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Abstract 
This paper presents a GPU-parallelized 3D micromagnetic code for the efficient calculation of the 
magnetization dynamics, equilibrium configuration and static hysteresis loops of magnetic nanostructures, by 
solving the Landau-Lifshitz-Gilbert (LLG) equation. The time-integration of the LLG equation is carried out 
by using a technique based on the Cayley transform, which allows us to fulfil the constraint on the 
magnetization amplitude. The computational domain is reconstructed with a structured hexahedral mesh. The 
spatial-integration of the magnetostatic field is performed via a Fast Fourier Transform (FFT) algorithm, and 
the exchange field is computed with a 26-node-based finite difference technique. A careful validation of the 
developed solver was carried out, also by comparison to OOMMF and MuMax3. Then, we analysed the 
computational efficiency of the geometrical time-integrator and of its time-adaptive variant, investigating the 
role of the numerical damping introduced by the Cayley transform-based time-discretization. 
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1. Introduction 
The numerical integration of the Landau-Lifshitz-Gilbert (LLG) equation can be computationally very 
demanding, due to the need of simulating phenomena at the exchange length scale (5-10 nm) as well as long-
range interactions, like the magnetostatic field. Additionally, particular care has to be devoted to the choice of 
the time-integration scheme, which should guarantee the preservation of the magnetization amplitude and the 
Lyapunov structure of the LLG equation, with sufficiently large time-steps [1]. This task becomes very critical 
in the computation of static hysteresis loops, since at each field update the magnetization time evolution has 
to be calculated up to the reaching of equilibrium. 

In general, both explicit and implicit methods do not guarantee that the peculiar properties of the LLG equation 
are preserved. A plethora of solutions and approaches have been proposed during the years. Explicit time-
integration schemes impose strong limitations on the time-steps due to their limited stability region. To 
overcome this limitation, semi-analytical [2, 3] or high-order Runge-Kutta [4, 5] methods can be used.  Implicit 
methods show good stability performance, however, they do not generally guarantee the preservation of the 
magnetization amplitude nor the energy conservation properties of the LLG equation. They also tend to be 
computationally heavy, requiring to solve large coupled systems of non-linear equations, therefore it is 
preferred to use semi-implicit methods [6–11] or fixed-point algorithms [12]. 

Advantages can be found in geometrical integrators, which are a family of solvers able to preserve the LLG 
equation properties and, before being applied in micromagnetics, were used in many research fields in 
computational mechanics, where non-convex constraints appear [13–16]. In micromagnetics, geometrical 
integrators were developed using semi-implicit algorithms and quasi-Newton method [1]. However, these 
approaches require the implementation of iterative techniques; therefore, they need that, at each iteration, the 
effective field and thus the magnetostatic field are recalculated, resulting in very time-consuming operations.  

To face the above problems, we performed the time-integration of the LLG equation by means of an explicit 
method based on the Cayley transform [17–20], which enables us to guarantee the preservation of the constraint 
on the magnetization independently of integration scheme order and time-step size. First, we incorporated a 
first-order (Euler) and a second-order (Heun) time-integration scheme. To further improve computational 
performance, an adaptive time-integration scheme based on the Euler-Heun method was implemented, 
applying a technique developed for the embedded Runge-Kutta methods for the evaluation of the local 
truncation error [21–23]. The proposed time-integration scheme was incorporated within a 3D micromagnetic 
solver, which implements a Fast Fourier Transform (FFT)-based approach for the magnetostatic field 
evaluation [24–27], and exploits GPU-parallelization to accelerate both the spatial- and time-integration of the 
LLG equation [28–31]. The solver was already successfully applied to investigate the hysteresis properties of 
3D magnetic nanostructures for possible hyperthermia applications [32]. 

First, we performed a careful validation of the solver focusing on Standard Problem #4, proposed by the 
Micromagnetic Modeling Activity Group (µMAG) at the US National Institute of Standards and Technology 
(NIST) [33]. Then, we tested the code in the calculation of the static hysteresis loop of a 3D sample, by 
comparison to MuMax3 [34]. Finally, we investigated the computational efficiency of the Cayley transform-
based time-integration scheme, showing the advantages and potential drawbacks of the artificial damping 
introduced numerically as well as of the time-adaptive integration. 

2. Numerical method 
The time evolution of the magnetization vector 𝐌(𝑡, 𝑥, 𝑦, 𝑧) in a tridimensional magnetic sample  is described 
following the LLG equation: 

eff eff2
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where 52.21 10    mA−1s−1 is the absolute value of the gyromagnetic ratio,  is the damping constant, MS is 

the saturation magnetization and effH is the effective field, which is the sum of four contributions: the 

externally applied field aH ; the exchange field exH ; the magnetostatic (or demagnetizing) field msH ; the 

anisotropy field anH . 

