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Abstract 9 

 10 

The photocatalytic performance of pristine and rare earth elements (La, Ce, Pr, Er, Yb) doped zinc oxide was 11 

tested toward the abatement of a model pollutant in MilliQ water and wastewater matrices. ZnO doped 12 

with Ce, Er and particularly with Yb exhibited photoactivity higher than bare zinc oxide and the benchmark 13 

TiO2 P25, especially in wastewater matrix. Several electrochemical investigations were performed via 14 

chronopotentiometry and cyclic voltammetry aimed to shed light on the reasons why the diverse materials 15 

behaved differently. From the overall data a complex picture emerged, where there is not a single property 16 

of the materials evidently outperforming the others. Nonetheless, from the analysis of whole data a limited 17 

role of doping emerged for La and Pr, doping with Er improved the photocurrent, doping with Yb favoured 18 

a better accumulation of photoelectrons, and doping with Ce promoted a faster electron transfer. 19 

 20 
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 23 

1. Introduction 24 

 25 

Among semiconductor nanomaterials, ZnO has several interesting properties and broad applications. 26 

Photocatalysts based on semiconductors are widely used in the conversion of light energy into useful 27 

chemical energy. ZnO is considered as a benchmark catalyst due to its non-toxic nature coupled with low 28 

cost [1]. One major drawback of existing technology is the low quantum efficiency of ZnO, which is due to 29 

very fast recombination of photogenerated electron–hole pairs. In order to improve the photocatalytic 30 

activity of ZnO, several modification methods have been developed. It has been reported that 31 

photocatalytic performance of semiconductor photocatalyst can be improved by doping with certain 32 

cations which can act as electron trapping agent to decrease the electron hole recombination rate [2, 3].  33 

A possible way to improve the photocatalytic activity is the formation of semiconductor-semiconductor 34 

p−n heterojunctions. It was found that the p−n junctions formed in combination with both p-type and n-35 

type semiconductors can effectively reduce the recombination rate of the photogenerated electron/hole 36 

pairs, with consequent enhancement of the photocatalytic activity [4-7]. More recently, our and other 37 

research groups started to investigate the role of rare earth elements (RE = La, Ce, Pr, Er and Yb) as dopant 38 

of different oxides [8-10]. In a very recent paper we demonstrated that the presence in the mixed material 39 

of CeO2/ZnO interfaces appears responsible of specific photochemical properties [11]. The material is 40 

composed of segregated CeO2 nanoparticles supported on larger ZnO nanostructures. Nevertheless, the 41 

presence of relatively low amounts of Ce (1%) were able to modify radically the behavior under irradiation. 42 

This effect has been explained in terms of alignment of bands of the two different oxide phases respectively, 43 

with the electron transfer from one species to the other helping the charge separation effect. 44 

In previous papers [12, 13] we prepared pure and doped ZnO with low Ce loading (1% molar) via 45 

hydrothermal process, a low temperature, green and simple process to obtain controlled nanostructures, 46 

starting from different precursors. The specific percentage of 1% molar of dopant was chosen according to 47 

the best photocatalytic results obtained. The photocatalytic activity of the synthesized materials was tested 48 

on phenol [13] and on more refractory compounds, such as iodinated X-ray contrast agents (ICM) [2], which 49 

are emerging contaminants, known to be scarcely abated in the wastewater treatment plants. Also in this 50 

case the achievement of the fast drug disappearance was a great success. [13] The same material has been 51 

successfully used in the abatement of acesulfame K, an artificial sweetener [12, 13]. 52 

Based on these very encouraging results, in a recent study we extended the investigation to other rare 53 

earth elements (RE = La, Ce, Pr, Er and Yb). We synthesized via hydrothermal process and characterized 54 

different photocatalysts based on ZnO doped with a low amount of RE (1% molar). [14-18]  55 
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In the present paper, we tested their photocatalytic performances toward a model pollutant, phenol, in 56 

different matrices, namely MilliQ water and wastewater, to assess if the higher activity is still maintained 57 

when facing with very complex and challenging matrices. Furthermore, through a comprehensive 58 

electrochemical investigation and statistical analysis we were able to correlate the improved activity with 59 

the different parameters affecting the photocatalytic process. 60 

 61 

2. Experimental section 62 

2.1. Materials 63 

All reactants employed in this work were purchased from Aldrich with purity higher than 99.9% and were 64 

used without any further purification treatment. Bare ZnO sample was synthesized starting from a 1 M 65 

water solution of Zn(NO3)2·6H2O. Then a 4 M NaOH solution was added until the pH was 10-11, and finally 66 

the solution was transferred into a PTFE lined stainless steel 100 mL autoclave (filling 70%), then treated at 67 

175°C overnight. The product was centrifuged and washed with deionized water, then dried at 70°C. The 68 

doped ZnO samples with rare earth elements RE 1% molar were prepared adding the stoichiometric 69 

amount of RE chlorides in the starting solution, then the same procedure described in [14] has been 70 

followed. The samples will be labelled as ZnO, ZnO-Ce, ZnO-La, ZnO-Yb, ZnO-Pr and ZnO-Er. 71 

