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Single phase and correlated phase estimation with multi-photon annihilated squeezed
vacuum states: An energy balancing scenario

N. Samantaray,1, ∗ I. Ruo-Berchera,2 and I.P. Degiovanni2, 3
1Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department

of Electrical and Electronic Engineering, University of Bristol, BS8 1FD, UK
2INRIM, Strada delle Cacce 91, I-10135 Torino, Italy

3INFN, via P. Giuria 1, I-10125 Torino, Italy

In the last years, several works have demonstrated the advantage of photon subtracted Gaus-
sian states for various quantum optics and information protocols. In most of these works, it was
not clearly investigated the relation between the advantages and the usual increasing energy of the
quantum state related to photon subtraction. In this paper, we study the performance of an in-
terferometer injected with multi photon annihilated squeezed vacuum states mixed with coherent
states for both single and correlated phase estimation. For single phase estimation, albeit the use
of multi-photon annihilated squeezed vacuum states at low mean photons per mode provide advan-
tage compared to classical strategy, when the total input energies is held fixed, the advantage due
to photon subtraction is completely lost. However, for the correlated case in analogous scenario,
some advantage appears to come from both the energy rise and improvement in photon statistics.
In particular quantum enhanced sensitivity with photon subtracted states appears more robust to
losses, showing an advantage of about 30% with respect to squeezed vacuum state in case of realistic
value of the detection efficiency.

I. INTRODUCTION

Non-Gaussian states have been recognized as a valu-
able resources for many quantum information process-
ing protocols [1], for example to enhance the fidelity of
quantum teleportation [2–5], improving secret key rate in
quantum key distribution [6, 7], and in quantum cloning
of coherent states [8]. These exotic states are required
in Gaussian entanglement distillation [9–11], error cor-
rection [12], noiseless amplification [13, 14], and funda-
mental loop-hole free Bell tests in continuous variables
[15, 16]. More recently, resource theories quantifying the
importance of Wigner negativity and non-Gaussianity for
continuous variable quantum computation have been re-
ported [17, 18]. Because of higher potential distinguisha-
bility of non-Gaussian states from their original Gaussian
states, they have been proven useful for more precise pa-
rameter estimation in quantum optics [19, 20]. Photon
addition or photon subtraction can transform a Gaus-
sian in a non-Gaussian state [21–23]. Tara and Agar-
wal [24] were the first to propose the transformation of
a classical like coherent state into a non-classical state
through photon addition and this operation was experi-
mentally implemented for the first time on coherent and
thermal state in [25, 26]. Furthermore, photon addition
and subtraction have been reported to enhance the en-
tanglement in two mode squeezed vacuum state (TSV)
[27–29]. It is well known that each mode of the TSV
has super-poissonian photon statistics. In the experi-
mental work[30], it has been reported that multi-photon
subtraction makes the TSV less noisy and helps in shift-
ing the most probable distribution to higher mean pho-
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ton number, thereby it increases the mean energy of
the resulting state. In the last years, photon subtracted
TSV states have been theoretically investigated for other
applications, e.g. in [31] these states were proved to
be advantageous with respect to TSVs for target de-
tection in noisy environment, a scheme dubbed "quan-
tum illumination" [32, 33]. Their advantage has also
been demonstrated in single interferometry with parity
measurements[20, 34, 35].

Since the seminal Caves work [36], it is well known that
single mode squeezed vacuum (SSV) mixed with intense
coherent state provides substantial advantage in practical
phase estimation and very recently that scheme has been
applied by LIGO and VIRGO collaborations to further
improve the sensitivity of gravitational waves detectors
[37, 38]. It has also been shown that squeezed vacuum
mixed with a intense coherent beam allow to approach
the optimal sensitivity achievable by a linear interferome-
ter operated with large photon number and non negligible
losses [39]. In that context, single photon subtracted SSV
brings advantage in phase estimation and allow reaching
Heisenberg’s limit (HL) [40]. In that case [40], the mean
energy increasing of the photon subtracted state has been
compensated by a reduction of the coherent beam en-
ergy in order to keep constant the total input photon
number. Photon subtracted SSV mixed with coherent
states lead to improved phase shift sensitivity in parity
measurement [34]. In this work, because of non-linear
increase of mean number of photons with the number of
subtracted photons, the total average number of photons
is fixed by choosing fixed squeezing parameter and in-
creased coherent energy. This approach is little different
than the energy balancing scenario reported in [40].

However, in most of the literature with some excep-
tion that we will point out later [20, 41], it was not
clear whether the advantages come from energy shifts

ar
X

iv
:1

80
9.

10
70

6v
4 

 [
qu

an
t-

ph
] 

 2
8 

A
ug

 2
02

0

mailto:Email: ns17363@bristol.ac.uk


2

of the photon subtracted states, or from their poten-
tially improved photon noise properties. In fact, most
of the time, the comparison between the performance of
Gaussian quantum states and the correspondent photon
subtracted states has been considered at fixed squeezed
parameter, that means generally that the energy put into
the quantum resource is not fixed. Photon subtraction is
a complex operation that can be experimentally realized
probabilistically or with low efficiency [42]. So, if the ad-
vantage comes mainly from the increased energy, it can
practically more convenient to increase the squeezing pa-
rameter of the Gaussian state, rather than performing
photon subtraction. This is the reason why we consider
of great importance understanding if the advantage re-
lies solely on increase of the energy, or there are more
fundamental reasons that justify operation such as pho-
ton subtraction. Answering to this question is the main
motivation of this paper.