The magnetic domain  is discretized using hexahedral finite difference cells, in which vectors M  and effH  

are assumed to be uniform. In the following sections we describe the time- and spatial-integration procedures. 

2.1 Time-integration 
In the generic n-th finite difference cell, equation (1) can be written in the compact form: 

𝐌̇௡(𝑡) = 𝐀(𝐌௡) × 𝐌௡ ,     (2) 

where 𝐀(𝐌) is the generator. Given the properties of the external product, 𝐀 can be generalized by adding a 
term parallel to 𝐌, resulting in the vector quantity 𝛚 = 𝐀(𝐌) + σ(𝐌)𝐌, where σ is an arbitrary scalar 
function, here generally assumed to be constant in space and time. Then, we numerically solve the following 
equation: 

𝐌̇௡(𝑡) = 𝛚(𝐌௡) ×  𝐌௡.                                         (3) 

Since magnetization dynamics evolves on the surface of a sphere, there exists a family of curves 

𝑄(𝑡): Ω
 

→ 𝑆𝑂(3)/  𝐌௡(𝑡) = 𝑄(𝑡)𝐌଴
௡,     (4) 

with 𝐌଴
௡ being the magnetization vector at the time instant t = 0. 𝑄(𝑡) belongs to the special orthogonal Lie-

group 𝑆𝑂(3). The Lie-Algebra (3)so  associated to the group consists of the 3 × 3 skew real matrices that 

describe infinitesimal rotations. Thanks to the isomorphism between the Lie-algebra induced by the external 

product in 3  and the Lie-Algebra (3)so , the following equations hold true: 

𝐌̇௡(𝑡) = 𝑄̇(𝑡) 𝐌଴
௡, 

𝑄̇(𝑡) = skew[𝛚(𝑄(𝑡) 𝐌଴
௡)]𝑄(𝑡),    (5) 

where 𝑠𝑘𝑒𝑤[𝛚] = ൭

0 −ωଷ ωଶ

ωଷ 0 −ωଵ

−ωଶ ωଵ 0
൱. 

In this framework, it is possible to derive time-integration schemes of any order using the Cayley transform: 

𝑐𝑎𝑦(𝛎) = (𝐈 + 𝑠𝑘𝑒𝑤[𝛎\2])(𝐈 − 𝑠𝑘𝑒𝑤[𝛎/2]),   (6) 

which is a second-order approximation of the algorithmic exponential for the rotation group [16, 18, 35]. In 
this way, magnetization amplitude is intrinsically preserved. 

In our code, we implemented three time-integration schemes; for the first two ones the time-step t is fixed. 
In the first-order scheme (CAY1), based on the Euler explicit algorithm, the magnetization at the (i+1)-th 
instant is computed as 

𝐌௜ାଵ
௡ = 𝑐𝑎𝑦(Δ𝑡 𝛚௜

௡)𝐌௜
௡.     (7) 

In the second-order scheme (CAY2), based on the Heun explicit algorithm, the magnetization at the (i+1)–th 
instant is evaluated as  

𝐌௜ାଵ
௡ = 𝑐𝑎𝑦(Δ𝑡 𝛚෥ ௡)𝐌௜

௡,    (8) 

where 𝛚෥ ௡ = [𝛚∗
௡(𝐌∗

௡) + 𝛚௜
௡(𝐌௜

௡)]/2 and 𝐌∗
௡ = 𝑐𝑎𝑦(Δ𝑡 𝛚௜

௡)𝐌௜
௡. 



 

Scheme CAY2 results equivalent to CAY1 with the addition of a step. 

The third scheme (CAY12) is a time-adaptive embedded second-order algorithm, which is based on CAY2 
and uses the first-order solution 𝐌∗

  provided by the first step to estimate the local truncation error and thus 
chose an appropriate time-step for the evaluation of 𝐌௜ାଵ

 . Since CAY12 uses a second-order formula we 
expect that the truncation error at the (i+1)-th instant ε௜ାଵ scales with the square of the chosen time-step 
Δ𝑡௜ାଵ = 𝑡௜ାଵ − 𝑡௜. In general, one can predict the time-step Δ𝑡∗ needed to obtain a desired accuracy ε∗ from 
the following equation: 

Δ𝑡∗ = Δ𝑡௜ାଵටቚ
க∗

க೔శభ
ቚ.      (9) 

If the truncation error is smaller than the desired accuracy, Δ𝑡௜ାଵ can be used as the time-step to calculate the 
solution at 𝑡௜ାଵ, otherwise the solution is discarded and the (i+1)-th instant is recalculated using Δ𝑡∗ [36]. 

