Y1Y2]− E⊥ [Y1Y2]

〈∂2φ1,φ2
Y1(φ0)Y2(φ0)〉

, (19)

Since the fluctuations of the quadratures due to quantum noise are independent in the two interferom-

eters, the zero order uncerainty on the measured observable (ses Eq. (17)) remains Var[Ĉ(φ1,0, φ2,0)] =

〈(Y1(φ0)− E [Y1])
2〉〈(Y2(φ0)− E [Y2])

2〉.



8

V. RESULTS

The calculation of the variance of the measurement operator Ĉ(φ0), in particular for TWB case, involves many

fourth-order terms of the photon number operator, i.e. eighth-order product of field operator ci and c†i , and the
calculation and the complete expression of this variance are too cumbersome to be reported here. Thus, we will
present numerical results for the most significative regions inside the parameter space and we give some general
expression in particular relevant limits. First of all we need to define the classical benchmark to compare performance
using quantum light. The uncertainty achievable in the estimation of the phase covariance, if only the coherent beams

are used, is U (0)
CL =

√
2/(ηµ cos2 [φ0/2]). We notice that the scaling is with the detected number of photons, i.e. the

square of the shot noise limit typical of the single phase estimation. This is because we are measuring a second
order quantity, namely the covariance of the phases. As usual, it is clear that without any particularly low energy
constraint, in order to reach high sensitivity in a phase-correlation measurement is necessary to push the intensity of
the classical field. Therefore, even the quantum strategy should face and should improve the sensitivity when high
power is circulating into the interferometers. In general we will consider the limit µ� 1.

Concerning the use of the two independent squeezed states, we can summarize the results in the following couple
of equation:

U (0)
SQ/U

(0)
CL ≈ 1− η(1 + cos[φ0])

2
+
η cos2[φ0/2]

4λ
(µ� 1, λ� 1) (20)

U (0)
SQ/U

(0)
CL ≈ 1− η(1 + cos[φ0])

√
λ(1−

√
λ) (µ� 1, λ� 1)

Of course, we expect that the advantages of using squeezing, and in general quantum light, is effective when it
experience a low loss level. Thus the most interesting regime is when the two interferometers transmit almost all
the quantum light to the read-out port, meaning that the central phase must be close to 0, according to the BS-like

behaviour τ = cos2[φ0/2] ' 1. Applying this limit to Eq.s (20 we have U (0)
SQ/U

(0)
CL ≈ 1 − η + η/4λ for λ � 1 and

U (0)
SQ/U

(0)
CL ≈ 1 − 2η

√
λ(1 −

√
λ) for λ � 1. We can appreciate visually what does it mean by looking to the Fig. 3.

A flat region (in logarithmic scale) appears in the uncertainty reduction in function of the central phase φ0. Since
λ = 10 in the figure, the value of the uncertainty reduction, given by the previous expression, is well represented by
1− η + η/4λ. In the opposite limit of λ� 1 the advantage of squeezing is lost, according to the second of Eq.s (20).
For example for λ = 0.1, represented in figure Fig. 4, the improvement is reduced to 0.6.

FIG. 3: Uncertainty provided by the twin beam state (TWB) and by the product of squeezed states (SQ) normalized to the
classical limit in function of the central phase φ0 in which the interferometers are operated. The plot is obtained for λ = 10,
µ = 3 × 1012, ψ = π/2, and different colors corresponds to different values of the detection efficiency η.

Concerning TWB, one can clearly discern two different regions both in Fig. 3 and Fig. 4, one for really small values
of the central phase, namely φ0 < 10−6 and an other one in the range 10−5 < φ0 < 10−1. They correspond, for the
a specific choice of the parameter indicated in figure, to the two relevant regimes that have been individuated in Sec.
III.
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FIG. 4: Uncertainty provided by the twin beam state (TWB) and by the product of squeezed states (SQ) normalized to the
classical limit in function of the of the central phase φ0 in which the interferometers are operated. The plot is obtained for
η = 0.95, µ = 3 × 1012, ψ = π/2, and different colors corresponds to different values of the mean number of photons per mode
λ of the quantum light.

FIG. 5: Uncertainty provided by the twin beam state (TWB) and by the product of squeezed states (SQ) normalized to the
classical limit in function of the quantum efficiency η. The plot is obtained for φ = 10−8, µ = 3 × 1012, ψ = π/2, and different
colors correspond to different values of the mean number of photons per mode λ of the quantum light.