Specifically, given the importance for practical inter-
ferometry [39], here we study in detail multi-photon sub-
tracted single mode and two mode squeezed vacuum state
for single phase and correlated phase estimation respec-
tively by combining them with coherent states on a beam
splitters. On one side, we show that a multi-photon
subtracted (one-) two-mode squeezed states is formally
equivalent to a state obtained by a (one-) two- mode
squeezing operator applied to a certain class of finite su-
perposition states in the photon number basis. This class
of states have been investigated earlier [43, 44] and they
show quadrature squeezing their-self. One could expect
that this initial squeezing could bring benefit in phase es-
timation. We have therefore investigated this possibility.

In order to properly understand the origin of the im-
provement in phase measurement uncertainties if any, we
think that the proper procedure requires that the total
energy should be fixed by balancing the energies of the
subtracted and un-subtracted states keeping the coher-
ent pump energy constant. We will consider this energy
balancing condition for both single and correlated phase
estimations. Similar analysis has been done in [20], where
an advantage in phase estimation with parity measure-
ment at fixed energy has been reported, but that scheme
does not involve the mixing with a coherent state, and
parity measurement is quite far from realistic applica-
tions. In [41], while a precise comparison with two-mode
squeezed states with the same energy has not been car-
ried out they showed that the larger is the "affinity" of
a non-Gaussian state with a two-mode squeezed vacuum
(with larger energy), the larger is the teleportation fi-
delity.

This paper is organized as follows. In Sec. II, we will
introduce multi-photon annihilated single mode squeezed
vacuum (PASSV), discussing their properties and their
usefulness, for single phase estimation by the conven-
tional measurement strategy IIA and in the more gen-
eral framework of the fisher information II B. In Sec. III,
we will describe multi-photon symmetrically annihilated
two mode squeezed vacuum (SPATSV) state. In par-

ticular, in section IIIA, we will analyze squeezing and
photon statistical properties of SPATSV. In section III B
we study the problem of correlated phase estimation. We
present results up to four and three photons subtraction
for single and correlated phase estimations respectively.
Finally, we will summarize and discuss the main results
in Sec. IV.

II. PASSVS

PASSV states are defined as:

|Ψ(m)
PASSV 〉 = Nm

− (λ)âmŜ(λeiχ)|0〉, (1)

where Ŝ(reiχ) = ere
iχa2−h.c. is the single mode squeezing

operator, r being the squeezing parameter and χ is the
squeezing angle. The squeezing operator applied to the
vacuum state originates SSV with energy (mean num-
ber of photon) equal to with λ = sinh2 r. The number
of subtracted photon is m, obtained by m consecutive
action of the annihilation operator â. Since the photon
subtraction is not a unitary operation, it is necessary to
introduce the normalization constant Nm

− (λ). Its explicit
form is Nm

− (λ) = m!(−i
√
λ)mPm(i

√
λ) [45], with Pm be-

ing the m-th order Legendre’s polynomial. A known ef-
fect of the photon subtraction is the increasing of the
mean energy of the state. This is intuitively explained
because it is more likely to subtract a photon from a
highly populated state corresponding to a selection of
the more energetic components of the state. For exam-
ple, the mean photon number of PASSV state Nm(λ),
for m = 0 − 3 which correspond to zero, one, two and
three photon subtraction from the SSV state, becomes
N0 = λ, N1 = 3λ + 1, N2 = 3λ(3 + 5λ)/(1 + 3λ), and
N3 = (3 + 30λ+ 35λ2)/(3 + 5λ) respectively.

We have found a new representation for PASSV
states (exploiting integration within an ordered product
(IWOP) technique [46]) which is equivalent to seeding
squeezing operator with photon number superposition
state |Θs

m(λ, χ)〉 in input as follows:

|Ψ(m)
PASSV 〉 = Ŝ|Θs

m(λ, χ)〉,

|Θs
m(λ, χ)〉 = Nm

− (λ)m!
(
eiχ
√
λ
)m
× (2)

[m/2]∑
l=0

1

l!
√

(m− 2l)!

(
e−iχ

2

√
1 + λ

λ

)l
|m− 2l〉,

where the upper bound of the summation [m/2] stand
for the integer part of m/2. Without any loss of gener-
ality, hereinafter we set the squeezing angle to χ = 0.
For m = 0, the input simplifies to vacuum state as ex-
pected. For m = 1, it becomes a single photon state
as reported in [40]. Note that, for other values of m, it
becomes a (m+ 1)/2 components superposition state for
odd m, and a (m+ 2)/2 components superposition state
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for even m. The energy increasing with m of the PASSV
state can now be understood in terms of increasing of
the mean number of photons of the seeding states. The

Figure 1. (Color online) Quadrature squeezing of PASSV
states and phase measurement uncertainty at working point
φ = π/2 with µ = 100, η = 0.98, and ψ = 0 for different num-
ber of photon subtraction m: m = 0 (solid red line), m = 1
(solid black line), m = 2 ( solid yellow line), m = 3 (solid cyan
line), and m = 4 (solid green line). Dashed lines represents
the coherent state: (a.) quadrature squeezing, (b.) phase
uncertainty, and (c.) phase measurement as per balancing
condition.