The definition of the truncation error is a critical task and may depend on the peculiarity of the problem; here, 
we chose the following relationship: 

ε௜ାଵ =  max
௡

|τେ୅ଢ଼ଵ
௡ − τେ୅ଢ଼ଶ

௡ | Δ𝑡௜ାଵ,   (10) 

where 𝜏େ୅ଢ଼ଵ
௡  and 𝜏େ୅ଢ଼ଶ

௡  are the torques 𝐌∗
௡ × 𝐇ୣ୤୤∗

௡  and 𝐌௜ାଵ
௡ × 𝐇ୣ୤୤೔శభ

௡ , respectively, obtained from the two 

steps of the Heun-based scheme, which provides, with the first step, the first-order approximation (equivalent 
to CAY1) and, with the second step, the second-order approximation (equivalent to CAY2). With this 
definition the computational cost of the time-adaptive scheme is minimized. By using a precautionary approach 
the time-step was adjusted introducing a multiplicative factor b generally equal to 0.8 when computing the 

solution at the new time-step, i.e. Δ𝑡∗ = 𝑏Δ𝑡௜ାଵටቚ
க∗

க೔శభ
ቚ. Moreover, it is possible to specify an upper and a lower 

limit to the time-step to ensure a better control of the magnetization time evolution. 

2.2 Spatial-integration 
Particular care has to be devoted to the spatial-integration of the effective field and of its terms. The 
computation of the magnetostatic field is one of the most time consuming tasks in micromagnetic solvers 
because of its integral expression: 

𝐇୫ୱ(𝐫) = −
ଵ

ସ஠
∇ ∫ ∇ᇱ ቀ

ଵ

|𝐫ି𝐫ᇲ|
ቁ ⋅ 𝐌(𝐫ᇱ)𝑑𝑉′

 

ஐ
.   (11) 

The finite difference spatial discretization here implemented and the assumption of uniform magnetization in 
each cell allow us to use the discrete convolution for the evaluation of 𝐇୫ୱ. This type of spatial discretization, 
which requires structured meshes, may present some limitations in the exact reconstruction of the sample, but 
the increase in computational efficiency achievable with the discrete convolution approach is considerable [4, 
24-27, 37]. In particular, the implementation of the Fast Fourier Transform (FFT) algorithm [38,39] reduces 

the computational complexity from 2( )N  to ( log )N N , where N is the number of finite difference cells.  

In the n-th cell 𝐇୫ୱ is expressed as: 
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where ( )G r  is the demagnetizing tensor.  The spatial-domain convolution can be changed into a scalar product 

in the frequency domain using the Fourier transform. It results that:  
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where   ( ) ( )FFTM r M r  and ˆ ( ) [ ( )]FFTG r G r  are the Fourier transforms of the magnetization vector and 

of the demagnetizing tensor, respectively. Now, applying the inverse FFT to the three components of msH  it 
is possible to obtain the magnetostatic field in the spatial-domain.  

To compute the demagnetizing tensor, we implemented two methods. The first one uses the analytical 
formulation proposed by Nakatani et al. [40], the second one solves the integrals in (12) numerically, 
employing the Green’s surface integral formula with 3636 quadrature nodes. Since this tensor depends only 
on the geometrical properties of the magnetic sample, it is calculated, FFT-transformed and stored, once at the 
beginning of the simulation, and then reused at each time instant. 

The exchange field 𝐇ୣ୶ =
ଶ௞౛౮

ஜబெ౏
మ Δ𝐌, with exchange constant kex, was calculated using a standard finite 

difference scheme, which can be easily implemented for structured meshes. For the Laplacian operator we 
used both a 6-neighbor formula, accurate up to the second-order, and a 26-neighbour formula, accurate up to 
the fourth-order [41, 42], i.e.  

𝐇ୣ୶(𝐫௡) =
ଶ௞౛౮

ஜబெ౏
మ ∑ β௤

(𝐌೜ି𝐌೙)

௔೜(௫೜ି௫೙)మା௕೜(௬೜ି௬೙)మା௖೜(௭೜ି௭೙)మ

ொ
௤ୀଵ ,   (14) 

where β௤ , 𝑎௤ , 𝑏௤ and 𝑐௤ are coefficients depending on the q-th neighbor (𝑄 = 6 or 26). On the boundaries, 
where some of the neighbors are not present, the Neumann boundary condition 𝜕𝐌௡ 𝜕𝐧⁄ = 0 (with n 
indicating the unit normal vector) was imposed by introducing fictitious points outside the domain, where 𝐌௤ 
is replaced with 𝐌௡ [42, 43]. 

