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Abstract 

The ac-Stark shift (also known as the “light shift”) is one of the most important physical 

processes that arises in precision spectroscopy, affecting the basic understanding of field/matter 

interactions, measurements of fundamental constants, and even the atomic clocks onboard GPS 

satellites. Though the theory of the ac-Stark shift was fully developed by the 1960s/70s, 

precision tests of theory have, for the most part, been few. Taking advantage of recent 

developments in atomic clock technology, specifically the pulsed approach to atomic signal 

generation, which allows frequency measurements with a resolution of 10-15, we demonstrate a 

new methodology for measuring the ac-Stark shift. Here, we report results from a precision 

examination of the ac-Stark shift in a vapor phase system, examining the resonant frequency of 

the 87Rb 0-0 hyperfine transition for a perturbing laser tuned over a broad optical frequency 

range (18 GHz) around the D1 absorption resonance. Over the full frequency range the 

agreement between semiclassical theory and experiment is very good (better than 5×10-2), and in 

our experiments we test both the frequency dependence of the scalar and, for the first time, 

tensor components of the light shift.      
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Introduction 

Though arising as a 2nd-order perturbation in the field/atom interaction [1], the ac-Stark 

shift, or “light shift,” is of fundamental importance in much of basic atomic physics.  It has a 

significant effect on multiphoton processes [2]; it plays an important role in sub-Doppler cooling 

for lattice traps [3], and its influence via black-body radiation cannot be ignored in experimental 

realizations of the second [4,5]. Moreover, the ac-Stark shift is fundamentally related to the 

Lamb shift. Specifically, the ac-Stark shift arises from virtual transitions induced by real 

photons, whereas the Lamb shift arises from virtual transitions induced by virtual photons [6]. 

This correspondence between the ac-Stark shift and the Lamb shift was already recognized by 

Kastler in the 1960s [7], and calculations suggest that the distinction between the ac-Stark shift 

and the Lamb shift can begin to blur when atoms interact with fields in a colored vacuum [8].  

From an applied physics perspective, one of the ac-Stark shift’s more significant 

manifestations is via the 0-0 hyperfine transition in optically-pumped alkali-metal vapors, in 

particular the vapor-cell Rb atomic clocks [9] that fly on Global Navigation Satellite System 

(GNSS) spacecraft.  In particular, light-shift induced jumps can be seen (not uncommonly) in the 

frequency of the on-orbit Rb atomic clocks, displaying a fractional frequency magnitude ~ 10-13 

[10], and such frequency jumps are large enough to cause meter-level positioning errors.   

Given the importance of the ac-Stark shift from both a basic and applied physics 

perspective, it is surprising that since its first observation [11] there have been few focused tests 

of theory. To be clear, researchers have investigated aspects of the theory, most notably its linear 

dependence on light intensity [12,13]. Additionally, researchers have made comparisons between 

theory and experiment at specific optical wavelengths far-detuned from resonance [5, 14 ]. 

However, only partial and limited tests have been made on the full optical frequency dependence 
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of the ac-Stark shift near resonance, where photon scattering is strongest and dephasing 

processes cannot be ignored [15,16]. 

  In one of the more detailed tests of the ac-Stark shift, Arditi and Picqué tuned a diode 

laser over the vapor-phase D2 resonance of Cs (i.e., 62S1/2  62P3/2 at 852.1 nm), and measured 

the ac-Stark shift of the optically pumped Cs 0-0 ground-state hyperfine transition as a function 

of perturbing laser frequency (i.e., the “light-shift curve”) [17].  Though the authors obtained 

reasonably good agreement between theory and experiment (i.e., 10% to 15%), there were a 

number of limitations to their work due to the measurement capabilities available in the mid-

1970s.  Perhaps most significantly, the laser that created the ac-Stark perturbation was also the 

laser that optically pumped the Cs atoms.  Thus, not only did the ac-Stark shift vary as the laser 

was tuned across the D2 resonance, but so too did the hyperfine resonance amplitude and quite 

likely the location within the resonance cell where the transition was generated [ 18,19,20].  

Consequently, there was the very real potential of a systematic inhomogeneous light-shift 

limiting the accuracy of their results [21].  Additionally, the light-shift was assessed while the 

atoms were interacting with a relatively strong microwave field, and as will be discussed below 

we have evidence that a strong saturating microwave field can alter the form of the light-shift 

curve.  Finally, as Arditi and Picqué note, their work was only a test of the scalar part of the light 

shift, since they could not resolve the 62P3/2 excited-state hyperfine splitting [22]. Though some 

important experimental work regarding the tensor component of the light shift was carried out in 

the sixties, demonstrating its existence [23] and importantly its vanishing for isotropic light [24], 

it remains only poorly tested by experiment to date.     
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Present Theory and Its Potential Limitations 

According to the semiclassical theory of the light shift [1], the ground-state evolution of 

an atom interacting with near resonant light is described by an effective (non-Hermitian) 

perturbation operator, V.  This operator acts on the atom’s ground state, and can be written in 

terms of two Hermitian operators: , the light-shift operator, which is of primary interest in the 

present work, and , the light-absorption operator (i.e., 2i    V   ).  These two 

operators are given by 
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where, Eo and ê are the amplitude and polarization vector of the optical field, respectively (i.e., 

   tcosêE    tE o 


), and 


 is the atom’s polarizability dyadic operator.   