TiO2 P25 Evonik was used as benchmark photocatalyst, after being irradiated and washed with ultrapure 72 

water in order to eliminate the potential interference caused by adsorbed ions such as chloride, sulphate 73 

and sodium.  74 

Phenol (P), catechol (CAT), hydroquinone, methanol (≥99.9%), acetonitrile (≥99.9%) and formic acid(99%) 75 

were purchased from Sigma Aldrich (Milan, Italy). HPLC grade water was obtained from MilliQ System 76 

Academic (Waters, Millipore). HPLC grade methanol (BDH) and acetonitrile (Aldrich) were filtered through a 77 

0.45 μm filter before use. Effluent and influent wastewaters (EWW and IWW, respectively) were provided 78 

by ACEA Pinerolese (Italy, a standard treatment plant). Total organic carbon measured was 12.96 mg L-1 and 79 

the pH was 8.05. 80 

 81 

2.2. Materials characterization 82 

SEM, TEM, XRD and BET DR-UV-Vis results were reported and deeply discussed in a previous paper. [14] 83 

Here we remind that the specific surface area (< 10 m2 g-1) is very similar for all samples, as the UV-Vis 84 

spectra, indicating that the RE insertion does not directly affect the VB  CB transition. Nevertheless, in 85 

the case of samples containing Pr, Er and Yb it is possible to detect the presence of a multitude of defined 86 

absorption bands, related to the f-f transitions of Pr, Er and Yb ion states. The presence of these bands 87 

indicates that the RE ions are well diluted in the matrix.  88 
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 89 
2.3. Photocatalytic tests 90 

Irradiation experiments were carried out using air-saturated Pyrex glass cells filled with 5 mL of the 91 

solution of the target molecule. The concentration of phenol was 20 mg L-1. The photocatalyst 92 

concentration was 1000 mg L-1. Samples were irradiated using a Philips TLK/05 lamp 40 Watt with 93 

maximum emission at 365 nm. The incident irradiance was 25 W m-2. 94 

 95 

2.4. Analytical techniques 96 

Phenol and its transformation products were monitored with a Merck-Hitachi liquid chromatograph 97 

equipped with Rheodyne injector L-6200 and L-6200A pumps for high-pressure gradients, L-4200 UV-Vis 98 

detector (the detection wavelength was set at 220 nm) and a LiChrocart RP-C18 column (Merck, 12,5 cm x 99 

0,4 cm). Isocratic elution (1 mL min-1 flow rate) was carried out with 80% of phosphate buffer 1x10-2 M at 100 

pH 2.8 and 20% acetonitrile and retention times was 6.45 min. 101 

 102 

2.5. Electrochemical tests 103 

The electrochemical experiments were carried out with a standard photoelectrochemical set-up composed 104 

of a computer-controlled potentiostat, AUTOLAB PGSTAT12, and a 150 W LOT Oriel Xe arc lamp as 105 

radiation source. The incident irradiance on the sample was 84 W m-2 in the 250-400 nm range. The 106 

electrochemical cell was a conventional three-electrode cell, in which the counter and reference electrodes 107 

were a Pt sheet and an Ag/AgCl/KCl 3 M electrode, respectively. If needed the electrolytic solution was 108 

purged with nitrogen or oxygen gas with purity 99.9999% obtained from Sapio (Italy). Transparent 109 

conductive supports (Corning® EXG alkaline earth boro-aluminosilicate glass, 25 x 25 x 1.1 mm, coated with 110 

Indium Tin Oxide on one surface, Rs = 9 - 15 Ω/□, Transmission >80%) were obtained from Delta 111 

Technologies Ltd (USA). In all cases electrolyte was KNO3 100 mM with K2HPO4 10 mM at pH 8.85±0.05.  112 

2.6. Electrode preparation 113 

Working electrodes were prepared with doctor blade technique. The semiconductor powders were mixed 114 

with MilliQ® water to obtain slurries, and then deposited onto the conductive supports using adhesive tape 115 

as a spacer and a microscope slide to spread the slurry. In this way 20±5 mg of semiconductor were 116 

deposited on each electrode. Copper foil tape with conductive adhesive (RS Components, UK) was used to 117 

solder a copper wire and ensure the electric contact. The electric contact was insulated with black epoxy 118 

resin (RS Components, UK) to avoid its corrosion during electrochemical measurements. The area of the 119 

semiconductor coated surface was 2.25 cm2. 120 

 121 
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3. Results 122 

3.1. Photocatalytic test on phenol 123 

The photocatalytic activity of pristine and rare earth elements doped ZnO-based materials was tested using 124 

phenol as probe molecule. Adsorption experiments in the dark were performed in a 2 h time window and 125 

showed that phenol was poorly adsorbed on all materials as adsorption was always below 10%. Direct 126 

photolysis scarcely contributed to phenol transformation even after long irradiation times.  127 