The anisotropy field is evaluated in each cell as  

𝐇ୟ୬(𝐫௡) = −
ଵ

ஜబ

డம౗౤(𝐌೙)

డ𝐌೙
,        (15) 

where ϕୟ୬ is the magnetocrystalline anisotropy energy density function. In the case of uniaxial anisotropy 
with easy axis having unit vector u, ϕୟ୬ is expressed as 

   2an
an 2

S

1n n

k

M
     M M u ,        (16) 

where kan is the anisotropy constant. 

3. Validation of the numerical code 
In this Section we provide details about the procedure we followed to validate the developed micromagnetic 
solver. To investigate the code performance in the evaluation of magnetization dynamics, we initially focused 
on Standard Problem #4, proposed by the Micromagnetic Modeling Activity Group (µMAG) at NIST [33]. 
Then, we tested the code in the calculation of the static hysteresis loop of a 3D sample, comparing the results 
obtained for a 100 nm diameter permalloy sphere with the solution calculated with MuMax3 [34]. 



 

3.1 µMAG Standard Problem #4 
We referred to Standard Problem #4 [33] to test the ability of the code to reproduce the magnetization reversal 
process consequent to the application of a constant uniform field, almost antiparallel to the initial direction of 
the magnetization. For this test, we considered a thin film of permalloy with the following specifications: 
sample size (5001253 nm3); material properties (MS = 800 kA/m, kex = 13 pJ/m, kan = 0 J/m3,  = 0.02). 

Starting from an initial s-state at zero field, we monitored the magnetization evolution towards equilibrium 
after the application in the thin film plane (xy) of two different external fields: 

 Field 1: 0Hx = -24.6 mT, 0Hy = 4.3 mT, which is a field approximately equal to 25 mT, directed 170° 
counterclockwise from the positive x-axis; 

 Field 2: 0Hx = -35.5 mT, 0Hy = -6.3 mT, which is a field approximately equal to 36 mT, directed 
190° counterclockwise from the positive x-axis. 

 

                     (a)                                                                                      (b) 

Figure 1. Comparison of the solutions calculated with our code (time-integration scheme CAY12 and accuracy 
requirement ε∗ = 110-5) and the solutions available on [33] for µMAG Standard Problem #4. Time evolution of the 
normalized spatially averaged y-component of the magnetization for (a) Field 1 and (b) Field 2. Regarding our code, for 
Field 1 the solution reported in the main graph in Fig. 1(a) was computed with a mesh size equal to 3.1253.1253 nm3; 
in the inset this is compared to a solution obtained with a coarser mesh (553 nm3). For Field 2 we also included the 
solution obtained with a much finer cubic mesh (size of 1 nm) for a direct comparison with the result provided by Donahue 
and Porter. 

The time evolution of the normalized spatially averaged y-component of the magnetization is reported in Fig. 
1(a), for the case of Field 1, and in Fig. 1(b), for the case of Field 2. Regarding time-integration, for both cases 
we used the time-adaptive integration scheme CAY12 by setting the accuracy requirement ε∗ at 110-5 and 
parameter b at 0.8. Regarding spatial integration, we tested different mesh sizes, also considering the role of 
discretization along the film thickness. Figure 1 compares our solutions with some of the results available on 
the µMAG site [33], which were obtained with mesh sizes in the order of 3 nm, except for the solution from 
Donahue and Porter, computed with a much finer cubic mesh, with size of 1 nm. 

For the case of Field 1, we found a very good agreement among all the solutions, as illustrated by the main 
graph in Fig. 1(a), where the curve calculated with our code corresponds to a mesh size equal to 3.1253.1253 
nm3 (no discretization along the z-axis was introduced). To test the convergence versus cell size, we previously 
performed the simulation also with a coarser mesh (553 nm3), which led to a magnetization time evolution 
practically coincident with the finer mesh one, as shown by the inset in Fig. 1(a).  

For Field 2, the magnetization curves calculated with the different codes are very similar up to  0.4 ns from 
the beginning of the transient, then appreciable differences appear, as illustrated by Fig. 1(b). For this specific 
case, which displays a strong sensitivity to spatial discretization, the mesh size of 3.1253.1253 nm3 is not 

 



 

sufficient to guarantee the solution convergence and discretization along the z-axis is required. As a proof, we 
also report in Fig. 1(b) the result obtained with our code with a 1 nm sized cubic mesh; this is in perfect 
agreement, for the whole duration of the simulation, with the one obtained by Donahue and Porter with the 
same mesh [33]. 