The polarizability dyadic is the fundamental atomic quantity that describes the ac-Stark 

shift, since it carries information on the strength and symmetry of the dipole interaction (i.e., 

eegg M,FêM,F r

 , where gg M,F and ee M,F  are the angular momentum eigenstates of the 

atom in its ground and excited hyperfine states, respectively), as well as information on the 

processes that dephase the atoms’ ground-excited superposition states. In present theory this 

latter is captured by the plasma dispersion function (or complex error function), Z(Fg,Fe) [25]: 
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In Eq. (2b), L is the laser frequency, and (Fe,Fg) is the optical resonance frequency for the 

transition |Fg,Mg  |Fe,Me (where we assume that the Zeeman splittings are small, so that the 

optical resonance frequency only depends on the total angular momentum quantum number, F) .  

Further, A is the Einstein-A coefficient for spontaneous emission, L is the laser linewidth, and c 

is the dephasing rate associated with vapor-phase collisions.  The light shift of the ground state 

hyperfine levels of the alkalis, LS, can therefore be written 

  0,bêe0,b0,aêe0,aRe
4

E
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2

o

LS  
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,                          (3) 

where Fg = a = I+½ and Fg = b = I½ with I the alkali’s nuclear spin. 

Routinely, in order to highlight the symmetry characteristics of the atom/field interaction, 

the operator êe*  


 is expanded in terms of spherical tensor operators, L [1], where L denotes 

a specific multipole moment of the interaction operator (with L only taking the values 0, 1 or 2 

as a consequence of the electric dipole nature of the field/atom interaction).  Briefly, there are 

two distinct components to the operator êe*  


 with separate rotational symmetry 

characteristics: a laser polarization term represented by êe* , and a component related to the 

angular momentum eigenstates of the atomic system |F,M (both excited and ground state 

eigenvectors), which is captured within 


. The spherical tensor operators, L, combine these 

separate components into a single operator whose rotational symmetry characteristics are 

captured by the parameter L: the L = 0 (monopole) term has spherical symmetry; the L = 1 

(dipole) term has the symmetry of a magnetic dipole interacting with a fictitious magnetic field, 

and only occurs when the light field has net angular momentum along the atom’s quantization 

axis; the L = 2 (quadrupole) term has the symmetry of an electric quadrupole interacting with a 

fictitious electric field gradient, and only occurs when the light field is non-isotropic (i.e., with 

regard to the field/atom interaction the light must see a “gradient in the atom’s quantization 
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axis,” so that M = +1, 0, and 1 transitions don’t all occur with equal probability [23,25]). 

Consequently, the light shift can be written as a sum of terms with different overall rotational 

symmetry characteristics: 

   
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For the present work, where we consider the 87Rb atoms perturbed by a linearly polarized 

laser tuned to the D1 transition, and with a polarization direction perpendicular to the atoms’ 

quantization axis, the light-shift is composed of just two terms. There is an L = 0 scalar light 

shift, S

LS and an L = 2 tensor light shift, T

LS : 
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Here, G is a constant given by   RT2Mccm8fe 22

e

2

ge

22   with fge the oscillator strength.  

For the scalar light shift, the laser polarization and Zeeman structure of the coupled states play 

no significant role.  The scalar light shift, after accounting for the different level degeneracies, is 

simply the atomic level shift that arises from a sum of off-resonant virtual transitions, each 

associated with a different optical transition.  Alternatively, the tensor light shift depends on the 

quadrupole symmetry characteristics of the different hyperfine optical transitions. In particular, 

as evidenced by Eq. (5b), the quadrupole polarizability moments have different signs (but equal 

magnitudes) for the transitions from a single ground-state hyperfine level to the two excited-state 

hyperfine levels. Thus, the tensor light shift vanishes if the excited-state hyperfine structure is 

not resolved, since the net quadrupole polarizability moment for the two unresolved transitions 
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sums to zero.  As a consequence, T

LS  is the component of the light shift that would seem to be 

most sensitive to excited-state perturbations that may be acting on the atom, and which might 

lead to modifications of ac-Stark shift theory depending on how those perturbations affect the 

atom. 

Though the theory of the light shift as captured by Eq. (4) has comported itself well over 

the past half-century, explaining light shifts in atomic clocks and magnetometers, and allowing 

for the generation of light-shift mitigation strategies in those devices, there are a number of 

issues that could call the present theory into question.  Regarding Eq. (2b), use of the plasma 

dispersion function assumes that the stochastic nature of the field is fully captured by a simple 

convolution of the optical field’s lineshape with the atom’s homogeneous absorption resonance; 

and then summing this convolution over the inhomogeneous Doppler shifts that occur throughout 

the vapor.  While this is certainly appropriate for 1-photon weak-field processes, the ac-Stark 

shift by its very nature (i.e., appearing in lowest order as a 2nd-order perturbation phenomenon) is 

at a minimum a 2-photon process.  This is worth noting, since stochastic fields can have non-

intuitive influences on multiphoton processes like the Autler-Townes effect [ 26], which is 

closely related to the ac-Stark shift, and enhancements in ac-Stark shifts can occur if the field 

exhibits correlated amplitude and frequency fluctuations [27]. 