3.1.1. Tests in MilliQ water 128 

The time evolution of phenol in MilliQ water in the presence of bare and rare earth elements doped ZnO 129 

is reported in Figure 1. For comparison purpose, the degradation performed under the same conditions 130 

with the benchmark TiO2 P25 is shown as well. The degradation efficiency was very similar for P25 and bare 131 

ZnO, while some difference arose for doped materials. Doping with lanthanum exhibited a slight 132 

detrimental effect, while ZnO doped with cerium, erbium and ytterbium showed enhanced degradation 133 

rates. The degradation curve approximated a pseudo-first-order kinetics and we calculated the kinetic 134 

constants, which are collected in Figure 2. Excluding the case of cerium, the rate constant value seems 135 

related to the number of electrons present in the f orbitals as the rate increases with increasing atomic 136 

number Z. The diverse behavior of Ce-doped ZnO could be due to the different structure of this sample [14] 137 

and, in particular, to the formation of two distinct phases, clearly observable in both XRD and TEM 138 

measurements, which are not present with other doping elements. 139 

Phenol transformation is known to occur through the formation of hydroxyl derivatives, i.e. catechol 140 

(CAT), hydroquinone (HQ), 1,4-benzoquinone, resorcinol and, in a slight extent, of condensed products.[19] 141 

In our experimental conditions, the intermediates were identified as HQ and CAT. In all cases, the time 142 

evolution follows a typical bell-shaped profile, and differences arose from their net rate of formation-143 

disappearance when using TiO2 and ZnO-based materials (Figure S1). In the case of P25, HQ was identified 144 

at high amount (2.5 mg L−1), while CAT was detected at very low concentration (0.2 mg L−1), due to the 145 

strong adsorption of catechol on the catalyst surface.[20, 21] This phenomenon was evidently less 146 

important for ZnO based material as CAT and HQ were detected at comparable concentrations. 147 

The maximum yield of CAT and HQ was reached with ZnO-Ce, ZnO-Er and ZnO-Yb in 15-20 min and then 148 

almost 50% disappeared within 1 h of irradiation. The evolution rate was slowed down with ZnO, ZnO-La 149 

and ZnO-Pr , the largest concentrations were achieved after 30 min and they did not significantly decrease 150 

in the considered time window.  151 

 152 

3.1.2. Tests in influent and effluent wastewaters 153 
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The time evolution for phenol in the presence of the catalysts in EWW and IWW are plotted in Figure 1, 154 

together with the degradation profile obtained with the benchmark P25. In EWW, phenol was only partially 155 

degraded with P25, while it was completely degraded with ZnO based materials. In particular, the 156 

degradation was favored with ZnO-Yb and ZnO-Er. In IWW the rates were always slower than in EWW and 157 

MilliQ water. The different performances of tested materials were even more marked with the following 158 

order: ZnO-Yb, ZnO-Er> ZnO-Ce> ZnO-Pr>ZnO-La>ZnO. This trend, already observed in MilliQ water, seems 159 

correlated to the atomic number, and then to the decrease of the ionic radius, with ZnO-Ce only 160 

exception.[14] 161 

The calculated kinetic constants in the different matrices are collected in Figure 2. It can be noted that all 162 

zinc-based materials exhibited higher efficiency than P25. In MilliQ water, all synthesized materials except 163 

ZnO-La were more efficient than P25 and, in particular, ZnO-Ce and ZnO-Yb were the most efficient at the 164 

employed catalyst loading. [14] In the experiments performed in wastewater the performance of P25 was 165 

deeply reduced, while ZnO-based materials were less influenced. Evidently, in the complex matrix typical of 166 

a wastewater, there are species that like CAT, as observed before, can complex the surface and there act as 167 

recombination centers, lowering the net photocatalytic activity.[22] Furthermore, both in EWW and in IWW 168 

the catalyst efficiency increased with atomic number as in MilliQ water. 169 

ZnO-Er and ZnO-Yb exhibited also the most efficient abatement of the transformation products (TPs). The 170 

main TPs formed from phenol degradation were HQ and CAT and both materials were able to completely 171 

abate them within 2h (EWW) or 4h (IWW) (see Figure S2 and S3 in Supplementary data, SD). As already 172 

observed in MilliQ water, the concentration of CAT detected was very low with P25, due to the adsorption 173 

on the catalyst surface, while with ZnO-based materials the two TPs are formed at similar amounts. 174 