As an example of spatial reconstruction of the solution, Fig. 2 shows the distribution of the magnetization 
vector, obtained when Mx crosses zero for the first time, under the action of Field 2. The map calculated with 
our code (time-integration scheme CAY12), reported in Fig. 2(b), is in good agreement with the one computed 
with OOMMF [44], shown in Fig. 2(a), as well as with the other results submitted on [33]. The two maps were 
calculated by setting mesh size at 1 nm. 

 

3.2 Validation of hysteresis loop computation  
To test the accuracy in static hysteresis loop computation, we compared the results of our code to the ones 
obtained with MuMax3 [34]. The loops were calculated by applying the external field in discrete steps and 
thus letting the magnetization evolve until equilibrium is reached. For each field interval, at each time instant, 
we locally monitor the amplitude of the torque exerted by the effective field on the magnetization. We assume 
that the equilibrium state is reached, when the maximum normalized value of the torque is lower than a fixed 
threshold ∗ (typically in the order of 10-7), i.e. 

max |
௡

𝐌௡ × 𝐇ୣ୤୤
௡ |/𝑀ୗ

ଶ  ∗,       𝑛 = 1, … , 𝑁     (17) 

where N is the total number of elementary cells in the spatial discretization.  

Figure 3 reports the static hysteresis loops computed for a permalloy sphere of diameter equal to 100 nm. The 
following simulation parameters were considered: mesh size (555 nm3); material properties (MS = 860 
kA/m, kex = 13 pJ/m, kan = 0 J/m3,  = 0.1). The external field, applied along x-axis, was varied between -300 
kA/m and 300 kA/m in steps of 1 kA/m. Our solution was obtained with the time-adaptive integration scheme 
CAY12, fixing the accuracy requirement ε∗ to 110-6, parameter  to 9 and the torque threshold ∗ for the 
equilibrium state evaluation to 110-7. With MuMax3, the equilibrium condition was derived by minimizing 
the total free energy via the conjugate gradient method [34]. As demonstrated by Fig. 3, the two solvers are in 

 

Figure 2. Comparison between the magnetization reversal processes under Field 2, calculated with (a) OOMMF and 
(b) our code (time-integration scheme CAY12), setting mesh size at 1 nm. The magnetization configuration was taken 
when the spatially averaged x-component of the magnetization first crosses zero. The arrows represent the 
magnetization direction in the xy-plane. The background color indicates the z-component of the magnetization, with 
blue directed away from the viewer and red directed towards the viewer. 



 

good agreement both qualitatively, calculating similarly shaped hysteresis loops, and quantitatively, predicting 
approximatively the same irreversible jump fields. 

 

 

Figure 3. Comparison of the static hysteresis loops of a 100 nm diameter permalloy sphere, calculated with CAY12 (red 
line with square marks) and MuMax3 (blue line with circle marks). 

4 Analysis of time-integration scheme performance 
4.1 Comparison of first-order, second-order and adaptive time-integration schemes 
Here we compare the computational performance of the three time-integration schemes CAY1, CAY2 and 
CAY12, described in Sub-section 2.1. For CAY12 the simulations were performed by varying the accuracy 
requirement ε∗ and fixing parameters b and  to 0.8 and 0, respectively. To test numerical stability, we consider 
µMAG Standard Problem #4 [33] and, in particular, the case with Field 1, solved with mesh size equal to 
3.1253.1253 nm3 (for the parameter specifications refer to Sub-section 3.1).  

In Fig. 4(a) we can see that the maximum time-step t able to guarantee the convergence and stability of the 
solution using CAY2 is more than one order of magnitude larger than the one required for CAY1 (0.25 ps 
against 0.0125 ps). Moreover, it is evident that for certain time windows CAY12 is able to select a time-step 
higher than the maximum t that preserves stability for the second-order scheme (CAY2). The lowering of the 
accuracy requirement (i.e. the increase in ε∗) has a very weak effect on t in the last part of the simulation, 
where the precessional motion reduces, while it leads to a rise in t at the beginning of the transient, allowing 
the algorithm to be more computationally efficient. For all the considered values of ε∗, a sudden decrease in 
t occurs in correspondence of the largest oscillation of the magnetization. 