Regarding Eq. (2a), the theory of the polarizability dyadic assumes that the |Fe,Me are 

the proper eigenstates of the unperturbed Hamiltonian.  However, recent experiments suggest 

that elastic fine-structure mixing collisions create excited states that have both 2P3/2 and 2P1/2 

character [28].  Thus, for some fraction of the atoms in a collision-broadened vapor, the virtual 

transitions are not to states |Fe,Me, but to states |e = a|2P3/2 + b|2P1/2.  Moreover, if 

alkali/buffer-gas collisions mix fine-structure states, they most certainly mix excited hyperfine 
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states, further calling into question the nature of the excited states actually coupled to the ground-

state through virtual transitions.  Given these considerations, and the continuing ability of atomic 

physics to make ever more precise measurements of atomic energy level spacings, we should not 

be surprised at some point in the near future to find that theory and experiment are at odds.  The 

only real question is at what level of precision the disagreement between theory and experiment 

will make itself manifest.      

Experiment 

Measuring the actual magnitude of the ac Stark shift and comparing those measurements 

to theory is experimentally problematic, and has the potential for significant systematic error. 

Specifically, since the magnitude of the ac Stark shift depends on the field intensity in the signal 

volume, one needs to accurately account for all transmission losses in the optical beam’s path, 

which is nontrivial.  Additionally, to accurately predict the magnitude of the ac Stark shift one 

needs to know the spatial profile of the perturbing field in the signal volume.  However, from Eq. 

(1a) we see that     êêRe  ~  L

*

L  


.  Thus, rather than comparing the actual 

magnitude of the light shift to theory, we can test theory by examining the form of the light 

shift’s dependence on perturbing field frequency, L (i.e., a normalized version of the light-shift 

curve).  In this way theory can be tested, while eliminating (or at least significantly reducing) the 

systematic errors that arise from estimating the perturbing field’s intensity and spatial profile in 

the signal volume.  To this end, in our work we scale theory and experiment to the measured 

maximum-positive and maximum-negative ac-Stark shift values, and compare these normalized 

light-shift curves. 

It is also important to note that in many previous experiments attempting to measure the 

light shift, hyperfine or spin-polarization was created through optical pumping [ 29].  This 
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presents a problem for precision tests, since the optical pumping light and the ac-Stark shift 

perturbing field have routinely been the same [16,17], making it difficult to isolate the 

fundamental ac-Stark shift from systematic optical pumping effects (e.g., the inhomogeneous 

light shift [21]).  We therefore employ two lasers in our experiments.  One laser, the optical-

pumping (OP) laser, creates a population imbalance between the ground-state hyperfine levels of 

87Rb.  A separate laser, the perturbation laser (PL), induces the ac-Stark shift of interest as it is 

tuned across the atom’s absorption spectrum.   

Moreover, light shifts have typically been accessed in cw double-resonance experiments, 

confounding expectations of  L  based on a bare-atom Hamiltonian with measurements of 

 L  in atoms subjected to a dressed-atom Hamiltonian [ 30] (e.g., in the case of the Rb 

ground state hyperfine transition, atoms dressed by the microwave photons driving the 0-0 

hyperfine transition).  Consequently, we probe the 0-0 resonance frequency using a Ramsey 

separated-fields technique (temporally separated), and routinely only apply the perturbing laser 

during the Ramsey period when the microwave photons, as well as the optical-pumping/optical-

detection laser photons, are absent. 

Our approach exploits the pulsed optically pumped (POP) vapor-cell atomic clock as a 

testbed.  This testbed is illustrated in Fig. 1 [31], and we note that this atomic clock has a 

frequency stability that should allow measurements of the ac-Stark shift with a fractional 

frequency resolution of 10-15.  To briefly summarize the test setup, the OP laser (a Distributed 

Feedback, DFB, diode laser) is tuned to the D2 absorption spectrum of Rb at 780 nm (i.e., 52S1/2 

 52P3/2), and is locked to one of the sub-Doppler optical hyperfine transitions in a separate cell.  

During the optical pumping cycle, the OP laser creates a population imbalance between the 87Rb 

atoms’ ground-state hyperfine levels in the clock’s resonance cell. The resonance cell contains 
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isotopically enriched 87Rb and a mixed N2/Ar buffer gas with a total buffer gas pressure of 

approximately 26 torr; the Ar to N2 pressure ratio is 1.6.  The AOM then switches the OP laser 

“off,” and a microwave /2 pulse follows, which creates a 0-0 superposition state.  The 

superposition state evolves freely during the Ramsey interval before interacting with a second 

/2 pulse that returns the atoms to a bare-atom eigenstate, at which time the AOM switches the 

OP laser “on” with reduced intensity to detect the fraction of atoms that have made a microwave-

induced state change.  The frequency of the microwave pulse varies from below resonance to 

above resonance on alternate cycles of the sequence illustrated in Fig.1, and the relative 

difference in the Ramsey signal is used to stabilize the microwave frequency to the vapor-phase 

atoms’ 0-0 hyperfine transition resonance, 00: 5
2S1/2(Fg=2,mF=0)  52S1/2(Fg=1,mF=0). 