Considering EWW, the maximum yield of HQ and CAT was reached in 15 min with ZnO-Er and ZnO-Yb, while 175 

longer times were required for the other materials. In the cases of P25, ZnO-La and ZnO-Pr, TPs were 176 

accumulated and not completely degraded in the considered time window (Figure S2). In IWW, the 177 

maximum amount of HQ and CAT was reached in 60 min with ZnO-Yb and ZnO-Er, while up to 120 min 178 

were required for the other materials; in the case of ZnO-La, HQ did not reach the maximum in the 179 

considered time (4h, see Figure S3). 180 

3.2. Electrochemical characterization 181 

All the recorded and calculated electrochemical data are reported in Table 1 and their significance is 182 

explained in Table S1. The chronopotentiometry at open circuit potential (OCP) of undoped ZnO (Figure 3a) 183 

revealed marked photoactivity as witnessed by the sudden decrease of the OCP under irradiation. The 184 

measurements on other materials, which displayed similar trends, are reported in SD (Figures S4-S9). OCP 185 

decreased until a steady state value under irradiation was reached (OCP2, Table 1). This value is a function 186 
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of the electrode characteristics and electrolyte composition. Indeed, when oxygen was bubbled in the 187 

electrolyte instead of nitrogen, the OCP under irradiation stabilized to a significantly more positive value 188 

(OCP5), whereas in the presence of methanol its value was more negative (OCP3 and OCP4). When 189 

irradiation was interrupted, the OCP relaxed to the dark value over timescale of hundreds to thousands of 190 

seconds, depending again on the working electrode material and electrolyte composition. The trends could 191 

be replicated many times. We observed similar trends in the case of the doped ZnO specimens. For 192 

reference, in the case of TiO2 P25, the OCP values in deaerated electrolytes were significantly more 193 

negative (Table 1). The OCP relaxation after irradiation with N2 and O2 purging, will be analyzed in the 194 

following to estimate the recombination constant of the photogenerated charge carriers and the kinetic 195 

constant for the reaction among photogenerated electrons and dissolved oxygen.  196 

In cyclic voltammetry (CV) we observed a monotonic increase of the cathodic current density with 197 

increasingly cathodic potential, and a cathodic current peak was never reached, as observed in previous 198 

reports on semiconducting oxides.[23, 24] Conversely, we detected a marked anodic peak at -0.4 /-0.5 V 199 

(depending on the scan rate) vs Ag/AgCl for both ZnO (Figure 3b) and doped ZnO specimens (see SD for 200 

details). With O2 purging the maximum current of the anodic peak was reduced for all the samples to less 201 

than one half compared to deaerated electrolyte, whereas the cathodic current recorded at -1 V vs Ag/AgCl 202 

increased compared to anoxic conditions, especially at lower scan rates (Figure 3c). 203 

3.3. Discussion 204 

The kinetic data reported in Figure 2 could be justified supposing that the rare earth-doping improves the 205 

charge carrier separation. While this abused explanation could be possible in the case of Ce-doping, where 206 

a biphasic system is present [11], it is harder to justify the better performance of the other specimens 207 

where two different phases were not detected. For these reasons we checked the possibility of surface 208 

adsorption of rare earth elements. As the proof that they are predominantly present at the surface is a 209 

difficult task, we performed photocatalytic degradation experiments in the presence of fluorides, which 210 

complex all these rare earth elements with almost the same stability constant (logβ ≈ 4).[25] If the RE at 211 

the surface played a significant role during the photocatalytic degradation, then their capping with fluoride 212 

would affect the photocatalytic activity. The positive effect of fluoride on phenol photocatalytic 213 

degradation on P25 was already reported. [22] The rate increase in the presence of fluoride was attributed 214 

to the reduced adsorption of phenol degradation products, especially CAT, on P25 surface, thus limiting 215 

substrate-mediated recombination. Here, in the presence of pristine ZnO no difference was observed (see 216 

Figure S10), confirming the previous observation with CAT that ZnO surface is not prone to complexation. 217 

Moreover, also in the presence of rare earth elements, except for La and Yb, no difference was observed 218 

(see Figure S10), thus partially ruling out the hypothesis that the adsorption at the surface could play a 219 
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crucial role. For these reasons, we undertook a deep electrochemical study to possibly find the basic factors 220 

influencing the observed rates. 221 

Cyclic voltammetry is a tool to probe the density of states (DoS) of the electrode materials as a function of 222 

the applied potential, and, therefore, to extract information about the redox potential of trap states, and of 223 

the conduction and valence band of semiconducting electrodes. Indeed, when the potential is swept 224 

toward negative values, the Fermi level in the semiconductor is displaced toward the conduction band, 225 

while it is forced toward the valence band when the potential is swept in the positive direction. When the 226 

applied potential forces the Fermi level inside the band-gap, the current density recorded is in the order of 227 

1 µA cm-2 or less, because the conductivity of the material is usually low, as it is the DoS at these potential 228 

values. At energy levels close to the bands, the DoS usually increases exponentially because of the presence 229 

of more trap states. The increase becomes more dramatic when the applied potential crosses the 230 

conduction/valence band edges.[23] Nonetheless, it is not easy to determine the position of the band 231 

edges by CV, because the band pinning regime cannot be guaranteed when trap states becomes charged, 232 

i.e. exactly when the applied potential, and indeed the Fermi level, is about to reach the band edge, leading 233 

to uncertainty in the exact determination of the band edge energy. On the other hand, the determination 234 

of the trap state energy is more precise, especially in the case of deep traps, when the semiconductor is in 235 

the band-pinning regime. If there are no redox couples in solution, the charge carriers promoted into the 236 

semiconductor trap states due to the external bias cannot be transferred to the solution, and, especially if 237 

the scan rate is high, trap states can reversibly be populated and depopulated, leading to reversible 238 

voltammograms.[23] This is indeed the case of the CVs recorded under N2 purging (Figures 3b and S4-S9 239 

