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Abstract. Quantum correlations described by quantum discord and one-way quantum deficit can contain
ordinary regions with constant (i.e., universal) optimal measurement angle 0 or π/2 with respect to the
z-axis and regions with a variable (state-dependent) angle of the optimal measurement. The latter regions
which are absent in the Bell-diagonal states are very tiny for the quantum discord and cannot be observed
experimentally due to various imperfections on the preparation and measurement steps of the experiment.
On the contrary, for the one-way quantum deficit we succeeded in getting the special two-qubit X states
which seem to allow one to reach all regions of quantum correlation exploiting available quantum op-
tical techniques. These states give possibility to deep investigation of quantum correlations and related
optimization problems at new region and its boundaries. In the paper, explicit theoretical calculations ap-
plicable to one-way deficit are reported, together with the design of the experimental setup for generating
such selected family of states; moreover, there are presented numerical simulations showing that the most
inaccessible region with the intermediate optimal measurement angle may be resolved experimentally.

PACS. 03.67.-a Quantum information – 89.70.Cf Entropy and other measures of information – 42.50.Xa
Optical tests of quantum theory

1 Introduction

Quantum correlations lie at the heart of quantum infor-
mation science and technology. Many kinds of quantum
correlations have been introduced so far and now their
properties are scrupulously analyzed both theoretically
and experimentally. Among quantumness quantifiers be-
yond quantum entanglement, relevant places in the scale
of importance are occupied respectively by quantum dis-
cord and quantum work (information) deficit [1,2,3,4,5].

The quantum discord Q for a bipartite system AB
is defined as the minimum difference between the quan-
tum generalizations of symmetric (I) and asymmetric (J)
forms of classical mutual information:Q = min{Πk}(I−J),
where {Πk} is the measurement performed on one of the
two subsystems [6,7] (see also [8] in this regard). The
quantum discord is always non-negative, equals zero for
the classically correlated states, and coincides with the
quantum entanglement for the pure states. However, dis-
cord and entanglement exhibit essentially different behav-
ior even for the simplest mixed states — the Werner and
Bell-diagonal ones (see, e.g, [9,10]). Note that discord is
not a symmetric quantity and in general it depends on
which subsystem the local measurement was performed.

a corresponding author: ekaterina.moreva@gmail.com

A value of quantum discord for two-qubit systems can
vary from zero to one bit.

The quantum work deficit is a measure of quantum cor-
relation based on thermodynamics. It was defined firstly
by Oppenheim et al. [11] as the difference between the
work W which can be extracted from a heat bath using
operations on the entire quantum system and the largest
amount of work W drawn from the same heat bath by
manipulating only the local parts of composite system;
in other words, the work deficit ∆ is the amount of po-
tential work which cannot be extracted under local op-
erations and classical communication (LOCC) because of
quantum correlations [11,12,13]. Several forms of deficit
exist, depending on the type of communication allowed
between parts A (Alice) and B (Bob). For example, let
us consider the case in which the bipartite state ρAB is
shared by Alice and Bob: if Bob performs a single von
Neumann measurement on his local subsystem and uses
classical communication to send the resulting state to Al-
ice, when she extracts the maximum amount of work W
from the new entire state, then the dimensionless quantity
∆ = min{Πk}(W−W )/kBT is called the one-way quantum
deficit (T is the temperature of the common bath and kB
is Boltzmann’s constant). In spite of quite different con-
ceptual sources, the one-way deficit and discord coincide in
considerably more general cases than entanglement. They

http://arxiv.org/abs/1903.08342v1
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are the same for the Bell-diagonal states and even for the
two-qubit X states1 with zero Bloch vector for one qubit
if the local measurement is performed on this qubit [14].
On the other hand, these quantum correlations exhibit,
generally speaking, different quantitative and qualitative
behavior in more general cases.

Due to the optimization procedure entering in quan-
tum correlation definitions, evaluation of quantum discord
and deficit entails great difficulties even for the two-qubit
systems. Up to the present, closed analytical formula for
the quantum discord has been derived only for a particular
class of X states, namely for the Bell-diagonal states [15].
Since the one-way deficit is identical to the discord in this
case, one automatically possesses the closed analytical ex-
pression for the former quantity.

An attempt to extend the success of Luo [15] to the ar-
bitrary X states was undertaken in 2010 by Ali, Rau, and
Alber [16]. Unfortunately, the authors decided that the
extreme values of parameters which characterize the von
Neumann measurement were attained for discord only at
their endpoints. Shortly after, however, the counterexam-
ples of X density matrices have been given which demon-
strate a measurement-dependent discord minimum inside
the interval of measurement parameters [17,18]. Thus, the
analytic formula of Ref. [16] is incorrect in general.