(A)-TWB like correlations- when 〈N〉cohητ � 〈N〉TWB
ητ . The condition is guaranteed if the central phases are close

enough to zero, φ1,0 = φ2,0 ' 0, meaning that the transmissivity of the equivalent-BS approaches the unity
τi = Cos2[φi,0/2] ' 1(i = 1, 2). This is the regime studied and reported in [8]. For intense coherent beam and

intense TWB source, i.e. µ � λ � 1, one gets U (0)
TWB/U

(0)
CL ≈ 2

√
5 (1− η), while in the case of faint TWB,

λ � 1 and µ � 1, the result is U (0)
TWB/U

(0)
CL ≈

√
2(1− η)/η. In both cases TWB allows reaching an amazing

uncertainty reduction that approaches zero for unitary detection efficiency. This behaviour is clearly shown in
Fig. 5 in which the choice of µ and φ0 ensure to be in the TWB-like regime at least for the range of values
of λ represented there. All the TWB curves drop to zero, and for some value of the efficiency, depending on
the intensity λ, they fall below the corresponding SQ curves. The limits for λ � 1 and for λ � 1 are also
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reported in dotted and dashed black lines respectively. However, we observe that for quantum light intensity
λ > 1 reachable in experiments nowadays (for example λ = 3 in the picture) squeezing performs far better than
TWB except for extremely demanding overall detection efficiency.

(B)-Bright quantum correlations- when 〈N〉cohητ � 〈N〉TWB
ητ . This regime corresponds to the flat region shown in

Fig.s 3 and 4 for intermediate values of the central phase φ0. Aside a constant factor, the uncertainty reduction

for µ� 1 behaves as for the two independent squeezing case, specifically U (0)
TWB/U

(0)
CL =

√
2U (0)

SQ/U
(0)
CL . It can be

easily appreciated when comparing the corresponding curves for TWB and Squeezing in the figures (taking in
to account the logarithmic scale).

For the sake of completeness, we did the same analysis considering to exploit the anti-correlations, defining the

observable as Ĉ(φ1, φ2) = (N1 +N2)
2

= N2
1 + N2

2 + 2N1N2 (for ψ = 0) instead of the correlation when TWB are
injected, obtaining analogous results in the regime of µ (1− τ) >> λτ .

VI. DISCUSSION AND CONCLUSIONS

In Sec. V we observed interesting features, leading to promising experimental conditions. Referring to Fig. 3 and
4 there is an extended range of value of the central working phase φ0 of the interferometers in which the uncertainty

reduction achievable by adopting quantum light is stable, at the value U (0)/U (0)
CL ≈ 1− η + η/4λ both with SQB and

TWB (a part a factor
√

2 in the last case). This kind of scaling is a well known results of phase estimation in a single
interferometer combining coherent strong field and single mode squeezed light (in fact 4λ ≈ e2|ξ| in the limit 4λ� 1)
[1]. Therefore, it turns out that a measurement of the phase correlation retains the same advantage of the single
phase estimation. As an example, for η = 0.9 and λ = 3, compatible with the actual technology, we have 5.7 times
of uncertainty reduction in the single measurement. Since in any experiments N measurements are performed and
the final uncertainty is U/

√
N , one would easily obtain the same sensitivity with a number of runs 30 times smaller,

hence reducing the total measurement time of the same amount.
On the other side, only for TWB, there exists a special setting of the central phase of the interferometer, when

the classical fields component is made negligible at the read-out ports with respect to the TWB component, in
which in principle the uncertainty reach the zero point, whatever the intensity of TWB. In particular for faint

TWB (λ � 1) the uncertainty scales as U (0)
TWB/U

(0)
CL ≈

√
2(1− η)/η while for intense TWB (λ � 1) one gets

U (0)
TWB/U

(0)
CL ≈ 2

√
5 (1− η). Even if at first glance this looks rather exciting, Fig. 5 shows that in terms of absolute

sensitivity squeezing performance can be overtaken only for rather high detection efficiency. For example for λ = 3

we expect U (0)
TWB < U (0)

SQ for η ≥ 0.99. However, for limited quantum resources, namely λ < 1, TWB performs better
than squeezing already for smaller and more realistic efficiency values.

In conclusion, we have analyzed in detail a system of two interferometers aimed at the detection of extremely faint
phase-fluctuation. The idea behind is that a correlated phase-signal like the one introduced by the “holographic
noise” could emerge by correlating the output ports of the interferometers, even when in the single interferometer it
confounds with the background. We demonstrated that injecting quantum light in the free ports of the interferometers
can reduce the photon noise of the system beyond the shot-noise, enhancing the resolution in the phase-correlation
estimation. Our results basically confirms the benefit of using squeezed beams together with strong coherent beams in
interferometry, even in this correlated case. However, mainly we concentrated on the possible use of TWB, discovering
interesting and probably unexplored areas of application of bipartite entanglement and in particular the possibility
of reaching in principle surprising uncertainty reduction.
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