The perturbing DFB laser’s power is kept low, so that it performs no optical pumping; it 

is linearly polarized in a direction perpendicular to the quantization axis of the atoms, and it has a 

linewidth (FWHM) of approximately 10 MHz.  Consequently, tuning the PL across the D1 

transition at 795 nm (i.e., 52S1/2  52P1/2) gives us direct access to   êêRe L

* 


 over a broad 

frequency range without influencing the atomic clock’s signal strength or the location in the 

resonance cell where the signal is generated. Routinely, we operate the PL in pulsed mode, and 

only turn the PL on during the Ramsey period.  0-0 coherence is thus an initial condition during 

the ac-Stark perturbation.  In other words, we measure the ac-Stark shift of an atom perturbed by 

a bare-atom Hamiltonian: H = Ho + Voptical, and not a (microwave field) dressed-atom 

Hamiltonian: H = Ho + Vwaves + Voptical.  On alternate frequency scans of the PL over the D1 

absorption spectrum, we block the PL with a shutter for a short time in order to measure the 

unperturbed vapor-phase atoms’ 0-0 frequency.  Taking the difference yields the ac-Stark shift at 

PL frequency LLS(L)  =  00(shutter open) 00(shutter closed).   
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The typical power density of the PL is 30μW/cm2, and we have tested that ± 3dB power 

density changes do not produce any observable change in the form of the light-shift curve, only a 

linear scaling of the ac-Stark shift magnitude.  Tuning the PL to the midpoint between the two 

ground-state hyperfine levels, where no hyperfine optical pumping is produced, we have verified 

that the light shift is linear in intensity up to PL intensities roughly thirty times higher than those 

employed in the work discussed here (i.e., 900μW/cm2).  Moreover, we have verified that the 

frequency scan of the PL is linear in time (and therefore frequency) as expected [32].   

Ideally, the AOM should reduce the OP laser’s nominal intensity of 20 mW/cm2 to zero 

during the Ramsey period.  However, the AOM is not perfect, and 1 to 2 W/cm2 of the OP laser 

light leaks into the signal volume during the Ramsey period.  Consequently, if (for example) the 

OP laser is locked to the sub-Doppler 52S1/2(Fg=2)  52P3/2(Fe=1) transition, then during the 

Ramsey period there will be a slight OP laser light-shift of the |Fg=2, Mg manifold of states, and 

hence 00.  Since we measure the ac-Stark shift as the difference [00(shutter open)  

00(shutter closed)], any OP laser light shift of 00 should subtract out.  However, as an added 

precaution against unforeseen systematic effects we measured our light-shift curves twice: once 

for the OP laser locked to a 52S1/2(Fg=1) D2 transition, and once for the OP laser locked to a 

52S1/2(Fg=2) D2 transition.  For the OP laser exciting atoms out of the |Fg=1 state, we restricted 

our analysis of the ac-Stark shift to PL frequencies near the 52S1/2(Fg=2) D1 transition (i.e., to 

frequencies near the other ground-state hyperfine level).  Similarly, for the OP laser exciting 

atoms out of the |Fg=2 state, we restricted our analysis to PL frequencies near the 52S1/2(Fg=1) 

D1 transition.  The full light-shift curve was then obtained by stitching these two data sets 

together at a mid-point frequency.  
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Results 

Microwave Saturation and the Light-Shift 

Though we typically operate the system in the pulsed mode, with the PL only applied 

during the Ramsey period, it is straight forward to vary the timing of the PL so that atoms are 

perturbed only during the Rabi /2 pulse. In this way, we could compare  êêRe * 


 for the 

bare-atom Hamiltonian and the dressed-atom Hamiltonian.  Further, we can turn off the pulsing, 

and operate the system in a fully cw fashion, similar to the experiments of Arditi and Picqué 

[17].  An example of  êêRe * 


 measured under these latter conditions is shown in Fig. 2, 

along with the theoretical expectation of  êêRe * 


 for a linearly polarized field [1].  This 

measurement was made well into the microwave saturation regime of the 0-0 transition, where 

the atom’s structure is defined by a dressed-atom Hamiltonian. The large theory/experiment 

discrepancy shown in Fig. 2 demonstrates that there are qualitative and quantitative differences 

in  êêRe * 


 for atoms subject to bare-atom and dressed-atom Hamiltonians.  Though we will 

not pursue this topic further here, as it would lead us too far afield and is better saved for a future 

detailed study, we do note that Fig. 2 is disconcerting for “precision” tests of the ac-Stark shift 

when the states are subject to an additional strong resonant field as in cw double-resonance 

experiments.  Here, of course, we test the ac-Stark shift when the additional field is absent (i.e., 

during the Ramsey period).  