At that time it was also established that for the general
two-qubit X states the optimization of discord over the
projectors {Πk(θ, ϕ)} can be worked out exactly over the
azimuthal angle ϕ but one optimization procedure, in the
polar angle θ ∈ [0, π/2], remains relevant [19,20,21] (see
also [22]). As a result, a pessimistic verdict has been made:
“For general two-qubit X states quantum discord cannot
be evaluated analytically” [23].

Definite optimism was restored in Refs. [24,25,26], where
it has been observed that the formula for calculating the
quantum discord of general two-qubit X states has, in
any event, a piecewise-analytical-numerical (semianalyt-
ical) form

Q = min{Q0, Qθ∗ , Qπ/2}. (1)

Here the subfunctions (branches) Q0 and Qπ/2 are the
analytical expressions (corresponding to the discord with
optimal measurement angles 0 and π/2, respectively) and
only the third branchQθ∗ requires one-dimensional search-
ing of the optimal state-dependent measurement angle
θ∗ ∈ (0, π/2) if, of course, the interior global extremum
exists.

Thus, the total domain of definition for the discord
function consists of subdomains each one corresponding
to the own branch (phase or fraction - in physical lan-
guage) separated by strong boundaries. Equations for such
boundaries have been proposed in Refs. [24,25,26]. The
equations for 0- and π/2-boundaries separating respec-
tively the Q0 and Qπ/2 regions with the Qθ∗ one are writ-
ten as

Q′′(0) = 0, Q′′(π/2) = 0. (2)

1 A matrix having non-zero entries only along the diagonal
and anti-diagonal is called the X one because it looks like the
letter “X”.

Here Q′′(0) and Q′′(π/2) are the second derivatives of
the measurement-dependent discord function Q(θ) with
respect to θ at the endpoints θ = 0 and π/2, correspond-
ingly. The equations (2) are based on the unimodality hy-
pothesis for the function Q(θ) and bifurcation mechanism
of appearance of the extremum inside the interval (0, π/2).
The equations are confirmed now for different subclasses
of X states [26,27].

Very similar situation takes place for the one-way quan-
tum deficit of two-qubit X states [28,29,30]. This quantity
is given as

∆ = min{∆0, ∆ϑ, ∆π/2}, (3)

where the branches ∆0 and ∆π/2 are again known in the
analytical form while the third branch ∆ϑ requires to per-
form numerical minimization to obtain state-dependent
minimizing polar angle ϑ ∈ (0, π/2). However the measurement-
dependent deficit ∆(θ) can exhibit now the bimodal be-
havior that in turns can lead additionally to the new mech-
anism of formation of a boundary between the phases,
namely via finite jumps of optimal measured angle from
the endpoint to the interior minimum or vice versa [29,
30].

The analysis performed shows that the discordant re-
gion Qθ∗ is very narrow. It is characterized by the linear
sizes of order 10−4, leading to the fantastically high fi-
delity2 between the boundary states: F = 99.999998%
[27]. Moreover, the volume of Qθ∗-region is 0.08% of total
volume of the domain of definition [27]. The latter agrees
approximately with the estimation obtained by Monte-
Carlo simulations [31] equivalent to 0.03%. Thus, these
parameters are unfavorable and exclude any possibility to
observe now the exotic Qθ∗-region experimentally.

On the other hand, the analogous regions ∆ϑ of one-
way quantum deficit can achieve the sizes comparable to
those of the regions ∆0 and ∆π/2, therefore inspiring the
possibility that an insight into the considered region can
be obtained experimentally.

The aim of present paper is to select suitable quantum
states showing the widest possible regions with the vari-
able intermediate optimal measurement angle, to perform
for them numerical simulations, and to give a response
about the possibility to resolve such regions using con-
temporary optical apparatus.

Our aspiration to experimentally detect the new re-
gions (phases) of quantum correlations is motivated by the
following. First, this is a study of properties of quantum
correlations which are absent in the Bell-diagonal states.
In particular, the observation of continuous and smooth
transitions between the phases which manifest in higher
derivatives with respect to the state parameters. Secondly,
the fact that the state lies in the region of the variable
optimal measurement allows us to estimate the value of
quantum correlation via the shift of the angle.

Third, the regions of quantum states with the inter-
mediate optimal measurement angle are rather surprising

2 The fidelity of two quantum states, F , leads to the Bures
distance, dB , between the same states through the relation
dB = [2(1−

√
F )]1/2.
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because the most practical constrained optimization prob-
lems in the natural sciences have an optimal solution at
the boundary.(See, e.g., [32]: “Real life optimization prob-
lems often involves one or more constraints and in most
cases, the optimal solutions to such problems lie on con-
straint boundaries.”) However this expectation can lead
to incorrect results like in [16].