Figure 4(b) reports the time evolution of the exchange energy density, as an indicator of loss of stability [11, 
45]. For the present problem the exchange energy is expected to decrease after the switching of the 
magnetization and stabilize around a very low value. The time-adaptive algorithm CAY12 is able to correctly 
choose the time-step and, even for very low accuracy, it does not lead to any non-physical increase in the 
exchange energy. On the contrary, with CAY1 the energy suddenly rises around 1 ns when using a time-step 
of 0.025 ps, leading to completely altered results; in order to guarantee stability a very small time-step is 
required, i.e. 0.0125 ps. CAY2  is stable when t = 0.25 ps, but becomes clearly unstable when t is set at 0.3 
ps, as shown again by the abrupt increase in the exchange energy at about 1 ns. The time-step of 0.275 ps, 
around which CAY12 stabilizes after the initial part of the transient [Fig. 4(a)], is inadequate to guarantee the 
stability of CAY2, as demonstrated by the rise in the exchange energy at the end of the simulation, with the 
consequent impossibility of reaching the equilibrium condition [Fig. 4(b)]. This wrong behavior cannot be 
immediately detected in the time evolution of the magnetization, which at 5 ns has values very close to the 
correct ones, but can be noticed by looking at the spatial distribution of the exchange field, which shows a non-
physical checkerboard pattern (Fig. 5). 



 

           

                         (a)                                                                                          (b) 

Figure 4. (a) Evolution, during the simulation of µMAG Standard Problem #4 (Field 1), of the time-step used by the time-
adaptive integration scheme CAY12 for different levels of the required accuracy ε∗, compared to the maximum time-step 
achievable with CAY1 and CAY2. (b) Time evolution of the exchange energy density as an indicator of the stability of 
the adopted time-integration scheme. The red line square at the end of the simulation marks the increase in the energy 
due to the instability arisen when using CAY2 and t = 0.275 ps. 

 

Figure 5. Spatial distribution of the amplitude of the exchange field calculated at 3 ns with CAY2, setting the time-step 
at 0.275 ps (µMAG Standard Problem #4, case Field 1). The inadequate choice of the time-step leads to numerical 
instability in the form of a non-physical checkerboard pattern, magnified in the bottom left corner. 

 

The first-order scheme CAY1 shows its strong limits, requiring 400000 time-steps for a 5 ns long simulation, 
while the second-order scheme CAY2 needs 20000 time steps to conclude the simulation with the best possible 
choice of t. The time-adaptive scheme CAY12 performs well in comparison to CAY2, requiring 18500 
time-steps for ε∗ = 110-3 and 20000 for ε∗ = 110-4. The increase in accuracy requirement leads to a moderate 
raise in the number of time-steps, i.e. for ε∗ = 510-5 roughly 20% of additional time-steps are needed with 
respect to CAY2, however for ε∗ = 110-5 this percentage increases up to 75%. Even if for this specific case 
we cannot see a significant improvement in performance when comparing the time-adaptive second-order 
scheme with the Heun method (CAY2), it is important to point out that the time-adaptive algorithm enables us 
to avoid a prior trial-and-error process to find the optimal t, guaranteeing at the same time a good level of 
accuracy. Without this search for the maximum t able to preserve solution stability, recommended when 
employing CAY2, one would not obtain a priori the same computational efficiency of its time-adaptive 
counterpart. Another drawback is the insidious risk of using an inadequate time-step and thus performing a 
simulation that can lose stability, preventing the reaching of equilibrium state, as depicted in Fig. 4(b) for 
CAY2 and t = 0.275 ps. 

4.2 Comparison with classical Runge-Kutta time-integration schemes 
In this Sub-section we compare the geometrical integrator within our micromagnetic code to the standard 
explicit time-adaptive Runge-Kutta (RK) methods implemented in MuMax3 [34]. In particular, we analyze 



 

the evolution of the time-steps selected during the simulation and how they differ when algorithms of different 
order are used, even if the same level of accuracy is required. The numerical test was performed on a permalloy 
square sample with size of 505020 nm3, using a mesh of 5 nm along all the directions and considering the 
same material properties of µMAG Standard Problem #4. The sample, which is saturated along the positive x-
axis, is exposed to a uniform constant field applied in the opposite direction, with an amplitude of 50 kA/m. 
The accuracy requirement ε∗ was fixed to 110-5 for both codes and we set parameter  at zero for CAY12. 

As illustrated by Fig. 6, which reports the time evolution of the maximum time-step able to guarantee solution 
convergence and stability, CAY12 can reach better performance than the classic RK12 method. In particular, 
for a precautionary factor b = 0.8, CAY12 selects t two times larger than RK12 for similar accuracy 
requirement, with a resulting computational efficiency between RK12 and RK23 time-adaptive schemes.  