Attenuation of the Perturbation Laser 

As Eq. (3) indicates, the light-shift will be proportional to the field intensity at the 

entrance of the resonance cell: |Eo|
2.  However, the actual measured light shift is defined by the 

light-intensity within the resonance cell, which varies with L due to resonant absorption.  Thus, 

Eq. (3) should be re-written as  
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where (L,z) is a frequency dependent and depth (z) dependent attenuation coefficient, which is 

determined by the Rb density in the resonance cell at temperature T, and the Rb atoms’ optical 

absorption cross-section.  This gives LS a depth dependence as well, so that what one actually 

measures is a (complicatedly weighted) average of LS(z) over the signal volume. To illustrate 

the significance of this effect for the present experiments, Fig. 3a compares the observed light-

shift curve with theory for T = 65 oC, while Fig. 3b provides the same comparison for T = 40 oC.  

With the PL tuned near resonance, attenuation of the light intensity in the resonance cell tends to 

decrease the observed light shift, even though  L


 might be relatively large.  Alternatively, 

when the PL is detuned from resonance there is less absorption, which tends to increase the light 

intensity in the resonance cell and hence the light shift, though  L


 might be relatively small.  

Thus, the frequency-dependent structure one observes in vapor-phase light-shift measurements 

arises from two sources:  L


 and (L,z), and this creates the potential for significant 

systematic error. 

To control for this systematic effect, we measured the light shift at several relatively low 

resonance cell temperatures, where the vapor was optically thin. We then extrapolated each point 

on the light shift curve to a temperature five degrees lower than our lowest measured 

temperature, or 25 oC in the present experiments.  Several examples of these extrapolations are 

shown in Fig. 4.  Not only does the extrapolation reduce the influence of (L,z) on our 

assessments of the fundamental light-shift curve, but the standard errors of the extrapolated 

values provide a measure of uncertainty regarding the mitigation of this systematic effect.  
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Precision Test of Theory 

Figure 5a shows our best estimate of LS(L) (considering both the scalar and tensor 

light shift terms) for the perturbation laser tuned 18 GHz about the D1 resonance of 87Rb: 1) with 

the PL only applied during the Ramsey period of the pulse sequence, 2) by extrapolating the 

light-shift curves to low vapor temperature in order to mitigate systematic errors due to (L,z), 

and 3) by stitching together the light-shift curves for the OP laser tuned to the Fg=1 and Fg=2 D2 

resonances to mitigate untold OP laser effects.  The difference between theory and experiment is 

highlighted in Fig. 5b, and at maximum has a relative value of 5×10-2.  This small 

theory/experiment discrepancy maximizes near the absorption resonances, and is of the same 

order as our error in extrapolating the light-shift curves to 25 oC.  Consequently, we attribute the 

discrepancy to the limits of our ability to mitigate the (L,z) systematic effect.  We note that our 

theory/experiment agreement improves on the previous best comparison by a factor of about 

three [17], and (as will be discussed further below) was obtained on the D1 transition where the 

tensor component of the light shift cannot be ignored.   

In order to generate the theoretical light-shift curve, we employed three free parameters 

to obtain the best fit: 1) the Lorentzian contribution to the linewidth (HWHM), L, used in the 

computation of Z(Fg,Fe) (the Doppler width corresponded to a temperature of 25 oC), 2) the 

collision shift of the excited-state hyperfine splitting, hfs/[NBG] [28], and 3) the intensity 

change of the PL as the laser’s injection current, iL, was varied in order to tune the laser 

frequency across the D1 resonance, dIPL/dL = (dIPL/diL)(dL/diL) [33].  For a nominal laser 

linewidth of 10 MHz and a N2/Ar mixed buffer gas of total pressure 26 torr, we would predict 

L = 443.7 MHz [34]; for the best fit we required L = 485.7 MHz.  The increased Lorentzian 

contribution to Z(Fg,Fe) could be due in part to a miss-estimation of the total buffer gas pressure 
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in the resonance cell (i.e., 26 torr  27 torr), which is certainly reasonable [35], and/or an 

increased PL laser linewidth due (for example) to a slight amount of injection current noise ( i.e., 

10-4 fractional injection current noise could easily account for the increased value of L).  

Regardless, we take the best-fit value of L as very much in line with expectations. 

The collision shift of the ground-state hyperfine splitting is well known [ 36 ], and 

consequently we should expect a collision shift of the excited-state hyperfine splitting.  For the 

best fit between theory and experiment we required hfs/[NBG] = +2.6 GHz/amagat.  Though 

there are no measurements of this parameter for the 87Rb 52P1/2 state perturbed by either N2 or 

Ar, we note that for 87Rb perturbed by Xe Driskell et al. estimated hfs/[NBG] as +0.71 

GHz/amagat [28], while in the Cs/Ar system Bernabeu and Alvarez estimated hfs/[NBG] as 

+5.2 GHz/amagat [37].  Thus, we again find the best-fit parameter value to be quite reasonable.  

Finally, to obtain the best fit between theory and experiment we required dIPL/dL = 

0.65%/GHz.  Not only is the sign of this parameter correct, but the magnitude is very much in 

line with expectations [38].            