In the following sections, a suitable candidate of quan-
tum state is given, its properties are described in detail,
a scheme of optical setup is considered and the expected
results are discussed. Finally, in the last section, a brief
conclusion is given.

2 Theoretical results

We begin with the theoretical description of the problem
under question.

2.1 One-way deficit estimation

The maximum amount of useful work that can be ex-
tracted from a system in the state ρ is given as [11,12,
13] (see also [1,2,3])

w = kBT (log d− S(ρ)), (4)

where S(ρ) = −tr(ρ log ρ) is the entropy of state ρ and d
the dimension of Hilbert space in which the density op-
erator ρ acts. Applying this general relation to the states
before and after Bob’s measurement it is possible to obtain
the following equation for the one-way deficit

∆ = min
{Πk}

S(ρ̃AB)− S(ρAB), (5)

where

ρ̃AB ≡
∑

k

pkρ
k
AB =

∑

k

(I⊗Πk)ρAB(I⊗Πk)
+ (6)

is the weighted average of post-measured states

ρkAB =
1

pk
(I⊗Πk)ρAB(I⊗Πk)

+ (7)

with the probabilities

pk = Tr(I⊗Πk)ρAB(I⊗Πk)
+. (8)

Thus, the one-way quantum deficit equals the minimal
increase of entropy after a von Neumann measurement on
one party of the bipartite system ρAB.

It is clear from Eq. (5) that the main problem is to find
the post-measurement entropy, because the pre-measurement
one, i.e. S(ρAB), does not depend on the measuring angle
and hence plays a role of a trivial constant shift. Therefore,
below we will stress attention mainly on the S(ρ̃AB).

Generally the one-way deficit, as the quantum discord,
is asymmetric quantity under replacement of the measured
subsystem, however we avoid such cases in our work.

Notice that the map ρAB 7→ ρ̃AB defined by Eq. (6) can
be interpreted as non-selective measurement (see, e.g., the
textbook [33]) because not the individual measurement
outcomes are recorded but only the statistics of outcomes
is known. (Note in passing that the quantum discord is
based on selective measurements.) Moreover, this map has
a form of quantum operation and therefore the one-way
deficit has the operational significance beyond entangle-
ment.

It arises a question: how to determine the entropy of
some quantum state ρ experimentally? In order to get the
thermodynamic entropy one measures the heat capacity
of the given sample, takes the ratio of heat capacity to
the temperature and then integrates this ratio with re-
spect to the temperature. In the quantum case, in line
with the measurement propositions [34,35], direct way is
to take the entropy operator − log ρ [36] or the density
one ρ as an observable. However, it is not known how to
experimentally realize the projectors |λk〉〈λk|, where |λk〉
are the eigenvectors of above operators. Instead, one can
first restore the quantum state ρ through a tomographic
reconstruction in the computational basis (i.e., find the
numerical values for all entries of the density matrix),
solve eigenvalue problem for this matrix on a computer,
and then calculate the quantum entropy via the relation
S(ρ) = −∑

i λi logλi with λi being the eigenvalues of ρ
[37]. It is the way that we use in the present paper.

There is, of course, the radical way to obtain the one-
way deficit without performing any local measurements at
all (as it is usually made to get the quantum entanglement;
say, [38]). Indeed, since the full tomography is needed to
find the entropy of pre-measurement state, one can use
the digital representation of ρAB to numerically perform
the required local measurement, compute the minimized
post-measurement entropy, and finally arrive at the value
of one-way deficit ∆. We keep in mind this possibility and
will compare both approaches in the real experimental
work. Both possibilities have their pluses and minuses. If
the local measurement is performed in analog way, then
the numerical calculations are simplified, moreover we pre-
fer to consider ”real” measurements with their imperfec-
tions for the simulation of the experiment.

To continue our consideration one should specify the
quantum state.

2.2 Initial quantum state ρAB

Focussing on two-qubit systems, to this date, phase dia-
grams for the quantum discord and one-way deficit have
been studied in detail for the three-parameter subclass of
two-qubit X states [27,30]. This allows us to choose the
suitable state to examine it in an experiment.