states |Θs
m(λ, χ)〉 are known to show quadrature squeez-

ing [43, 44], even though they can not be obtained by
any unitary transformation on vacuum state, like stan-
dard squeezed state. However, these states do not always
have lower quadrature noise compared to vacuum state.
In particular, for m = 1, the state |Θs

1(λ, χ)〉 is a sin-
gle photon state having more quadrature noise than the
vacuum state. We checked for subsequent odd values of
m, although the quadrature noise of the seeding states
decrease with respect to single photon state, its value
still remain above the vacuum noise. This can be ap-
preciated in Fig 1a, when considering small value of the
squeezing parameter that actually means Ŝ ≈ I, with I
the identity operator. In fact, in Fig 1 we plot the vari-
ance of the quadrature Ŷ =

(
â− â†

)
/i
√

2 of the PASSV
states in Eq. (2). In general, we observe that for odd
values of m the quadrature noise of the PASSV state is

worse than the one of the SSV (corresponding to PASSV
with m = 0), while for even values of m the quadrature
noise is better than SSV for low value of λ. Detectors are
not ideal in realistic scenarios. The effect of a non-unit
quantum efficiency η can be modelled as the evolution of
the input field passing through a beam splitter (BS) with
transmission equal to η, while the other free port of the
BS is in vacuum state[49]. This approach has been used
throughout the paper to account for the optical/detection
losses.

In the next subsection, we will discuss the performance
of PASSV states in phase estimation in connection to the
quadrature squeezing.

A. Single phase estimation with PASSV states

Let us consider the Mach Zehnder interferometer
(MZI) sketched in Fig.2, where one ports of the first
beam splitter is injected with coherent light and the other
port with a PASSV state. Thus, the total input state is
|Ψ(m)
PASSV 〉1 ⊗ |α〉2, with α = |α|eiψ, where |α| (µ = |α|2)

and ψ are the amplitude, the mean photon number and
the phase of the coherent pump respectively.

Figure 2. Schematic of mixing single mode squeezed vacuum
and coherent state in MachZehnder interferometer for phase
estimation φ.

The uncertainty in measuring the phase φ, in the con-
figuration of Fig.2, is expressed by

U(φ) =

√
∆2ô

| ∂ô∂φ |
, (3)

where ô is the photon number difference operator at
the output port of the interferometer and ∆2ô is its
variance. For zero-mean quadrature field such as SSV,
〈ô〉 = (µ− λ) cos(φ). For SSV, it can be shown that the
lowest uncertainty is reached for φ = π/2 and in the limit
of λ � µ, the uncertainty is shot-noise limited, scaling
as λ−1/2. Whereas in case of λ � µ, the uncertainty is
U(φ) =

(
∆2Xθ=ψ+π

2
/µ
)1/2, proportional to the noise of

the rotated quadrature X̂θ=ψ+π
2

=
(
âe−iθ + â†eiθ

)
/
√

2.
In our case and for the choice of ψ = 0, the sub-shot noise
sensitivity is related to the squeezing of the Xπ

2
≡ Y

quadrature. For the sake of completeness we mention
that for a more specific repartition of the total energy
(µ + λ) between squeezing and coherent input states, a
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more efficient scaling of the uncertainty with can be in
principle achieved (∝ (µ+λ)−3/4) [47], and different more
sophisticated detection scheme could allow to approach
the Heisenberg limit (ideal decoherence-free scenario) [48]

We have derived analytically the uncertainty on the
phase estimation according to Eq. 3, when PASSV states
are injected. The results are shown graphically in Fig1 b,
compared with the shot-noise limit (SNL) at equivalent
total energy (dotted lines). The last is obtained consider-
ing the performance of a coherent state with mean num-
ber of photon equal to the sum of µ and the mean number
of photons of the PASSV state which varies with m. It is
easy to check that for PASSV the uncertainty always ap-
proach asymptotically the SNL when λ� µ. For λ� µ,
the uncertainty is basically determined by the variance
of the Y quadrature, reported in Fig1 a, as expected. In-
deed the advantage over the SNL is present only in the
region of quadrature squeezing, and PASSV(m > 0) per-
forms better than SSV only for even m. However we are
going to show that this apparent improvement is only
due to the energy increasing of the state due to photon
subtraction. For that purpose, we have renormalized the
energy of the initial SSV state before the photon sub-
traction, so that the mean number of photon of the sub-
tracted states (m = 0−4) are all equal to λ. In this way,
also the total input energies to the interferometer is fixed
to Ntot = µ+λ. With the energy balancing, SSV outper-
forms PASSV regardless of the values of λ, as presented
in Fig1c. The diverging behaviour of uncertainty in Fig.1

Figure 3. (Color online) Phase measurement uncertainty
in energy balancing scenario for φ 6= π/2 ≈ π/2 − 1 with
µ = 10000, and η = 0.98 for different number of photon sub-
traction m: m = 0 (solid red line), m = 1 (solid black line),
m = 2 ( solid yellow line), m = 3 (solid cyan line), and m = 4
(solid green line). Dotted line is the classical strategy.

b-c for λ = 100 comes from the singularity in the denom-
inator of Eq.3 that is when the mean number of photons
of the PASSV state equals the one of the coherent state,
i.e. Nm(λ) = µ. Because of energy increment as a re-
sult of photon subtraction, relatively lower value of λ is
required for fulfilling the singularity condition as evident
from Fig1 b. Incidentally, we have observed that far from
the optimal working point π/2, PASSV can still provide
some advantage, even under energy balancing conditions

as shown in Fig. 3, anyway without surpassing the sen-
sitivity obtained by SSV in the optimal point. Typically,
this happens from value of λ in a middle range (namely
from µ/ 100 <λ < µ/10).