Discussion 

As noted above, the best previous test of the light-shift curve in a vapor-phase system 

comes from the work of Arditi and Picqué [17], who examined the ac-Stark shift of the Cs 0-0 

transition for a perturbing laser tuned to the D2 transition.  As a consequence, Arditi and Picqué 

did not resolve the excited-state hyperfine splitting, and so their experiment is solely a test of the 

scalar component of the light shift (i.e., L = 0 in Eq. (4)).  Since our perturbation laser was tuned 

to the D1 transition, where the excited-state hyperfine splitting can be resolved at low enough 

buffer-gas pressure (as we employ), our experiment offers a unique opportunity to test the tensor 

component of the light shift. 
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Figure 6a shows our experimental light-shift curve again, this time plotted alongside the 

theoretical scalar component of the light shift.  The difference between the two is clear, 

indicating the presence of the tensor light shift in our experimental data.  To generate an 

experimental estimate of the tensor light shift, we subtracted the theoretical scalar light-shift 

curve from our experimental light-shift curve, and this is shown in Fig. 6b.  Also shown in Fig. 

6b is the theoretical tensor component of the light shift.  The gray region around the 

experimental estimate of the tensor light shift corresponds to the 1-sigma uncertainty in our 

extrapolation to 25 oC, and is a measure of our limits to control for the systematic effect of 

(L,z).  As the figure clearly shows, within the limits of that systematic uncertainty we have 

good agreement between experiment and theory for the tensor component of the light shift. 

Summary 

In this work we have exploited a new methodology for studying the ac-Stark shift that 

takes advantage of recent advances in atomic clock technology.  Our specific experiment 

examined the ac-Stark shift (i.e., light shift) of the 87Rb ground-state 0-0 hyperfine transition in a 

vapor-phase system, with the rubidium atoms perturbed by an optical field tuned near the D1 

transition: 52S1/2  52P1/2.  Not only did we find very good agreement between theory and 

experiment over an exceptionally broad frequency range (18 GHz) about the 87Rb D1 absorption 

manifold (i.e., maximum discrepancy  5×10-2), but by resolving the excited-state hyperfine 

structure we were able to examine the tensor as well as the scalar contributions to the light shift.    

In future work, we intend to examine means of decreasing the systematic contribution of 

(L,z) to lower levels, so that ever more precise tests of the light-shift curve can be made in 

vapor-phase systems.  As mentioned in the Introduction, collisional processes occurring in 

vapor-phase systems are much more complex than presently envisioned by light shift theory, and 
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at some level those complications will manifest themselves.  Additionally, we want to test the 

basic theory of the ac-Stark shift without such complications, and so we intend to carry these 

experiments forward to fountain clock testbeds.  Not only will this give us an opportunity to test 

the semiclassical and lowest-order perturbation nature of theory, but it will be interesting to 

compare ac-Stark shift curves for atoms perturbed by bare-atom and dressed-atom Hamiltonians.  

This comparison will be accomplished by measuring light-shift curves with the PL on solely 

during the Ramsey period, and then with the PL on solely during the Rabi period of the Fig. 1 

pulse sequence. Finally, by tuning the PL to the midpoint between the ground-state hyperfine 

resonances, we should be able to raise the intensity of the PL to arbitrarily high levels without 

concern for (hyperfine) optical pumping by the PL, and in this way make precise measurements 

of the atom’s hyperpolarizability contribution to the ac-Stark shift.  Regardless of the direction 

and breadth of these future researches, it seems clear that the methodology discussed here has 

much to offer our understanding of the ac-Stark shift and consequently the field/matter 

interaction.  

Acknowledgments 

The authors would like to thank Nathan Wells for a critical reading of the manuscript. 

This work has been funded by the EMRP project IND55 MClocks.  EMRP is jointly funded by 

the EMRP participating countries within EURAMET and the European Union.  The activities of 

J. Camparo were supported by The Aerospace Corporation's Sustained Experimentation and 

Research for Program Applications program, and funded by U.S. Air Force Space and Missile 

Systems Center under Contract No. FA8802-09-C-0001. 

  



18 

 

  

                                                             

References 

1. W. Happer and B. S. Mathur, “Effective operator formalism in optical pumping,” Phys. Rev. 

163(1), 12-25 (1967); B. S. Mathur, H. Tang, and W. Happer, “Light shifts in the alkali 

atoms,” Phys. Rev. 17191), 11-19 (1968).    

2. J. S. Bakos, “AC Stark effect and multiphoton processes in atoms,” Phys. Rep. 31(3), 209-235 

(1977).    

3.  T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. 

Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic 

evaluation of an atomic clock at 2×10-18 total uncertainty,” Nat. Commun. 6:6896 doi: 

10.1038/nocomms7896 (2015). 

4.  S. Micalizio, A. Godone, D. Calonico, F. Levi, and L. Lorini, “Blackbody radiation shift of 

the 133Cs hyperfine transition frequency,” Phys. Rev. 69, 053401 (2004).  

5.   P. Rosenbusch, S. Ghezali, V. A. Dzuba, V. V. Flambaum, K. Beloy, and A. Derevianko, “ac 

Stark shift of the Cs microwave atomic clock transitions,” Phys. Rev. A 79, 013404 (2009). 

