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Abstract—Nowadays, some alternative methods exist for the
replacement of physical vanes (or probes) for aerodynamic angles
(angle of attack and sideslip) with synthetic solutions. The results
are promising and there is a growing interest for the industry in
this particular solution. However, a lack of methods has been ob-
served to estimate their performance and to compare them. The
MIDAS project, funded in the Clean Sky 2 frame, will provide
the aerospace community with an innovative modular digital air
data system (ADS) based on synthetic sensors for aerodynamic
angles. To meet the system requirement specifications given by
the project leader, a method of uncertainty estimation must be
implemented. This paper proposes a method of estimation of
the overall uncertainty based on a consolidated metrological
procedure. This method holds a certain degree of generality
because it can be applied to different kinds of architecture of
the synthetic sensor. In this paper, it has been applied to the
preliminary design of the synthetic sensor of the MIDAS air
data system and the results have been reported as example.

Index Terms—synthetic sensor, neural network, metrology,
uncertainty propagation, flight safety

GLOSSARY

ADAHRS Air Data, Attitude and Heading Reference System
ADS Air Data System
AOA Angle of Attack
AOS Angle of Sideslip

MIDAS Modular and Integrated Digital Probe for SAT
Aircraft Air Data System

MLP Multilayer Perceptron

NN Neural Network

PAI Piaggio Aero Industries S.p.A.

SAT Small Aircraft Transportation

TAT Total Air Temperature

This research is supported by H2020 - Clean Sky 2 under SYS-ITD area
with Grant Agreement number 821140.

I. INTRODUCTION

During the last decades, technology and regulations brought
to the significant reduction of the aircraft incidents and
accidents caused by technical reasons. However, the flight
safety still remains an important topic and recent tragedies
demonstrate that the physical probes can suffer from exposure
to the external agents. The main system addressed by this
paper is the ADS (Air Data System), which needs to measure
physical quantities that are inherently external to the aircraft.
Several research groups proposed solutions to the problem
of the estimation of the aerodynamic angles. Some of them
are based on explicit mathematical models [1]–[5] whereas
others are based on machine learning techniques [6]–[15].
Unfortunately, to the authors’ knowledge, there is a lack of
metrological theory behind these estimators. One of the first
questions arising on this topic concerns the possibility of
ensuring the nominal functioning of the algorithm. However,
a design flow that must be followed during the design of
a synthetic sensor still does not exist. According to com-
mon aeronautical procedures, a set of checkpoints should be
defined in order to obtain a reliable design. On the other
hand, the second question usually regards the possibility to
compare the output of a virtual sensor with the traditional
AOA (Angle of Attack)/AOS (Angle of Sideslip) vane. This
aspect highly influences the first lack of design flow. In fact, a
design procedure can be properly defined only when a set of
metrological procedures is identified and used as a reference.
This paper shows a preliminary analysis based on consolidated
metrological procedures that allow to obtain an uncertainty
value that is comparable and repeatable. The general nature
of this method is one of its advantages. In fact, it can be
applied to different architectures of synthetic sensor, without
being strictly related to the one shown in this paper.

This paper focuses on the EU project MIDAS (Modular and
Integrated Digital Probe for SAT Aircraft Air Data System).
The MIDAS project is funded under Clean Sky 2 to design
a modular and integrated digital air data system for the
SAT (Small Aircraft Transportation) segment. Sec. II provides
a general description of the MIDAS ADS. The method is
described in Sec. III. The sensitivity analysis reported in
Sec. IV is based on the preliminary design of the synthetic



sensor showed in [16]–[19].

II. STRUCTURE OF THE MIDAS SYNTHETIC ESTIMATION

The MIDAS ADS schematics is shown in Fig. 1. It mainly
consists of two protruding probes and a synthetic (or virtual)
sensor. The external probes are a Pitot-Static probe and a TAT
(Total Air Temperature) probe. The synthetic sensor allows to
complete the so-called air triplet with the evaluation of AOA
and AOS. This preliminary design has been already described
in [16] and [18].