(b)), in which the anodic peak is clearly visible, whereas in the case of O2 purging (Figure 3c and S4-S9 (c)) 240 

the marked reduction of the anodic current and the increased cathodic current witness that trapped 241 

electrons in pristine and doped ZnO materials can reduce dissolved O2, in agreement with the results of the 242 

photocatalytic tests. To confirm that the abatement of organic molecules obtained under irradiation is due 243 

to the transfer of photogenerated charge carriers to solution species, and not to spurious effects, we 244 

performed OCP measurements to assess the charge carrier reactivity. 245 

OCP measurements can reveal photoactivity, discriminate between n-type and p-type semiconductors and, 246 

eventually, if coupled to CV, quantify the photogenerated majority carrier density.[26] The photoactivity is 247 

present in all the materials tested, as witnessed by the difference between dark potential and its value 248 

upon irradiation (OCP1 and OCP2 in Table 1). Since in all cases the OCP equilibrated at significantly more 249 

negative values compared to dark conditions, we concluded that ZnO and doped ZnO are n-type 250 

semiconductors, and behave similarly to TiO2 P25 (Figure 3a and Figures S4-S9 (a)). Indeed, in the case of n-251 

type semiconductors under irradiation, holes are trapped and transferred to solution species faster than 252 

photoelectrons, which accumulate and shift the quasi Fermi level, and consequently the OCP, to more 253 
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negative potential. On the other hand, irradiating p-type semiconductors leads to hole accumulation and to 254 

a positive shift of the OCP. [24, 26] Steady state is achieved in approximately 1000-2000 s, because charge 255 

carriers generation and their loss reach the same rate when a certain photoelectron density nph is obtained. 256 

When electron and hole scavengers are not present in the electrolyte, charge carrier loss is mainly due to 257 

recombination. Therefore, in this case, when irradiation is interrupted, the OCP relaxation to its dark value 258 

gives information about the photoelectron recombination kinetics. To convert OCP values under irradiation 259 

and immediately after switching off the irradiation into photoelectron density nph, we integrated the 260 

cathodic current of the CV obtained at the fastest scan rate (200 mV s-1), in order to ensure capacitive 261 

behavior, following Equation 1: [26] 262 

𝑛𝑝ℎ =
1

𝑒 𝑑 𝐴
�

𝑖
𝑠
𝑑𝑑

𝐸𝑙𝑙𝑙ℎ𝑡

𝐸𝑑𝑑𝑑𝑑

 

where e is the charge of the electron, d and A are the electrode thickness and area, respectively, i is the 263 

current recorded during the CV, s is the potential scan and Edark and Elight are the OCP of the electrode 264 

recorded in the dark and under steady-state irradiation, respectively. The nph obtained under irradiation at 265 

steady state in deaerated (nph2) and in O2-saturated electrolyte (nph5) are reported in Table 1. The OCP, 266 

which equilibrated at significantly more positive values in the presence of O2; indicates that photoelectrons 267 

do not accumulate in these conditions, and demonstrates that all the materials can photo-reduce dissolved 268 

molecular oxygen. The values of nph under O2 are lower compared to N2 purging, usually by one order of 269 

magnitude. This evidence is coherent with CV results, where the intensity of the anodic current peak was 270 

significantly reduced in O2 purged electrolyte. 271 

The values of nph after light interruption were employed to compute recombination constants, kR, in the 272 

case of deaerated electrolyte, where we assume that the main path to photoelectron decay is 273 

recombination with trapped holes. Conversely, we obtained kinetic constants for the reaction with 274 

dissolved O2, kO2, in the case of O2-saturated electrolyte, where photoelectrons are mainly lost because of 275 

the reduction reaction of O2. Rate constants were evaluated assuming pseudo-first order kinetics [26] 276 

following the equation: 277 

𝑘𝑅 =
1
𝑛𝑝ℎ

𝑑 𝑛𝑝ℎ
𝑑𝑑

 

Table 1 reports kR and kO2 values evaluated in two different conditions, i.e. at the corresponding OCP under 278 

irradiation (k2,R and k2,O2), and at an arbitrary photoelectron density of 1017 cm-3(kR) and 1016 cm-3(k1,O2), 279 

respectively. This has been done because kR and kO2 are not necessarily constant as functions of nph and the 280 