6.  M. Brune, P. Nussenzveig, F. Schmidt-Kaler, F. Bernardot, A. Maali, J. M. Raimond, and S. 

Haroche, “From Lamb shift to light shifts: Vacuum and subphoton cavity fields measured by 

atomic phase sensitive detection,” Phys. Rev. Lett. 72, 3339-3342 (1994). 

7.  A. Kastler, “Displacement of energy levels of atoms by light,” J. Opt. Soc. Am. 53(8), 902-

910 (1963). 

8.  J. Camparo and P. Lambropoulos, “Multiphoton transitions in a colored vacuum: Coupling of 

the ac Stark shift with spontaneous decay and the Lamb shift,” J. Opt. Soc. Am. B 19(5), 

1169-1173 (2002).  

9.  J. C. Camparo, “The rubidium atomic clock and basic research,” Phys. Today 60(11), 33-39 

(2007). 



19 

 

                                                                                                                                                                                                    

10.  J. Camparo, “Does the light shift drive frequency aging in the rubidium atomic clock?,” 

IEEE Trans. Ultrason., Ferroelec., and Freq. Control 52(7), 1075-1078 (2005). 

11.  M. Arditi and T. R. Carver, “Pressure, light, and temperature shifts in optical detection of 0-

0 hyperfine resonance of alkali metals,” Phys. Rev. 124(3), 800-809 (1961). 

12. J. Vanier, R. Kunski, P. Paulin, M. Têtu, and N. Cyr, “On the light shift in optical pumping 

of rubidium 87: The techniques of “separated” and “integrated” hyperfine filtering,” Can. J. 

Phys. 60, 1396-1403 (1982). 

13. D. Normand, L.-A. Lompré, A. L’Huillier, J. Morellec, M. Ferray, J. Lavancier, G. Mainfray, 

and C. Manus, “AC Stark shifts induced by a YAG laser in the nP and nF Rydberg series in 

xenon,” J. Opt. Soc. Am. B 6(8), 1513-1518 (1989).   

14. N. Lundblad, M. Schlosser, and J. V. Porto, “Experimental observation of magic-wavelength 

behavior of 87Rb atoms in an optical lattice,” Phys. Rev. A 81, 031611(R) (2010). 

15. P. F. Liao and J. E. Bjorkholm, “Direct observation of atomic energy level shifts in two-

photon absorption,” Phys. Rev. Lett. 34(1), 1-4 (1975).  

16. D. Miletic, T. Bandi, C. Affolderbach, and G. Mileti, “ac Stark shift in double resonance and 

coherent population trapping in a wall-coated cell for compact Rb atomic clocks,” Phys. Scr. 

T149, 014012 (2012). 

17. M. Arditi and J.-L. Picqué, “Precision measurements of light shifts induced by a narrow-band 

GaAs laser in the 0-0 133Cs hyperfine transition,” J. Phys. B: Atom. Molec. Phys. 8(14), 

L331-L335 (1975).  

18. A. Risley and G. Busca, “Effect of line inhomogeneity on the frequency of passive Rb87 

frequency standards,” in Proc. 32nd Symp. Freq. Control (IEEE Press, Piscataway, NJ, 1978) 

pp. 506-513. 



20 

 

                                                                                                                                                                                                    

19. A. Risley, S. Jarvis, Jr, and J. Vanier, “The dependence of frequency upon microwave power 

of wall-coated and buffer-gas-filled gas cell Rb87 frequency standards,” J. Appl. Phys. 51(9), 

4571-4576 (1980).  

20. J. C. Camparo and R. P. Frueholz, “A three-dimensional model of the gas cell atomic 

frequency standard,” IEEE Trans. Ultrason., Ferroelec., and Freq. Control 36(2), 185-190 

(1989).  

21. J. C. Camparo, R. P. Frueholz, and C. H. Volk, “Inhomogeneous light shift in alkali-metal 

atoms,” Phys. Rev. A 27, 1914-1924 (1983).  

22. W. Happer, “Light propagation and light shifts in optical pumping experiments,” in Progress 

in Quantum Electronics Volume 1, Part 2 (Pergamon Press, New York, 1970) pp. 51-103. 

23. J. Dupont-Roc and C. Cohen-Tannoudji, “Levée de dégénérescence Zeeman d’atomes 201Hg 

sous l’effet d’une irradiation lumineuse non résonnante,” C. R. Acad. Sci. Ser. B 267, 1211-

1214.  

24. B. Cagnac, A. Izraël, and M. Nogaret, “Séparation sous l’action d’une irradiation lumineuse 

de raies de résonance magnétique normalement confondues,” C. R. Acad. Sci. Ser. B 267, 

274-277. 

25. B. D. Fried and S. D. Conte, The Plasma Dispersion Function (Academic Press, New York, 

1961); M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with 

Formulas, Graphs, and Mathematical Tables (National Bureau of Standards, Washington, 

D.C., 1964) Ch. 7. 

26. J. Camparo, “The semiclassical stochastic-field/atom interaction problem,” in Proc. 7th 

Symposium Frequency Standards and Metrology, ed. L. Maleki (World Scientific, New 

Jersey, 2009) pp. 109-117. 