Fig. 1. High-level schematic of the MIDAS ADS.

The synthetic sensor is currently based on the Smart-
ADAHRS (Air Data, Attitude and Heading Reference System)
algorithm that can be disentangled in two main steps:

1) an initial evaluation of the AOA or AOS
2) the evaluation of a correction ∆α (respectively ∆β) to

fill the gap between α̂ (respectively β̂) and the real value
α (respectively β).

The correction is evaluated by a NN (Neural Network)
properly trained to conduct a sort of calibration of the initial
evaluation. The architecture selected is a fully-connected feed-
forward MLP (Multilayer Perceptron) corresponding to the
map in (1)

[∆α,∆β]
T

= fV S (TAS, α̂, nx, ny, nz, θ, φ, p, q, r,

δe, δa, δr, δth,∆th, δhs)
(1)

where TAS is the true airspeed, nx, ny , nz are the accel-
erations measured by the accelerometers respectively in XB ,
YB and ZB axes, θ, φ are the pitch angle and the roll angle
respectively, p, q, r are the body angular rates, α̂ is the initial
estimation for the AOA, δe is the elevator deflection, δa is the
aileron deflection, δr is the rudder deflection, δth is the throttle
command, ∆th is the difference between the torque on the left
and right propellers and δhs is the horizontal stabilizer angle.

Loosely speaking, the MLP contains a set of values called
weights used to conduct a series of nonlinear combinations of

the input signals. The training operation is mainly related to
the optimization of the weights such that an overall metric,
evaluated on the entire training set, is minimized. A huge
literature exist on this subject and more details on the ap-
plied architecture can be found in previous research [20]. In
details, in this work a single hidden layer with 24 neurons
is trained with the Levenberg-Marquardt rule. As a result of
this optimization process based on a single error value, the
local estimation error can be unacceptable. For this reason,
the sensitivity analysis is important because it can provide
indications on the local capability of the synthetic sensor to
estimate the desired flight parameter.

III. NONLINEAR UNCERTAINTY PROPAGATION

Mathematically speaking, in this case the MLP is a function
of several variables whose elements of the codomain can
be both scalar numbers or vectors. Thanks to its structure,
if the training is conducted properly, it can represent any
function in a given hypercube of definition and hence it can
become strongly nonlinear. For this reason, the analysis of the
sensitivity of the function cannot be conducted truncating the
Taylor series to the first order and linearizing the function.

In metrology there is a common procedure in these cases.
The function is tested with a Monte Carlo simulation using a
Gaussian distribution on the input variables and analysing the
distribution of the output around the nominal values. From a
metrological standpoint, uncertainties are often given in terms
of coverage factor k = 2, equivalent to 2σ for non-Gaussian
distributions, which expresses a 95 % confidence interval in
the measurement once all relevant sources of uncertainty are
considered. For this reason, a coverage factor k equal to 2 has
been considered in this work, assigning the expanded uncer-
tainty value to half of the interval between F (x) = 0.97725
and F (x) = 0.02275, where F stands for the cumulative
density function of the error around each nominal point.
Piaggio Aerospace, in quality of project leader, required that
the uncertainties of the final estimation on AOA/AOS would
depend on the value of the aerodynamic angles itself. As can
be seen from Fig. 2, the AOA/AOS envelope has been divided
in 2 regions, a primary zone with

E1 = {α, β ∈ R | 0° < α < 15°,−5° < β < 5°} (2)

and a secondary zone with

E2 =

{
(α, β) ∈ R2 | A

(
α
β

)
≤ b
}
\ E1 (3)

where

A =



−1 0
1 0
0 −1
0 1
1 −1
1 1
−1 − 6

10
−1 6

10


and b =



6
20
15
15
25
25
9
9


(4)



Fig. 2. Primary and Extended zone as defined in the system specification
from PAI