From the available variety of states, we consider here
the maximally simple (but non-trivial) one-parameter state

ρAB = q|Φ+〉〈Φ+|+ (1− q)|01〉〈01|, (9)

where |Φ+〉 = (|00〉+ |11〉)/
√
2. This state in a Bloch form

is written as

ρAB = 4−1[I⊗ I + (1− q)(σz ⊗ I− I⊗ σz)
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+q(σx ⊗ σx − σy ⊗ σy) + (2q − 1)σz ⊗ σz ], (10)

where σα (α = x, y, z) is the vector of the Pauli matri-
ces. The given state will show the obvious symmetry un-
der permutations of particles (A ↔ B) after performing
the local unitary (orthogonal) transformation U = I⊗ σx

which does not change any of the quantum correlations.
Lastly, the density matrix of chosen state ρAB in explicit
form is given by

ρAB =







q/2 0 0 q/2
0 1− q 0 0
0 0 0 0
q/2 0 0 q/2






. (11)

Let us consider now the class of states (9) showing the
maximum amount of entanglement investigated in Refs. [39,
40,41]. It is remarkable that the authors [39] were able to
achieve the fidelity F ≥ 99%. Later the discordant fea-
tures of the above state were discussed in Ref. [42]. Notice
that the quantum discord for the state (9) is defined by
the optimal measurement angle θ∗ = π/2 in the whole in-
terval of parameter q and hence the discord has here no
regions with the variable optimal measurement angles.

In this paper we focus on the one-way deficit. Accord-
ing to Eq. (5), to find this quantity, one should first calcu-
late the pre- and post-measurement entropies — S(ρAB)
and S(ρ̃AB), respectively. For this purpose, we find the
corresponding eigenvalues.

Eigenvalues of matrix (11) equal

λ1 = q, λ2 = 1− q, λ3 = λ4 = 0. (12)

Owing to the non-negativity requirement for any density
matrix, one obtains that the domain of definition for the
parameter (argument) q is restricted by the condition

0 ≤ q ≤ 1. (13)

The quantity q may be interpreted as a concentration of
Bell-diagonal state in the two-component mixture (9).

Using Eq. (12) one gets the pre-measured entropy func-
tion

S(q) ≡ S(ρAB) = −q log q − (1− q) log (1− q). (14)

This is exactly the binary entropy and its value can vary
from zero to one bit.

2.3 Post-measurement state ρ̃AB

Since ρAB is the two-qubit state, then Πk in Eq. (6) are
the two projectors (k = 0, 1)

Πk = V πkV
+, (15)

where πk = |k〉〈k| and transformations {V } belong to the
special unitary group SU2. Rotations V are parametrized
by two angles θ and ϕ (polar and azimuthal, respectively):

V =

(

cos(θ/2) eiϕ sin(θ/2)
sin(θ/2) −eiϕ cos(θ/2)

)

(16)

with 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π.
Performing the necessary calculations it is possible to

get the eigenvalues of the density matrix ρ̃AB:

Λ1,2 =
1

4
[[1 + (1− q) cos θ ± {[1− q + (1− 2q) cos θ]2

+q2 sin2 θ}1/2]]
(17)

Λ3,4 =
1

4
[[1 − (1− q) cos θ ± {[1− q − (1− 2q) cos θ]2

+q2 sin2 θ}1/2]].

It is seen that the azimuthal angle ϕ has dropped out
from the given expressions. This is due to the fact that
one pair of anti-diagonal entries of the density matrix (11)
vanishes. Using Eqs. (17) we arrive at the post-measured
entropy (entropy after measurement)

S̃(θ; q) ≡ S(ρ̃AB) = h4(Λ1, Λ2, Λ3, Λ4), (18)

where h4(x1, x2, x3, x4) = −∑4

i=1
xi log xi, with the addi-

tional condition x1 + x2 + x3 + x4 = 1, is the quaternary
entropy function. Notice that function S̃ of argument θ is
invariant under the transformation θ → π − θ therefore it
is enough to consider the values for which θ ∈ [0, π/2].

It is worth noticing that since the post-measurement
state is needed only to find its entropy, which is invariant
under any unitary transformations, one can transfer the
rotations V from the measurement operators (projectors)
on the state ρAB:

ρ̃AB 7→ ρ̃ ′
AB = (I⊗ π0) · [(I⊗ V +)ρAB(I⊗ V )] · (I⊗ π0)

+(I⊗ π1) · [(I⊗ V +)ρAB(I⊗ V )] · (I⊗ π1) (19)

and in this case S(ρ̃AB) = S(ρ̃ ′
AB). It means that we may

firstly rotate the state (e.g., with a half-wave plate) and
then perform two orthogonal projections of the rotated
state in the initial computational basis.

2.4 Behavior of post-measurement entropy

We describe here specific properties of post-measurement
entropy which will be needed for performing the experi-
ment. In other words, we shall try to supply experimen-
talists with technological maps suitable in the work.