OCP; because more negative OCP corresponds to larger photoelectron energy, and usually to increased 281 
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reactivity. This is the reason why kR and kO2 tend to increase with increasing nph and with increasingly 282 

negative OCP values [26]. We ascribed the lack of anticorrelation between kR and nph in deaerated 283 

electrolytes to this effect. The OCP relaxation kinetics once irradiation is interrupted were significantly 284 

faster in O2-purged electrolytes compared to deaerated solution for all the materials considered, as 285 

witnessed by the difference between kR and kO2, which is of two orders of magnitude for most of the 286 

specimens, with the notable exception of ZnO-Er and TiO2 P25, which appear to be the least reactive 287 

materials with dissolved O2 (k1,O2 and k2,O2 in Table 1). We can therefore conclude that photoelectron 288 

reaction with dissolved O2 is faster than recombination with trapped holes for all the materials here 289 

presented, an essential feature for an efficient photocatalyst. This is even more pronounced in the case of 290 

the ZnO specimens compared to TiO2 P25. 291 

Nevertheless, the above results are not sufficient to explain the photocatalytic activity in the degradation of 292 

pollutants. The photocatalytic process is complex, and the overall rate is the result of the interplay among 293 

several processes, (light absorption, generation, separation and reactivity) of the photogenerated charge-294 

carriers. Not all the factors can be estimated with the above-mentioned electrochemical measurements, 295 

such as the role of crystalline facets exposed and the scattering and absorption efficiencies, and the 296 

adsorption of substrates and reaction intermediates, although this last was ruled out before.[27-29] 297 

However, the results of electrochemistry can help in decoupling some of these different factors, and in 298 

particular the reactivity of charge carriers. With this aim we measured the perturbation of the OCP upon 299 

the addition of different amounts of methanol.  300 

After the addition of methanol, the OCP shifted to more negative values (OCP3 and OCP 4 in Table 1), 301 

demonstrating that photogenerated holes are reactive towards organics such as methanol. Indeed, the hole 302 

reaction with methanol reduced steady state concentration of holes and therefore also the photoelectron 303 

recombination rate, which ultimately led to the OCP cathodic shift. This cathodic shift was proportional to 304 

the methanol concentration in the electrolyte. Nevertheless, we detected a saturation effect of the 305 

methanol concentration, especially for the undoped sample, for which we observed a cathodic shift of only 306 

5 mV increasing methanol concentration from 60 to 600 mM. Owing to this saturation effect, and keeping 307 

in mind that the most negative OCP reachable under irradiation is the EFB, [30] we considered the OCP 308 

under irradiation in the presence of 600 mM CH3OH as an estimation of the EFB for the materials under 309 

investigation (EFB in Table 1). This estimate is legitimate because the light intensity used was moderate (84 310 

W m-2 in the UV), electron scavengers were excluded (to favor photoelectron accumulation), recombination 311 

rates were relatively low and further reduced upon the addition of a hole scavenger such as 600 mM 312 

CH3OH. Other procedures for EFB estimation could not be employed in this case. Considering the porous 313 

morphology of ZnO electrodes, their capacitance would not behave ideally, and therefore the Mott-314 

Schottky plots would deviate significantly from linearity,[24, 31] impeding the extraction of EFB and donor 315 
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density with this strategy. Translating the EFB obtained at pH 0 vs NHE (Table 1), we were able to compare 316 

EFB with water reduction potential. Since EFB values obtained at pH 0 vs NHE were positive, we concluded 317 

that ZnO and doped ZnO cannot promote photocatalytic water reduction and hydrogen production, as 318 

opposed to TiO2 P25. The EFB values for ZnO materials were comprised between 92 and 262 mV vs NHE at 319 

pH 0, showing an anticorrelation between EFB and k2,O2 (r=0.70) and k1,O2(r=0.61). We remember that the 320 

critical value for the correlation constant r is r = 0.608 at 0.10 significance level for 4 degrees of freedom. 321 

Being the correlations found larger than 0.608, the null hypothesis (no influence of EFB on kO2) could be 322 

discarded with 90% confidence. Four degrees of freedom were considered as the degrees of freedom are 323 

the number of data couples minus two (in this case the six couples EFB, kO2). The anticorrelation suggests 324 

that the potential of the conduction band influences photoelectron transfer rate, and, therefore, if 325 

photoelectron transfer were rate-limiting, EFB might also play a role during the photocatalytic degradation 326 

of organic compounds. 327 

Another important piece of information was gathered taking into account the photocurrents recorded at 328 

potentials 400 and 800 mV more positive than EFB (Iph400 and Iph800 in Table 1). These potentials were 329 

chosen to compare different semiconductors in the same conditions, because it is known that photocurrent 330 

vanishes approaching EFB. [30, 32] Moreover, comparing the photocurrents at two different potentials, we 331 

were able to assess the effect of the external bias on photocurrent density. The photocurrents were anodic 332 

for all the samples, confirming that the materials studied are n-type semiconductors. In this case ZnO-Er 333 

presented the largest photocurrents, while the lowest values were recorded in the cases of undoped ZnO 334 

and ZnO-Pr. Nevertheless, it is not possible to order unambiguously the materials with the photocurrent, 335 

because the order is different as a function of the potential applied. There is a 3-fold increase in the case of 336 