Next we will see the advantage if any in QFI perspec-
tive.

B. Quantum fisher information

Quantum Fisher information (QFI), FQ, can be used to
identify the lower uncertainty attainable in a parameter
estimation problem according to the expression

U(φ) ≥ 1√
FQ(φ)

. (4)

For class of pure states [47], QFI takes the following com-
pact form

FQ(φ) = 4〈(∆Ĥ)2〉|ψ〉1,2 , (5)

where Ĥ is the generator of the unitary transformation
associated with the parameter φ, i.e Û(φ) = eiĤφ and
|ψ〉1,2 being the input states injected into the interfer-
ometer. In the case of the MZI of Fig.2, the gener-
ator is the photon number operator n̂3 = â†3â3 where
â3 = (â1+â2)/

√
2. As per Eq. (5), we shall evaluate QFI

by considering PASSVs and coherent state injected into
the interferometer. The complete expressions of QFI are
cumbersome: graphical representation can help to under-
stand its peculiar features. Specifically, Fig.4(a) shows a
general increasing of the QFI for PASSVs at the increas-
ing of m, for both low and high values of λ, i.e. photon
subtraction is always advantageous with respect to best
classical strategies (dotted line). This advantage in QFI
due to photon subtraction anyway can be due to the in-
crease of the mean number of photons of the input state.
Indeed, for energy balancing condition, the advantage is
completely lost as evident from Fig.4(b) and also from
the expression of QFI in the limit Ntot →∞ (at a finite
fixed coherent energy) reported here:

FQ(m=0) = 2N2
Tot, (6)

FQ(m=1) =
2N2

Tot

3
,

FQ(m=2) =
2N2

Tot

5
,

FQ(m=3) =
2N2

Tot

7

FQ(m=4) =
2N2

Tot

9
.

This confirms that the advantage in phase parameter
estimation in a MZI provided by photon subtracted of
squeezed state is exclusively due to the increasing in the
energy of the field. Using a simple SSV state with the
same energy provides similar sensitivity.



5

Figure 4. (Color online) Quantum fisher information versus
mean number of photon λ with µ = 100 for different number
of photon subtraction m: m = 0 (solid red line), m = 1 (solid
black line), m = 2 ( solid yellow line), m = 3 (solid cyan line),
and m = 4 (solid green line). Dotted line represents classical
bound obtained when only a coherent state with the same
total energy (λ+ µ) is in input: (a.) without energy balance
(b.) balanced condition.

III. SPATSV STATES

Starting from the definition of the TSV as the two
mode squeezing operator Ŝ1,2

(
r12e

iχ
)

= er12e
iχa1a2−h.c.

applied to the vacuum, the SPATSV can be obtained by
the non Hermitian operation represented as

|Ψ(m)
SPATSV 〉1,2 = N−m (λ) (â1)m(â2)mŜ1,2|0, 0〉1,2, (7)

where N−m is the normalization constant, λ = sinh2 r12
is the mean energy (mean photon number) per mode for
the TSV, χ is squeezing angle and m is the number of
subtracted photons. It is possible to express the state in
Fock basis as follows

|Ψ(m)
SPATSV 〉 =

N−m (λ)√
1 + λ

∞∑
n=0

(
λeiχ

1 + λ

)n+m
2 (n+m)!

n!
|n, n〉1,2.

(8)
The normalization constant is of the form N−m (λ) =[
(m!)

2
λmPm (2λ+ 1)

]−1/2
, where Pm is the m-th or-

der Legendre’s polynomial. Furthermore, using squeezed
transformation of mode operators aj (and IWOP tech-
nique [46]) it is possible to generate the state in eq (7)
by applying squeezing operator to a m + 1 components
superposition of photon number states, |Θm(λ, χ)〉1,2, as
it follows:

|Ψ(m)
SPATSV 〉1,2 = ˆS1,2|Θm(λ, χ)〉1,2, (9)

where

|Θm(λ, χ)〉1,2 =

m∑
k=0

Cmk (λ, χ)|k, k〉1,2, (10)

and

Cmk (λ, χ) = eiχm

√
(1 + λ)m

Pm(2λ+ 1)
× (11)

×eiχk
(
m

k

)(√
λ

λ+ 1

)k

with
∑
k |Cmk (λ, χ)|2 = 1. Interestingly, |Θm(λ, χ)〉1,2

is similar to a truncated TSV up to the components with
k ≤ m. As it can be seen by a careful inspection of
Cmk (λ, χ), they differs only by a binomial coefficient and a
normalization factor. For m = 0 the state |Ψ(0)

SPATSV 〉1,2
coincides obviously with TSV. For m = 1, namely one
photon subtraction, the corresponding normalized two
components photon number superposition state is

|Θ1(λ, χ)〉1,2 =
1√

2λ+ 1

(√
1 + λ|0, 0〉+ eiχ

√
λ|1, 1〉

)
.