Equations (14), (17), and (18) define the measurement-
dependent (non-optimized) one-way deficit function∆(θ) =

S̃(θ) − S. Direct calculations show that for every choice

of model parameter q the function S̃(θ) and hence ∆(θ)
possess an important property, namely their first deriva-
tives with respect to θ identically equal to zero at both
endpoints θ = 0 and θ = π/2:

S̃′(0) = ∆′(0) ≡ 0, S̃′(π/2) = ∆′(π/2) ≡ 0. (20)

From Eqs. (17) and (18) we get the expressions for the
post-measurement entropy at the endpoint θ = 0,

S̃0(q) = −(1− q) log(1− q)− q log(q/2), (21)
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Fig. 1. Dependencies S̃0(q) (curve 1) and S̃π/2(q) (curve 2).
Longer bars mark the position of interval [0.5, 0.67515]

Fig. 2. Post-measurement entropy S̃ vs θ by q = 0.05 (1),
0.2 (2), 0.4 (3), 0.6155 (4), and 0.8 (5)

and at the second endpoint θ = π/2:

S̃π/2(q) = log 2 + h((1 +
√

(1 − q)2 + q2)/2), (22)

where h(x) = −x log x− (1− x) log(1− x) is the Shannon

binary entropy function. The behavior of functions S̃0(q)

and S̃π/2(q) is depicted in Fig. 1. The local maxima of
these functions lie at q = 2/3 and 1/2, and equal log23 ≈
1.58496 bits and 1

4
[10−

√
2 log2(3 + 2

√
2)] ≈ 1.60088 bits,

respectively. The function S̃π/2(q) is symmetric under the
replacement q → 1 − q. The curves 1 and 2 intersect at
the point (0.61554, 1.57667).

Together with Eq. (14), the relations (21) and (22)
supply us with explicit expressions for the one-way deficit
at the endpoints: ∆0 = ∆(0) and ∆π/2 = ∆(π/2). In
particular, ∆0 = q log 2 (= q bits).

At the 0- and π/2-boundaries, the second derivatives
of the deficit and the post-measurement entropy are:

∆′′(0) = 0 and ∆′′(π/2) = 0 (23)

S̃′′(0) = 0 and S̃′′(π/2) = 0 (24)

will be needed below.
As calculations yield,

S̃′′(0) =
1− 3q + 2q2

2− 3q
ln

2(1− q)

q
. (25)

The roots of equation S̃′′(0) = 0 are 1/2 and 1.
On the other hand, calculations show that the second

derivative S̃′′(θ) with respect to θ at θ = π/2 equals

S̃′′(π/2) =
q2

2r3
[r2 − (1− 2q)2] ln

1 + r

1− r

− (1− q)2

1− r2
[1− 2(1− 2q)(1− 1− 2q

2r2
)], (26)

where
r =

√

(1− q)2 + q2. (27)

The results of numerical solution of the equation S̃′′(π/2) =
0 are q = 0.67515 and again an uninteresting root equaled
1. Thus, the region with the interior optimal measurement
angle can exist only when q ∈ (0.5, 0.67515).

Let us consider now the behavior of post-measured en-
tropy for different values of parameter q in the segment
[0, 1]. The values of entropy in two-qubit systems can vary
from zero to two bits. Figure 2 shows the the behav-
ior of post-measurement entropy upon the measurement
angle θ by different values of parameter q. The curves
S̃(θ) for q ≤ 0.5 have the monotonically increasing be-
havior and here the optimal measurement angle is con-
stant equaling zero. The relative difference between val-
ues of entropy at endpoints θ = 0 and π/2 is large and
achieves 71%, 35%, and 13% respectively for q = 0.05,
0.2, and 0.4 (see Fig. 2). Conversely, the curves of post-
measurement entropy exhibit the monotonically decreas-
ing dependence for q > 0.67515. For example, the relative
difference (S̃(0)− S̃(π/2))/S̃(0) equals 6% for q = 0.8 (see
again Fig. 2). So, the presented estimates are large enough
and therefore allow to hope that the effect of correlation-
function transition from the optimal measurement angle
zero to π/2 can be observed in an experiment.