It is important to state that different values of factor b were tested to ensure a correct choice of the time-step, 
without excessively underestimating it. For this test case, we observed that, without the precautionary term (b 
= 1), the number of time-steps required to perform the simulation (taking into account the discarded time-steps 
that do not meet the desired accuracy) is 20% higher than when b = 0.8. Moreover, we found that, when b = 
0.8, no re-evaluation is necessary. The lowering of b below 0.8 has no advantage, slowing down significantly 
the calculations, as also shown by Fig. 6 for b = 0.5. When b = 0.9 only a very small number of time-steps has 
to be discarded, providing better computational performance than b = 0.8, nevertheless it is advisable to opt 
for the safer value (0.8) that compromises computational performance in a limited way.   

Higher-order algorithms can have better convergence and stability properties at the expense of a larger number 
of intermediate steps, and the consequent increase in the overall computational burden. At each time-step, the 
number of operations required by CAY12 is greater than the number of operations needed by RK12 due to the 
Cayley transformation application, but the complexity of the solver part devoted to the only magnetization 
update scales as ( )N  for both algorithms. However, for each time-step, multiple calculations of the effective 

field have to be performed, depending on the order of the time-integration scheme and on the accuracy 
requirement. If an FFT discrete convolution method is adopted for the calculation of the magnetostatic field, 
which is the most computationally expensive term, the complexity of the effective field evaluation is 

( log )N N . This operation has a strong impact on the total computational cost of the simulation, thus in 

terms of overall computational efficiency it could not be convenient to opt for higher-order time-integration 
schemes, like RK45, even if it enables us to use larger time-steps. As an example, at the end of the transient 
RK45 allows us to use time-steps at least twice larger than CAY12, but at each time-step the effective field 
has to be calculated five times, resulting in a greater computational cost.   

 

Figure 6. Comparison between time-adaptive integration scheme CAY12 for different values of precautionary factor b 
and diverse order time-adaptive RK schemes implemented in MuMax3. The graph shows the evolution of the time-step 
used by the different alghoritms for a fixed accuracy ε∗ of 110-5, when calculating magnetization switching processes in 
a permalloy sample with size of 505020 nm3. 



 

4.3 Influence of damping effects on equilibrium calculation 
In many applications one cannot be interested in the system dynamics, but in the final equilibrium 
configuration, for example when calculating the static hysteresis loop of a sample. To speed-up the 
computation of equilibrium states, one of the most commonly used strategies is to artificially increase the 
damping parameter . This can lead to an improvement in computational efficiency due to both greater stability 
and possibility of accelerating the reaching of the transient end. 

One of the features of our micromagnetic code is the possibility of solving a generalized form of the LLG 
equation, which contains a term parallel to the magnetization vector, M, as described in Sub-section 2.1. 
From the mathematical and physical points of view, the contribution of this term to the LLG equation is zero, 
but when applying the time integration, it becomes responsible for the generation of artificial viscous effects, 
whose magnitude is proportional to  and t [46]. The term M provides a second mean that can be exploited 
to enhance damping phenomena, leading to a reduction in the transient duration and to a possible acceleration 
of the convergence to the equilibrium configuration.  

In this Section we show the effects of the increase in  and of the additive term introduced in the generator of 
the LLG equation, the potential drawbacks of the inclusion of artificial damping and how a proper tuning of 
parameters  and  can improve the convergence to equilibrium. The tests were performed on a 100 nm 
diameter permalloy sphere, with MS = 860 kA/m, kex = 13 pJ/m, kan = 0 J/m3 and variable , discretized with a 
mesh having size of 555 nm3. In the considered problem, the magnetization was relaxed from a quasi-
saturated state along x-axis to remanence, in the absence of external field. The different analyzed cases were 
compared focusing on the time evolution of the x-component of the magnetization. Moreover, we discuss the 
modification of the time-adaptive integration scheme CAY12, required to exploit the benefits of artificial 
damping phenomena in reaching the equilibrium states. 

In Fig. 7(a) we show the role of  setting  at zero and the threshold ∗ for the convergence to equilibrium at 
110-8; the time-integration scheme CAY2 was used. We can see that the increase in  from the material 
physical value of 0.02 up to 0.1 can reduce considerably the transient duration and speed-up the convergence 
to equilibrium, due to the reduction in precessional phenomena. Moreover, as discussed in [46], it leads to an 
increase in the time-step guaranteeing stability. However, over a certain value, the further increase in  causes 
the simulation to slow down, as demonstrated by the variation in the time evolution observed when   0.2. In 
particular, the enhancement of damping effects causes the system to remain frozen in an intermediate 
configuration for a larger time interval, thus decelerating the reaching of the real equilibrium. As an additional 
drawback, a tighter criterion has to be applied to verify the convergence to equilibrium (i.e. by significantly 
reducing ∗), otherwise this condition could be satisfied when the magnetization is in its intermediate 
configuration, where it remains blocked for a long time. As an example, an erroneous evaluation of the 
equilibrium state is made when  = 1, since for this case the threshold value of 110-8 is not sufficient to 
guarantee the correct convergence, stopping the simulation at about 1.3 ns. Thus, the increase in  can be a 
valid strategy for improving computational efficiency only for limited ranges of variation, otherwise it could 
be detrimental [46]. 