(12)
This superposition state is entangled for non-zero value
of λ and resembles to the state [41], and for λ >> 1 it
becomes asymptotically a maximally entangled state. In
general, Eq.s (9),(10) and (11) suggest that a SPATSV
state can be generated by seeding the input modes of a
non-linear two-mode-squeezing interaction by an oppor-
tune superposition state in the photon number basis, see
Fig. 5 b. This, represent an alternative way to generate
the photon subtracted states in contrast to common ap-
proach depicted Fig. 5 a, consisting in a post selection
of the state, conditioned to double click events at the de-
tectors placed in the two arms, experimentally realized
through unbalanced beam splitter (BS).

A. Squeezing properties and photon statistics of
the SPATSV state

Analogously to what has been already discussed in Sec.
II for single mode states [43, 44], also two mode superpo-
sition states |Θ(λ, χ)〉m are squeezed in the quadrature
difference even though they do not minimize the uncer-
tainty principle. The maximum squeezing in reached for

X̂−χ = X̂1,χ − X̂2,χ (13)

where X̂j,χ = (âje
−iχ + â†je

iχ)/
√

2 is the quadratures
of the j-th individual input modes. This is reported in
Fig. 6 (a). Note that, form ≥ 1 non-classical correlations
are always present, becoming stronger at the increasing
of m in the region of small λ. When m ≥ 2 the squeezing
level overcomes the TSV limit (dotted purple line). The
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Figure 5. Generation scheme for SPATSV state with sym-
metric photon subtraction of one photon m = 1:(a) Proba-
bilistic process by two beam splitter of high transmittance
T1 = T2 ≈ 1 placed in two arms of the PDC source. Simulta-
neous clicks on the two single photon detectors confirms the
generation of SPATSV. (b) Alternative approach to the gen-
eration of SPATSV consists in injecting seeding state of the
general form in Eq. (10) into the non-linear crystal (NL), in
particular the one reported in Eq. (12) for the case m = 1.

quadrature noise behavior of the seeding state has a di-
rect effect on the squeezing properties of the SPATSV as
shown in Fig. 6(b), basically leading to a further noise
reduction especially for λ < 1 with respect to the TSV
state. This effect is not trivially related to an energy shift
and it can bring beneficial when using SPATSV state for
specific interferometric schemes, as studied in Sec. III B.

Aside quadrature squeezing, other statistical proper-
ties of the field can be improved in terms of noise reduc-
tion and turned to non-classical regime by the photon
subtraction operation. Indeed, by post-selecting on the
components of the state with at least one photon, induces
a shrinking of the photon-number distribution because of
the elimination of the vacuum-component. On one side
it leads to a shift to an higher value of the mean photon
number per mode Lm(λ) ≥ λ, as showed in Fig. 7. On
the other side it induces a sub-shot noise behavior in each
of the two modes.

Non-classicality in the photon number statistics is usu-
ally described by the Mandels Q parameter [49]:

Q =
V ar(N̂)− 〈N̂〉

〈N̂〉
, (14)

where N̂ = â†â is the photon number operator. For
classical light Mandel parameter is bouded by Q ≥ 0.
It is worth noting that the individual modes of TSV
have thermal statistics but, once we apply the subtrac-
tion operation with m > 1 they become non classical for
low mean photons number, as evident from the negative
value of Mandel’s parameter reported in Fig. 8. This
non-classical behavior induced by photon subtraction is
clearly not related to an energy shift of the single mode
(which would conserve a thermal statistics), rather it is

Figure 6. (Color online) Non-classical amplitude quadrature
correlation (0.5 is the classical bound) versus λ for different
number of photon subtraction m: m = 0 (solid red line),
m = 1 (solid black line), m = 2 ( solid orange line), and
m = 3 (solid green line). We lavel a) for superposition state
|Θm(λ, χ)〉1,2, except the dotted curve which corresponds to
TSV and b) for the photon subtracted SPATSV state.

a more fundamental uncertainty reduction of the photon
number distribution.

B. Correlated phase estimation with SPASTV
states

The interferometry system we will consider in this sec-
tion is presented in Fig.9. It is composed by two linear
interferometers, for instance a pair of MZIs in the figure,
whose photo-currents at the read-out ports are jointly
measured. This is an elegant and powerful scheme in the
detection of extremely faint phase signals whose magni-
tude can be much smaller than other sources of noise,
including the shot noise. The advantage of this scheme
comes from the fact that the same signal shared by the
two interferometers, even if hidden in the noise in the sin-
gle device, can emerges by correlating their outputs. This
strategy has been already considered in several highly de-
manding applications, in general related to the research
of stochastic fundamental backgrounds, such as gravi-
tational wave background [50–53] and quantum gravity
effects at the Plank scale [54, 55].

The advantage of using quantum state of light in such
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Figure 7. (Color online) 3D plots showing joint photon num-
ber distribution in SPASTV state. j and k are the photon
number in the mode "1" and "2", respectively. The param-
eters value chosen are λ = 0.6, (a) m = 0, (b) m = 1, (c)
m = 3.