Let us discuss now the behavior of post-measurement
entropy in the intermediate region 0.5 < q < 0.67515.
Figure 3 shows the evolution of behavior of the post-
measured entropy S̃(θ) with respect to parameter q. The
curve presents a monotonic increase when the parameter
q varies from zero to q = 1/2. At the point q = 1/2, as
visible in Fig. 3(a), a bifurcation of the minimum at θ = 0

occurs. In the range 0.5 < q < 0.67515, the curve S̃(θ)
reaches, as shown in Figs. 3(b) and (c), the interior min-
imum. So, the region with variable optimal angle ϑ takes
up a part 0.17515 ≈ 17.5% on the section [0, 1] of q axis,
and the fidelity between the states at bound points q = 0.5
and q = 0.67515 equals F = 96.8%3. The position of such
a local minimum ϑ smoothly moves from zero to π/2 (see
again the curves in Figs. 3(b) and (c) ).

3 Note for comparison that experimenters achieve now the
values of fidelity F = 99.8(2)% [38], 99.8(1)% [43], and 99.998%
[44].
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Fig. 3. Post-measurement entropy S̃ vs θ by q = 0.5 (a), 0.55 (b), 0.65 (c), and 0.7 (d)

The interior minimum of post-measurement entropy is
best observed when the values of S̃0 and S̃π/2 equal to one
another. This occurs (see Fig. 1) at the point q = 0.61554

for which S̃0 = S̃π/2 = 1.57667 bits and hence ∆π/2 =
∆0 = q = 0.61554 bit. The given situation is represented
in Fig. 4 (cf. with the curve 4 in Fig. 2). Here the minimum
lies at the angle θmin ≡ ϑ = 0.6955 ≈ 39.8. Its depth is
0.01397 bit what yields relative corrections to the post-
measurement entropy and one-way deficit equaled δS̃ =
0.9% and δ∆ = 2.3%, respectively.

Then, at the value of q = 0.67515, the system experi-
ences a new hidden sudden transition – from the branch,
which is characterized by the continuously changing opti-
mal angle ϑ in the full interval (from 0 to π/2), to the

branch S̃π/2 with constant optimal measurement angle
equaled π/2. From here and up to q = 1, the curves of
post-measured entropy exhibit monotonically decreasing
behavior as illustrated in Fig. 3(d).

One should emphasize here that the behavior of the
minimized one-way quantum deficit ∆ = minθ ∆(θ) with
respect to the argument q is continuous and smooth. Nev-
ertheless, the function ∆(q) is a piecewise one,

∆(q) =

{

∆0, 0 ≤ q ≤ 0.5;
∆π/2, 0.67515 ≤ q ≤ 1;
∆ϑ, q ∈ (0.5, 0.67515),

(28)

Fig. 4. High-resolved post-measurement entropy S̃ vs θ by
q = 0.6155

Fig. 5. Concentration of Bell-diagonal state, q ∈
[0.5, 0.67515], in the mixture (9) as a function of interior opti-
mal measurement angle ϑ.

and therefore presents nonanalyticities at the border points
q = 0.5 and 0.67515 which manifest themselves in higher
derivatives.

The relation of interior optimal measurement on angle
ϑ with q ∈ [0.5, 0.67515] is shown in Fig. 5. The function
q(ϑ) is biunique (one-to-one) and the presented curve al-
lows to estimate the value of parameter q in the mixed
quantum state ρAB. Hence, this can serve as one of pos-
sible applications of quantum correlation in practice.

3 Setup and numerical simulations

For testing the theoretical approach, described in the pre-
vious sections, we propose a design of an experimental
setup allowing to prepare a family of polarization states
ρAB(9) and estimate the post-measured entropy S̃ through
the tomographic reconstruction of density matrix. In par-
ticular, we suggest to use the well-known method of po-
larization state preparation via spontaneous parametric
down-conversion process (SPDC) [46] and quantum state
tomography protocol based on tetrahedral symmetry [47],
guaranteeing simple realization and high quality of re-
construction. We intentionally selected commonly used
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Fig. 6. (Color online) Experimental setup for preparing the initial quantum state and measuring its one-way deficit. The first
(green) block prepares the specific quantum states ρAB defined in (9), the second (blue) block performs local measurements while
the third (yellow) block of tomography measures the transformed quantum state ρ̃AB . Ar laser: argon laser with wavelength
351 nm, M: mirror, V: vertical oriented Glan-Thompson prism, BBO: nonlinear barium borate crystals of Type-I, HWP and
QWP: half- and quarter-wave plates, QP: (dichroic) quartz plates, BS: beamsplitter, PBS: polarizing beamsplitter, DBS: dichroic
beamsplitter (dichroic mirror), IF: interference filter, D: single photon avalanche detectors (SPAD), CC: coincidence circuit

methods to show that the nontrivial behavior of quantum
deficit can be observed without requiring specific appara-
tus.