ZnO-La and ZnO-Er from EFB + 400 mV to EFB + 800 mV, whereas it is almost constant for TiO2 P25 and ZnO-337 

Yb. Other cases are intermediate. 338 

With the help of electrochemical tests we verified that for ZnO specimens the photocatalytic activity stems 339 

from charge carrier separation upon irradiation and their reactivity with solution species (organics such as 340 

methanol in the case of holes, and O2 in the case of electrons). Nevertheless, from these data a complex 341 

picture emerged, where there was not an electrochemical variable clearly responsible for the 342 

photocatalytic rates observed. In these cases, considering two parameters at the time may result in 343 

incomplete or misleading analysis of the results. For this reason, we undertook a partial least square (PLS) 344 

analysis, in which the observed kinetic constants were expressed as functions of the electrochemical 345 

parameters previously evaluated (Table 1). PLS is particularly suitable for this task, because it is not 346 

adversely affected by collinear variables. 347 

PLS analysis suggests that two PCs (principal components) are sufficient to predict the photocatalytic rates, 348 

explaining 65 and 6% of the rate variance, respectively. From the analysis of the regression coefficients on 349 
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PC1 and PC2 we observed that all the experimental electrochemical variables contributed significantly to 350 

PCs (Figure S11), with the exception of the OCP recorded in dark, which was not relevant for the 351 

photodegradation experiments. Moreover, the absolute values of the regression coefficients were similar 352 

for both PC1 and PC2. More pronounced differences in the regression coefficients of each parameter are 353 

present in the case of PC2, as a function of the type of water used. 354 

The observed rates (see Figure S12, reporting x and y loading weights) are strongly correlated to 355 

photoelectron densities recorded in N2 purged electrolyte (i.e. nph2, nph3 and nph4, Table 1) and then are 356 

linked to the absorption of the materials at λ < 400 nm. From the analysis of scores and loadings of the 357 

electrochemical variables only (Figure 4) we infer that PC1 reflects nph2, nph3 and nph4, i.e. the 358 

photoelectron densities recorded in N2 purged electrolyte with and without CH3OH, while PC2 reflects nph5 359 

and EFB. ZnO-Yb displays a strong PC1 component. It is strongly correlated to nph3 and nph4, thus suggesting 360 

that Yb doping is beneficial for photoelectron accumulation. 361 

The rates in MilliQ and waste water have very similar coordinates on PC1 and are only differentiated on 362 

PC2. Because PC2 depends on EFB, we conclude that larger reactivity on wastewater matrices is due to a 363 

more positive EFB, which implies a more positive valence band potential, and, therefore, more oxidizing 364 

holes. 365 

ZnO-Er lies at relatively high value of PC1 (as ZnO-Yb, see Figure 4) but at positive values of PC2. It is well 366 

correlated to Iph800 (and Iph400). Therefore, doping with Er promotes a positive EFB, a large photocurrent 367 

value, and, indeed, large photoelectron accumulation. Conversely, ZnO-Ce displays slightly positive 368 

coordinate on PC1, markedly negative on PC2 (as ZnO-Yb), and strongly correlates with kR and k1,O2. Ce 369 

doping makes EFB more negative, with a large increase in the charge transfer kinetics to dissolved oxygen. In 370 

this case we can affirm that there is an improved charge carrier separation. The doping with La and Pr does 371 

not significantly modify the performance compared with pristine ZnO. These specimens have negative 372 

values of PC1, with null contribution from PC2. Compared with Ce, Er and Yb doping, these specimens have 373 

lower photoelectron accumulation ability. Thus, PLS analysis effectively summarizes all the electrochemical 374 

and photodegradation data and allows an interpretation of the role of each specific dopant: limited role for 375 

La and Pr, improved photocurrent for Er, better accumulation of photoelectrons for Yb and faster electron 376 

transfer for Ce. 377 

4. Conclusions 378 

Lanthanide-doped ZnO proved to be very effective in the degradation of pollutants, especially in real 379 

wastewater matrices, where they outperformed the benchmark TiO2 P25. Doping with Yb makes ZnO a 380 

robust and efficient photocatalyst. The photoactivity probed with electrochemical techniques correlates 381 

well with the photocatalytic activity in the degradation of model pollutants, also in matrices relevant for 382 
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real world application, especially when the photoelectron accumulation and charge carrier separation 383 

properties are considered. Electrochemical evidences demonstrated how the photocatalytic activity stems 384 

from a combination of different effects, often with opposite weight, i.e. the photoelectron density, the 385 

conductivity of the interface (photocurrent, reactivity of electron with oxygen and of holes here 386 

determined in the presence of methanol), and the recombination of charge carriers. When the combination 387 

of these effects (absorption, catalytic and electronic) leads to positive results an improved electron-hole 388 

separation effect is often loosely invoked. Conversely, the doping with rare earth elements affects 389 

differently many important physical and chemical properties of ZnO such as: i) the light absorption 390 

properties, which affect the photoelectron density and the photocurrent; ii) the recombination and O2 391 

reactivity constants; and, eventually, iii) the flat band potential, which determines the reactivity of the 392 

photogenerated electrons.  393 
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Figures 402 