Figure 8. (Color online) Mandels Q of the SPATSV state
in function of the mean photon number per mode (λ) for
different number of photon subtraction m: m = 0 (solid red
line), m = 1 (solid black line), m = 2 ( solid orange line), and
m = 3 (solid green line). Here, we have chosen η = 0.98

a configuration has been analyzed in ref. [56, 57]. It
has been shown that injection of quantum state of light
in the classically unused input ports (labeled as 1 and 2
in Fig. 9), either as two independent squeezed states or
as a TSV allow to achieve better sensitivities. In case
of TSV, for specific working conditions, i.e. very close
to the dark fringes and for high quantum efficiency, the
quantum advantage is dramatic even with respect to the
double squeezing. Here our purpose is to investigate if
and to what extent photon subtracted TVS allows to
obtain better performance in virtue of their improved
non-classical properties discussed in Sec. III A.

Figure 9. Correlated interferometric scheme: The modes of
the bipartite input state |ψ〉 are mixed with two identical co-
herent states |α〉 = |µeiψ〉 in two interferometers I1(φ1) and
I2(φ2). A joint detection is performed and the observable
Ĉ(φ1, φ2) is measured.The losses are accounted by consider-
ing two identical detectors in both channels with the same
quantum efficiency, i.e, η5 = η7 = η

1. Noise reduction factor at the read-out ports

Let start considering the correlation properties of the
read-out signals at the output ports (labeled as 5 and 7
in Fig. 9). In particular we are interested into photo-
current subtraction, proportional to the photon number
difference N̂5 − N̂7.

Figure 10. (Color online) Noise reduction factor at the output
ports 5 and 7 of the interferometers in function of the trans-
mittance parameter 1 − τ = sin2 φ/2 for different number of
photon subtraction m: m = 0 (red line), m = 1 (black line),
and m = 2 (orange line). Solid thick lines are for λ = 0.05,
dashed lines stand for λ = 2. Asymptotic limits for λ� 1 and
for λ � 1 (m = 0) are the dotted and the dot-dashed lines,
respectively. The other parameters are: η = 1, ψ = π/2,
µ = 106.

Here we consider the noise reduction factor, a standard
measure of non-classical correlation for a bipartite state
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defined as [58]

NRF =
〈∆2

(
N̂5 − N̂7

)
〉

〈N̂5〉+ 〈N̂7〉
(15)

The numerator is the variance of photon number differ-
ence and the denominator represents the standard quan-
tum limit. Thus, NRF < 1 indicates non-classical cor-
relation. It is convenient to introduce the factor τ =
cos2(φ/2), representing the fraction of the power at the
input port 1(2), transmitted to the read-out port 5(7).
Consequently, 1− τ is the equivalent loss experienced by
the quantum modes due to the interference fringe po-
sition and, at the same time, the fraction of coherent
power injected in ports 3(4) and transmitted to the out-
put port 5(7). The NRF has been evaluate analytically,
and reported in Fig. 10 as a function of 1 − τ . In order
to analyze its behavior let us distinguish between two
regimes. When the output signal is dominated by pho-
ton coming from coherent beam, i.e Lm(λ)τ � µ(1− τ)
(we remind Lm(λ) is the SPATSV mean photon number),
each interferometer acts similarly to a homodyne detec-
tors. This represents the typical working condition, since
usually the coherent beam is order of magnitude brighter
than the quantum light, and corresponds roughly to the
region 1 − τ > 10−4 in Fig. 10. In this case, the differ-
ence in the photon number at the output ports 5 and 7
becomes approximatively proportional to the difference
between the quadrature of the input modes at the ports
1 and 2:

N̂5 − N̂7 ∝
√
µ

2
sin(φ)X̂−θ=ψ+π/2 (16)

where ψ can be chosen to match the angle of the squeezed
quadrature difference in Eq. (13), in particular ψ = χ−
π/2. Therefore, the non-classical correlation of the input
state reported in Fig. 6 b, immediately traduces in the
non-classical properties of the NRF. In particular, for
λ � 1 the NRF is well approximated by NRFm(λ) ≈
1 − τ + τ/(4λ) (dashed line in Fig. 10) for all number
of subtracted photon m (for 1 − τ > 10−4 ); Also, for
λ � 1, i.e. when quadrature squeezing of the SPATSV
states increases with the number of subtracted photons,
the NRFs follows the same behaviour, demonstrating the
advantage in using photon subtracted states, as clearly
shown in Fig. 10. Analytically, it can be found that
in this asymptotic limit of λ � 1 the expression of the
NFR at the different orders of photon subtraction can be
approximated as:

NRFm=0 ≈ 1− 2τ
(√

λ− λ
)

(17)

NRFm=1 ≈ 1− 4τ
(√

λ− 2λ
)

(18)

NRFm=2 ≈ 1− 6τ
(√

λ− 3λ
)
, (19)

where the first of these equation is reported in Fig. 10 as
the dotted-dashed line.