3.1 Optical setup scheme

The setup is schematically depicted in Fig. 6. A cw ar-
gon laser beam at λ = 351 nm passes through a Glan-
Thompson prism (V) with vertical orientation, half-wave
plate HWPp and polarizing beamsplitter (PBS). The HWPp

and PBS serve to control the q parameter in the state
ρAB (9). In the upper arm of non-balanced interferometer
the maximum entangled Bell state |Φ+〉 is produced. Two
nonlinear type-I BBO crystals, positioned with the planes
containing optical axes orthogonal to each other, gener-
ate a pair of the basic states |H1H2〉, |V1V2〉 via collinear,
frequency nondegenerated regime of SPDC. The relative
phase φ between basic states is controlled by two quartz
plates QP1, while amplitudes are controlled by the half-
wave plate HWPp.

Among th others, and as a practical example, let us
suppose that the wavelengths of the collinear downcon-
verted photons are λ1 = 763 nm and λ2 = 650 nm. In
the bottom arm, where the horizontal polarization of the
pump is reflected, the second component of the state ρAB

is prepared. We use the technique, suggested in the papers
[45,46], to perform the transformation |V1V2〉 ⇒ |H1V2〉.
This transformation can be achieved by using dichroic
wave plates QP2, which act separately on the photons
with different frequencies and introduce a phase shift of
2π for a vertically polarized photon at 650 nm, a phase
shift of π for the conjugated photon at 763 nm. The wave
plates are oriented at 45◦ to the vertical direction. Using

quartz plates as retardation material it is easy to calculate
that the thickness of the wave plate operating the trans-
formation should be equal to 1.585 mm or 3.464 mm. The
theoretical estimated fidelity is more than 0.998, the dif-
ference from unit is related to the imperfection of phase
transformation for two photons simultaneously.

Since the result of transformation is extremely sensi-
tive to small variations of thickness, we suggest to use the
following method to achieve the desired thickness. Two
quarts plates with different thicknesses and with orthogo-
nally oriented optical axes correspond to the action of the
quartz wave plate with an effective thickness, equal the
difference of the thicknesses of two plates. If then one can
tilt these wave plates towards each other by a finite angle
β, then the optical thickness of the effective wave plate
formed by QP2 will change, and, at a certain value of β,
the desired transformation will be achieved. Ultimately,
non-polarizing beamsplitter (BS) mixes the states from
the upper and bottom arms of non-balanced interferome-
ter and, as a result, prepares the initial state ρAB.

The local projective measurements at a variable an-
gle are realized in the (blue) block in Fig. 6. According
to Eq. (19) they are implemented only over one of the
photon of the pair, so a dichroic beamsplitter (DBS) sep-
arates photons with different frequencies into the two spa-
tial modes. In the upper spatial mode a half-wave plate
(HWPλ2

) is oriented at the angle θ̃ [θ̃ = θ/4 is the angle
between the input polarization and the wave plate fast
axis, θ is the polar angle in the transformation (16)] and
a couple of polarizing beam splitters (PBS), forming a
non-balanced interferometer, perform two orthogonal pro-
jections at different angles. To obtain the statistical mix-
ture (19) the length difference between the arms of non-
balanced interferometer must be larger then the coherence



8 E. V. Moreva et al.: Quantum correlation regions with the variable optimal measurement angle

length of the photons with orthogonal polarization, which
for the selected wavelength (λ2) and a full width at half
maximum (FWHM) δλ = 3 nm of the interference filter
IF2 equals λ2/δλ ≈ 140 µm.

After the non-selective projective measurement the state
was sent to the reconstruction block of the setup (the third
(yellow) block in Fig. 6). The post-measured quantity of

the entropy (18) at varying angle θ̃ was numerically calcu-
lated through the density matrices of post-measurement
state ρ̃AB using quantum tomography protocols [46]. The
projective measurements in each arm to perform the quan-
tum state tomography can be realized by means of a polar-
ization filtering system consisting of a sequence of quarter-
and half-wave plates, followed by a polarization prism,
which transmits vertical polarization (V ). The detection
is operated by taking advantage of silicon single-photon
avalanche detectors (SPAD). In the case of independent
measurement of two qubits the projective measurements
can be chosen arbitrarily. We propose quantum state to-
mography protocol, where projections on the states pos-
sess tetrahedral symmetry [47]. There are several works
showing that due to the high symmetry such protocol pro-
vides a better quality of reconstruction [47,48,49]. As al-
ternative, adaptive quantum tomography protocols can be
used: in fact, despite these require more complex analysis,
they guarantee at the same time the highest quality of
state reconstruction [50,51].