27. J. C. Camparo and P. P. Lambropoulos, “ac Stark shift of a two-photon transition induced by 

a model stochastic field,” J. Opt. Soc. Am. B 9(12), 2163-2170 (1992). 



21 

 

                                                                                                                                                                                                    

28. N. P. Wells, T. U. Driskell, and J. C. Camparo, “Fine-Structure Mixing in Rb/Xe Elastic 

Collisions and Isoclinic Point Asymmetry,” Phys. Rev. A 92, 022505 (2015).  

29. W. Happer, “Optical pumping,” Rev. Mod. Phys. 44(2), 169-249 (1972). 

30.  P. R. Berman and R. Salomaa, “Comparison between dressed-atom and bare-atom pictures 

in laser spectroscopy,” Phys. Rev. A 25(5), 2667-2692 (1982). 

31. S. Micalizio, C. E. Calosso, A. Godone, and F. Levi, “Metrological characterization of the 

pulsed Rb clock with optical detection,” Metrologia 49, 425-436 (2012). 

32. J. C. Camparo, Y.  C. Chan, B.  Jaduszliwer, and J. Malenfant, “Injection current calibration 

of diode laser wavelengths,” Opt. Commun. 70(5), 416-420 (1989). 

33.  J. C. Camparo, “The diode laser in atomic physics,” Contemp. Phys. 26, 443-477 (1985).  

34. M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the rubidium D1 and 

D2 lines (52S1/2  52P1/2,3/2) by rare gases, H2, D2, N2, CH4 and CF4, J. Quant. Spectrosc. 

Radiat. Transfer 57(4), 497-507 (1997).  

35. T. U. Driskell, M. Huang, and J. C. Camparo, “Measuring buffer-gas pressure in sealed glass 

cells: An assessment of the KSK technique,” to be published in IEEE Trans. Ultrason., 

Ferroelec., and Freq. Control. 

36. J. Vanier, R. Kunski, N. Cyr, J. Y. Savard, and M. Têtu, “On hyperfine frequency shifts 

caused by buffer gases: Application to the optically pumped passive rubidium frequency 

standard,” J. Appl. Phys. 53(8), 5387-5391 (1982). 

37. E. Bernabeu and J. M. Alvarez, “Pressure effects of helium, neon, and argon on the hyperfine 

structure of the first doublet of cesium,” J. Opt. Soc. Am. 67(1), 24-27 (1977). 

38. H. Wenzel, A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, M. Weyers, and 

G. Tränkle, “High-power 783 nm distributed-feedback laser,” Electron. Lett. 40(2), 123-124 

(2004). 



Figure Captions 

Figure 1: Experimental setup.  The pulse sequence in the box is for one (e.g., above resonance) 

detuning of the microwave field, and is repeated for the alternate detuning.  

Figure 2: Comparison of normalized light-shift curves for theory and experiment.  The 

perturbation laser (PL) was on continuously, during both the Rabi and Ramsey periods.  

This is essentially the configuration for the standard double-resonance measurement 

procedure used to assess light shifts.  In these experiments, the microwave field was well 

into the saturation regime of the 0-0 transition; the OP laser was tuned to the D2 Fg=2 

optical resonance, and the temperature of the resonance cell was 32 oC.  

Figure 3: (a) Comparison of the measured ac-Stark shift (in units of fractional frequency) at a 

resonance cell temperature of 65 oC with theory; the perturbation laser is only on during 

the Ramsey period of the pulse sequence. (b) Same as (a) except T = 40 oC.  In both cases 

the theory is scaled to the experimental maximum and minimum light shifts.   

Figure 4: Several sets of data points are plotted showing LS (in units of fractional frequency) 

as a function of resonance cell temperature, T, for the PL detuned from resonance by the 

indicated amounts.  We extrapolate the light-shift measurements to 25 oC, and use those 

extrapolated values in our comparison with theory.  The near zero slopes indicate that our 

values of (L) at these temperatures are already quite small.  Finally, we note that the 

standard error of the extrapolated value provides a measure of this systematic error’s 

contribution to our final results.  (The standard error is smaller than the symbol size on 

this graph.)   
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Figure 5:  (a) Measured values of LS subject to our controls of the systematic effects: 1) 

perturbing laser only on during the Ramsey period, 2) extrapolation to 25 oC, and 3) 

stitching together light-shift curves for the OP laser tuned to Fg=1 and Fg=2. The 

difference between experiment and theory is also shown, and around resonance shows a 

maximum magnitude of approximately 5×10-2.  (b) Experiment/Theory difference on an 

expanded scale; the dashed lines correspond to 1-sigma error bounds on the extrapolated 

light-shift values, and suggest that the experiment/theory discrepancy is at the limits of 

our ability to control for the attenuation of the probe laser as it tunes across resonance. 

Figure 6: (a) The experimental light-shift curve plotted with the scalar component of the 

theoretical light shift. The difference is clear, indicating the presence of the tensor light 

shift in our experiments. (b) The experimental light-shift curve after subtracting the 

(theoretical) scalar component is plotted with the theoretical tensor component of the 

light shift.  The gray border around the experimental estimation of the tensor light shift 

corresponds to the 1-sigma error bars associated with our extrapolation to 25 oC.  
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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