In the opposite scenario, when the coherent beam does
not contribute significantly to the outputs and the two
interferometers, i.e. Lmτ � µ(1 − τ), the interferome-
ters can be seen as attenuators with transmission τ of the
input state. The photon number entanglement between
the two modes of the SPATSV input state are then pre-
served at the output ports for τ ∼ 1. Indeed, in the
ideal case of φ = 0(τ = 1) and unit detection efficiency,
the photon number correlation is perfect, independently
on the energy λ of the input quantum state. This ex-
plains the sudden dropping down of the NRF observed
in Fig. 10 for 1 − τ < 10−4. However, the condition
Lmτ � µ(1− τ) is reached for smaller value of τ (higher
value of φ) when the input energy Lm(λ) is larger. So,
reminding that Lm+1(λ) > Lm(λ), if the energy λ of the
TSV before the photon subtraction is fixed, subtracting
more photons makes easier to reach the region in which
entanglement determine a dramatic reduction of the un-
certainty. In the next section we shall show that the
characteristics of the NRF are strictly related with the
sensitivity of the double interferometric set up.

2. Phase correlation estimation

In setup of Fig. 9 rather than the magnitude of phase
noise in the single MZI, the quantity under estimation
is the covariance between the phase fluctuations in two
interferometers. This estimate can be somehow related
to a joint measurement of the read-out signals N5 and
N7. In the limit of faint signal, any joint observable
Ĉ(φ1, φ2) = Ĉ(N5(φ1), N7(φ2)) with local non-null dou-
ble partial derivative ∂2φ1,φ2

C(φ1, φ2), can be exploited
for a phase-noise covariance estimation [57]. Here, the
goal is to investigate whether SPATSV can lead to some
sensitivity advantage with respect to TSV state in that
scheme. The uncertainty in the phase covariance mea-
surement is [56]

U =

√
2 Var

[
Ĉ(φ1, φ2)

]
∣∣∣∂2φ1,φ2

C(φ1, φ2)
∣∣∣ . (20)

A good choice for the joint measurement operator is
Ĉ(φ1, φ2) = (N5(φ1)−N7(φ2))

2
= N2

5 + N2
7 − 2N5N7.

On one side, according to the results on the NRF dis-
cussed in Sec. III B 1, it has fluctuation below the
classical limit. On the other, it satisfies the condition
∂2φ1,φ2

C(φ1, φ2) 6= 0. The classical bound, obtained with
coherent states at ports "3" and "4" and vacuum at the
ports "1" and "2", is given by Ucl =

√
2
(
ηµ cos2[φ/2]

)−1
[57], where we have introduced the detection efficiency
η, assumed to be equal in the two channels. Hereinafter,
we present the uncertainties Um for m-th SPATSV state,
as normalized to the coherent classical limit, namely
Um = Um/Ucl.
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Figure 11. (Color online) Normalized uncertainty as a func-
tion of φ with µ = 1012 for different number of photon sub-
traction m: m = 0 (solid red line), m = 1 (solid black line),
m = 2 ( solid orange line), and m = 3 (solid green line).
Dashed purple line represents two independent squeezed state:
(a.) for λ = 2, η = 0.98 (b.) λ = 0.05, η = 0.98 (c.) energy
balancing scenario for λ = 2, η = 0.96.

Analytical results of uncertainties as a function of the
working central phase φ1 = φ2 = φ are plotted in Fig.11.
Similarly to the case of the NRF analyzed in the previous
section, one can distinguish two different regions; one
laying roughly in the range 10−5 < φ < π (showed up
to φ ≈ 10−3 in figure) and the other for smaller value
of phase, φ << 10−6, separated by a short transient.
The range 10−5 < φ < π corresponds to the situation in
which the mean number of coherent photon at the read-
out ports is much larger than the transmitted SPATSV
photons ( i.e. Lm(λ)τ � µ(1 − τ)). In this case, the
quadrature non-classical correlation of the input modes
are responsible for the read-out signal correlation. To
provide compact expressions we have reported analytical
results in relevant regimes. In the limit of high coherent
power, µ� 1, and low squeezing, λ� 1, one gets:

Um=0 ≈
√

2
[
1− τη

(
2
√
λ− 2λ

)]
(21)

Um=1 ≈
√

2

[
1− τη

(
4
√
λ+

1

2
λ(3ητ − 16)

)]
(22)

Um=2 ≈
√

2

[
1− τη

(
6
√
λ+

9

2
λ(ητ − 4)

)]
(23)

Um=3 ≈
√

2
[
1− τη

(
8
√
λ+ λ(9ητ − 32)

)]
. (24)

Note that these expressions follow the NRF behavior
reported in Eq.s (17,18,19) up to the terms in

√
λ. It

comes out that asymptotically, for λ � 1, there is an
advantage which increases with the number of photon
subtracted m. However, when the asymptotic condition
is not fully fulfilled, i.e. for finite values of the SPATSV
energy Lm(λ), it can happens that at higher values of m
do not always correspond lower uncertainties, as reported
in Fig. 11b in the range φ > 10−5, e.g. for λ = 0.05.
Moreover, Eq.s (21-24) show that the detection efficiency
η plays the same role as the interferometer transmission
τ and both of them should be high enough to ensure a
significant quantum advantage.

In the case of strong squeezing, µ � λ � 1, provided
the condition Lm(λ)τ � µ(1−τ) is still fulfilled, it turns
out that the Um’s respective expressions for different val-
ues of m do not differ much, in fact we have:

Um=0,1,2,3 ≈
√

2
(

1− τη − τη

4λ

)
(25)

Also in this case, some deviation from the asymptotic
behavior can emerge when finite values of the parameters
are considered. For instance the case λ = 2 is reported
Fig. 11a.