However, any pair (α, β) can represent several flight condi-
tions. For sake of clarity, it is not specified, for instance, if the
flight is stationary or there is a linear or angular acceleration.
For this reason, the resultant distribution of uncertainty values
will be analyzed statistically, if there are enough points (here
corresponding to different flight instants) to define a distribu-
tion. The dispersion of the uncertainty value is also of great
importance. In fact, if several fight conditions are grouped
inside the same α, β bin, it is interesting to study if the flight
condition has an effect on the final uncertainty. Statistically
speaking, it must be checked if the expanded uncertainty at
a given pair (α, β) is biased from the flight mechanics point
of view. Finally, the obtained charts are compared with the
estimation error, to try to understand if the classical approach
gives at least an estimation of the uncertainty.

Due to the structure of the estimator, this analysis is
repeated twice. In fact, although the expanded uncertainty is
metrologically important, the effect of the NN on the initial
estimation can greatly help the design of the virtual sensor.

A total number of 6 charts per estimated parameter are
obtained, as reported in TABLE I.

TABLE I
ANALYSIS RESUME

∆α− (∆α)nom,
∆β − (∆β)nom

Expectation Expanded
uncertainty value

(k = 2)

Dispersion of the
expanded

uncertainty
α− (α)nom,
β − (β)nom

Expectation Expanded
uncertainty value

(k = 2)

Dispersion of the
expanded

uncertainty

IV. RESULTS

This section shows some preliminary results of the analysis.
The data has been provided by the project leader based

on the Consortium requirements. The origin of the data is
an high-fidelity flight simulator, which considers delays and
noises of the system. Following the methodology described
in Section III, a synthetic sensor for AOA has been analysed.
Fig. 3 and 4 allow a series of important observations. First of
all, the expanded uncertainty is not compatible with the project
specification in every zone of the AOA/AOS. In particular,
the region with α < 5° and β < −5° is characterized by
higher uncertainty. The same reasoning can be conducted for
β ≈ 0° and 5° < α < 8°. Second, the expected value of
the distributions around each nominal point is close to 0° for
AOA, which represents a certain degree of radial symmetry
of the nonlinear function. The same value is slightly higher
for the AOS estimator. Third, the dispersion of uncertainty
due to different flight condition is generally lower than 1° for
both estimators with peak at 3° for AOA and 4° for AOS.
This means that the given uncertainty could not be considered
valid for any flight condition at the given (α, β) pair. Actually,
further research must be conducted on this aspect. In fact,
this dispersion might be solved using a bigger data-set. This
consideration is also supported by the concentration of this
behaviour in some particular regions of the envelope. Last,
the architecture of the virtual sensor as sum of two terms does
not affect the final results and the major source of uncertainty
comes from the NN, as expected. In fact, there are very few
differences between the columns of Fig. 3 and Fig. 4.

V. CONCLUSIONS

Nowadays, a growing interest in the synthetic sensors for
AOA/AOS is observed. Unfortunately, in literature a very few
example of them considers a metrologically valid sensitivity
analysis. To lead to the definition of a reliable design process
for synthetic sensors, a set of metrological procedures must
be adopted. This paper proposes the application of a classical
method for the estimation of the expanded uncertainty of
a nonlinear estimator. The method has been applied to the
estimators for both AOA and AOS designed for the certifiable
MIDAS probe, resulting from a Clean Sky 2 project. As
expected, the obtained uncertainty values demonstrate the fact
that the simple estimation error is not enough for the complete
definition of the performance of the sensor. Some regions
on the AOA/AOS showed an higher uncertainty, suggesting
a redefinition of the training set. Moreover, the standard
deviation of the expected uncertainty has been given, showing
a certain bias of the results. This effect comes from the project
specifications, which required to join every flight condition
corresponding to a given pair (α, β) in the same point of the
chart. Further research must be conducted to understand if this
bias can be reduced using bigger data-sets or not.
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Fig. 3. Results for the AOA estimator on the AOA/AOS envelope
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