 403 

 404 

Figure 1. Phenol degradation curves in the presence of different catalysts under UV-A light in MilliQ water 405 
(top), EWW (middle) and IWW (bottom). 406 

  407 
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 408 

Figure 2. Kinetic constants (k) calculated in ultrapure water (■), EWW (■) and IWW (■). Numerical data are 409 
reported in Table 1. 410 

 411 

 412 

413 
Figure 3. Chronopotentiometries under different conditions (a) and cyclic voltammetries at different 414 
potential scan rates of ZnO in N2 (b) and O2 (c) purged electrolytes.  415 
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 416 

Figure 4. Score and loading weights of the electrochemical variables in the PC plane. PC1 and PC2 explain 417 
65 and 6% of variance, respectively. Circles gather together correlated variables and samples, as presented 418 
in the discussion section. 419 

  420 
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Table 1. Open circuit potential values (vs Ag/AgCl, unless otherwise stated) in different electrolytes and 421 

photocurrent values obtained from CV under N2 purge at scan rate 10 mV s-1; photoelectron densities (cm-3) 422 

in different electrolytes and rate constants (s-1) for recombination and reaction with O2 for P25, pristine and 423 

doped ZnO; the last 3 rows report the first order degradation constants for phenol, already plotted in 424 

Figure 2. 425 

Acronym Conditions ZnO  ZnO-La ZnO-Ce ZnO-Pr ZnO-Er ZnO-Yb TiO2 P25 
OCP1 Dark, N2 purged, mV -9.5  -172  -103.2  173  -9.5  -190.5  -67  

OCP2 Light, N2 purged 
(OCPN2, light), mV -515.0  -444.7  -441.2  -452.7  -415.6  -545.3  -773.4  

OCP3 Light, N2 purged, 
CH3OH 60 mM, mV -529.8  -505.5  -513.0  -480.2  -436.6  -589.8  -875.9  

OCP4 
Light, N2 purged, 
CH3OH 600 mM (EFB 
pH 8.85), mV 

-579.8  -565.1  -542.5  -529.8  -454.6  -624.5  -922.6  

OCP5 Light, O2 purged, 
(OCPO2, light), mV -314.4  -273  -269.6  -167.0  -320  -361  -122  

Iph400 Photocurrent at EFB + 
400 mV, μA 8±1  8±2  15±1  8±1  35±5  20±1  15±2  

Iph800 Photocurrent at EFB + 
800 mV, μA 15±2  25±5  25±2  11±1  85±5  21±2  15±1  

EFB EFB pH 0 vs NHE, mV 139.9  154.1  176.7  176.4  262.2  92.3  -200.5  
nph2 Light, N2 purged, cm-3 1.4∙1017 2.0∙1017 1.3∙1017 1.2∙1017 2.0∙1017 3.1∙1017 0.4∙1017 

nph3 Light, N2 purged, 
CH3OH 60 mM, cm-3 1.6∙1017 2.8∙1017 3.1∙1017 1.5∙1017 2.2∙1017 4.7∙1017 1.5∙1017 

nph4 
Light, N2 purged, 
CH3OH 600 mM (EFB 
pH 8.85), cm-3 

1.9∙1017 3.9∙1017 4.2∙1017 2.0∙1017 2.4∙1017 6.1∙1017 2.7∙1017 

nph5 Light, O2 purged, cm-3 4.5∙1016 2.5∙1016 1.0∙1016 1.4∙1016 12.5∙1016 1.9∙1016 0.1∙1016 

kR kR @ 1.0∙1017cm-3, s-1 2.5∙10-3 1.1∙10-3 35∙10-

3(extr) 0.8∙10-3 2.8∙10-3 5.0∙10-3 4∙10-3 (a) 

K2,R kR @ OCPN2, light, s-1 3.2∙10-3 2.6∙10-3 10.0∙10-

3 2.5∙10-3 6.1∙10-3 3.7∙10-3 2.5∙10-3 

K1,O2 kO2@ 1.0∙1016cm-3, s-1 0.03∙ 0.17 0.10 0.04 0.001 0.13 0.15(a) 
K2,O2 kO2@ OCPO2, light, s-1 0.25 0.27 0.10 0.20 0.03 0.18 0.02 
kW In MilliQ water, min-1 0.039 0.033 0.064 0.039 0.051 0.064 0.037 
kE In EWW, min-1 0.031 0.028 0.037 0.037 0.049 0.059 0.01 
kI  In IWW, min-1 0.0067 0.0046 0.01 0.01 0.0167 0.018 0.0039 

a) extrapolated 426 

  427 
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