The opposite situation, when number of SPATSV pho-
tons are dominant with respect to the coherent ones at
the read-out ports 5 and 7 (Lmτ � µ(1 − τ)), corre-
sponds in Fig.11 to the range φ << 10−6. Perfect pho-
ton number correlation of the SPATSV entangled state
at the input ports 2 and 3 are preserved between N5 and
N7. For µ � 1 (and φ → 0 ) we obtaining the following
asymptotic behavior:

Um=0,1,2,3 ≈
√

2
√

(1− η)/η λ� 1 (26)

Um=0 ≈ 2
√

5(1− η) λ� 1

Um=1 ≈ 2
√

3(1− η)

Um=2 ≈ 2
√

13/5(1− η))

Um=3 ≈ 2
√

17/7(1− η). (27)
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Eq.s (26, 27) shows that in this regime of perfect
photon number correlations the uncertainty reduction is
mainly limited by the detection efficiency. This means
that there exists always a value of the efficiency high
enough to make this regime more advantageous with re-
spect to the one exploiting quadrature correlation. For
example in Fig.11, η = 0.98 guarantees a stronger ad-
vantage for φ << 10−6. Only or λ � 1, the uncertainty
reduction depends on the number of subtracted photons
m. In addition, photon subtraction brings a further im-
provement: the increasing of the energy Lm with m (at
fixed λ) extends the range of validity of photon number
correlation advantage, Lmτ � µ(1 − τ), towards higher
values of φ, as shown in Fig.11.

Figure 12. (Color online) Normalized uncertainty versus the
detection efficiency η with µ = 1012, λ = 2, and φ = 10−8

for different number of photon subtraction m: m = 0 (solid
red line), m = 1 (solid black line), m = 2 ( solid orange line),
and m = 3 (solid green line), (a) without energy balancing
(b) balanced energy condition.

It is relevant to understand whether the uncertainty
reduction observed for SPATSV states can be explained
only in terms of the mean energy increasing due to the
photon subtraction operation, or the advantage comes
from other properties of these states. Also in this case, we
consider the energy balancing approach as in Sec. II A,
where the energies of two mode photon subtracted states
(m = 0, 1, 2, 3) are made equivalent to the energy of TSV,
and we observe that the uncertainty reduction advantage
in the high detection efficiency cases (Fig. 11a-b) almost
disappears (see Fig. 11c). However, in case of realistic
value of the detection efficiency and optical losses, we

observe that the improvement of uncertainty reduction
is still present (Fig. 12). For instance, in this scenario
SPATSV with m = 3 present around 26 % of uncertainty
reduction advantage compared to TSV at a detection ef-
ficiency of 0.8. Thus, the uncertainty reduction obtained
with SPATSV states is, in general, not only due to the
energy shifts, but it also comes from the enhancement in
mode correlation and statistics.

IV. SUMMARY AND CONCLUSIONS

We have studied in detail multi photon subtracted one-
and and two-mode squeezed vacuum state, in relation to
phase estimation in both single and correlated interfer-
ometry. The squeezing of the single mode PASSV state
not necessarily improves with the number of subtracted
photons. In the case of odd number of photon subtrac-
tion, it is definitely worse than SSV, while for even pho-
ton subtraction, it is better than the SSV only for rel-
atively small brightness. The phase estimation uncer-
tainty in a single interferometer reflects this behavior, as
expected. Moreover, by comparing the phase sensitiv-
ity after re-adjusting the energy of the PASSVs to match
the one of SSV, the advantage of the photon subtrac-
tion disappears, at least at the optimal working point of
φ = π/2. For other values of the central operating phase
we have different behavior and in some cases, as shown in
Fig. 3, the advantage of photon subtraction is preserved
even when energies are balanced.

In terms of QFI, we have found improvements with
the number of photon subtraction, but for energy bal-
ancing condition this advantage disappears. However,
Heisenberg limit can be reached for an asymptotically
large number of photons in a lossless interferometer.

We also investigated SPATSV for correlated interfer-
ometry [56, 57]. Usually such SPATSV states are gen-
erated by probabilistic events with low success rate. We
showed analytically how symmetric photon subtraction
from two mode squeezed vacuum is equivalent to the
squeezing of a finite component superposition state, sug-
gesting an alternative way for the generation of SPATSV
states. We found that, these SPATSV states always show
quadrature squeezing and their strength increases with
the number of symmetrical photon subtraction for small
energy of the state. Various statistical properties includ-
ing photon number distribution, Mandel’s Q function,
and noise reduction factor shows higher non-classical
signature of SPATSV with respect to TSV suggesting
its potential advantages in correlated phase estimation.
In fact, concerning the phase correlations measurement
among two interferometers, we observed that SPATSV
are able to achieve a smaller uncertainty than TSV for
an operation point close to the dark fringe (φ ≈ 0). In the
low losses scenario, SPATSV apparently provide substan-
tial advantage in uncertainty reduction with respect to
TVS state, but this is essentially explained by the energy
increasing of the states due to the photon-subtraction. In
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fact, re-normalizing the energies of the SPATSV to the
one of the initial TSV state, the uncertainty reduction is
lost. However, SPATSV conserve an advantage of about
30% with respect to TVS in the high loss scenario and
this can be attributed to their improved statistical prop-
erties.
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