3.2 Numerical simulations

According to the theory, the region with the variable op-
timal measurement angle is narrow and therefore requires
precise quantum state preparation and reconstruction. It
is worth to stress that the standard procedure of the state
reconstruction from the likelihood equation associates with
finite statistics of the registered outcomes (sample size) of
an experiment and therefore takes random values [46,52].
For the state ρAB we can calculate the statistical distri-
bution of fidelity F for the given sample size.

Usually the quantum tomography protocol can be de-
fined by a so-called instrumental matrix X that has m
rows and s columns [53,54,55], where s is the Hilbert space
dimension and m the number of projections in such space.
For every row, i.e. for every projection, there is a corre-
sponding amplitude Mj . This matrix equals:

Mj = Xjlcl (j = 1, 2, ...,m; l = 1, 2, ..., s), (29)

where cl are the expansion coefficients.
The square of the absolute value of the amplitude de-

fines the intensity of a process, which is the number of
events in one second

λj = |Mj |2. (30)

The number of registered events kj is a random variable
exhibiting Poisson distribution, tj is the time of exposition
of the selected row of the protocol and λjtj the average
value,

P (kj) =
(λjtj)

kj

kj !
exp(−λjtj). (31)

Fig. 7. The universal statistical fidelity loss histogram dis-
tribution for 500 numerical experiments. Sample size of each
experiment is 105

The normalization condition for the protocol defines the
total expected number of events n summarized by all rows:

m
∑

j=1

λjtj = n. (32)

Equation (32) substitutes the traditional normalization
condition for the density matrices, tr(ρ) = 1.

The fidelity achieved now by experimenters has the
values F ≥ 99.8% for the given optical states (9) [38,
43,44], that is why in the numerical experiments test-
ing the universal statistical distribution for fidelity losses
we used statistics that guarantees the same fidelity: we
numerically generated sets of experimental data and re-
constructed 500 states ρAB (q = 0.6155) with sample
size around n = 105 for each state, obtained by per-
forming the maximum-likelihood estimation on random
variables of the measured counts according to Poissonian
statistics. The estimated average fidelity with absolute
error is F = 0.998 ± 0.02. The fluctuations of F can
be formally taken into account by introducing the so-
called loss of fidelity 1− F , which is associated only with
statistical errors and does not take into account experi-
mental imperfections.We can also introduce the variable
z = − log10(1 − F ), which is the number of digit 9 in the
decimal representation of the parameter F (e.g., z = 3
corresponds to F = 0.999). Figure 7 shows the universal
statistical fidelity loss histogram distribution for 500 sim-
ulated states ρAB. The form of the distribution besides
sample size depends on the initial state and the used pro-
tocol of quantum state reconstruction. In our simulation
the tomography protocol based on the states possessing
tetrahedral symmetry had been used [47].

For the same sample size we estimated numerically the
post-measured entropy for the best observed interior min-
imum at the point q = 0.6155. For each angle θ̃, which



E. V. Moreva et al.: Quantum correlation regions with the variable optimal measurement angle 9

Fig. 8. Post-measurement entropy S̃ vs θ̃ by q = 0.6155 for
100 numerical experiments. Squares are mean values S̃, bars
are standard deviations. Sample size of each experiment is 105.
It is clearly seen a minimum of S̃(θ̃) near the angle θ̃ = 10◦,
that is in good agreement with the theoretical prediction shown
in Fig. 4

varies from 0◦ to 22◦ (with step 1◦), a set of 100 den-
sity matrices of ρ̃AB was generated, then eigenvalues were
calculated and finally the mean values together with stan-
dard deviations of the post-measured entropy S̃ were es-
timated. The dependence S̃ on θ̃ is plotted on Fig. 8. The
graph shows that with a good experimental accuracy, it
is possible to observe the region with the variable opti-
mal measurement angle taking advantage of the proposed
setup, even if the corrections to the post-measurement en-
tropy values are small (in the order of 0.9% or less).

4 Conclusion

In this work we have found the specific quantum state (9)
with the record wide region of variable optimal measure-
ment angle, presented for it the detailed calculations of
entropy after measurement and hence of one-way deficit,
and performed the numerical simulation of the proposed
experiment.

The described experimental setup opens a possibil-
ity to construct universal facilities allowing to measure
the one-way deficit of any symmetric (up to local uni-
tary transformation) two-photon quantum states. More-
over, we have considered in detail the preparation of two-
component mixture of quantum states which, according to
the theory, contains a fraction with the variable optimal
measurement angle.

The performed numerical simulations show that the
available experimental techniques allows one to investigate
a fine structure of quantum correlation domain including
the region with the variable optimal measurement angle
and opens a way to implement the real physical experi-
ment to study the one-way deficit behavior.
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