In Fig. 7(b) we analyze the artificial damping effects due to term M, by varying parameter  and contextually 
the threshold ∗ for the convergence to equilibrium; the time-integration scheme CAY2 was used and  was 
fixed to 0.1. The role of M becomes noticeable only when  has the same order of magnitude of  and t is 
in the order of 1 ps, producing an enhancement of damping phenomena [46]. In this case, there is also an 
increase in the maximum time-step that guarantees stability, varying from 0.1 ps, when  = 0, to 1 ps, when  
= 4.5. The total number of time-steps necessary to reach the equilibrium condition for  = 0, t = 0.1 ps and 
∗ = 110-7 is 3106, and reduces to 1105 when using  = 9, t = 1 ps and a lower torque threshold, i.e. 
∗ = 110-8, required to calculate the correct equilibrium state. For the latter, it is important to notice that 
equilibrium is reached 30 times faster. However, a further increase in  does not provide any advantages, since 
the system tends to remain much longer in the local minima of the free energy, needing a tighter requirement 
on the torque threshold to guarantee the reaching of the correct equilibrium configuration. As an example, 



 

when  = 22.5 and ∗ = 110-9, the simulation stops before. If ∗ = 110-10, the correct equilibrium is reached, 
but the number of time-steps doubles with respect to the case with  = 9. 

In the following, we investigate the role of term M, employing time-integration scheme CAY12 with ε∗ = 
110-5 and b = 0.8. As shown in Fig. 7(c), the selection of a time-constant value for parameter  does not lead 
to an improvement in computational efficiency. The reason is that the artificial damping effects introduced by 
the Cayley transform-based time-integration are proportional to both  and t. During the initial magnetization 
precessional motion, the time-adaptive algorithm tends to reduce the time-step to accurately reproduce the 
oscillations, thus greatly diminishing the numerical damping introduced by term M. By comparing Fig. 7(b) 
and Fig. 7(c), it is clear that for the same values of  the use of CAY12 limits the damping effects, with a 
consequent more oscillatory behavior. To obtain appreciable damping of the initial transient, much larger 
values of  are required, e.g.  = 45, but the drawback is that when the time-step increases, after the initial 
magnetization oscillation, the high value of  causes the system to remain frozen in the local energy minimum 
for a very long time. 

To exploit the numerical advantages of CAY12 and term M, we implemented a modified time-adaptive 
integration scheme, where  is a function of time, inversely proportional to the time-variable t. In this case, 
instead of setting  at a specific value, one can keep fixed the product $\psi = \sigma(t)\Delta(t)$ for the entire 
duration of the simulation. For the results shown in Fig. 7(d) the value of 110-6 m/A assigned to the product 
 was chosen starting from the knowledge that when using CAY2 the stability is preserved if  = 4.5 and t 
= 1 ps. We can see that, with such approach, the solution strongly improves with respect to the one calculated 
with the non-modified time-adaptive scheme. Moreover, it behaves comparably to the corresponding case 
where both  and t have fixed values (CAY2), preserving the advantages of the time-adaptive algorithm as 
well as the quicker convergence to the equilibrium obtainable with term M. Thanks to this implementation 
numerical damping effects are enhanced and become noticeable also when small time-steps are used, due to 
the increase in . On the contrary, they reduce when very large time-steps are selected, thus avoiding the 
detrimental blocking of the magnetization. Another advantage is the possibility of increasing the torque 
threshold ∗ for the equilibrium condition. As a consequence of all these aspects, in a time-window of 6 ns, the 
number of time-steps reduces to one sixth in comparison to the use of CAY2.  
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Figure 7. Analysis of the role of intrinsic and artificial damping phenomena, for the case of magnetization 
relaxation in a 100 nm diameter permalloy sphere. The graphs report the time evolution of the spatially 
averaged magnetization component along x-axis (initial quasi-saturation direction). (a) Role of damping 
coefficient , when using CAY2 and fixing  to zero. (b) Role of parameter when using CAY2 and fixing 
 to 0.1. (c) Role of when using CAY12 and fixing  to 0.1 (d) Role of time-variable  and t when using 
modified CAY12 (the product of  and t, , is kept constant during the time evolution). The simulation is 
compared to the corresponding ones, obtained with CAY2 and non-modified CAY12. 

5. Conclusions 
We developed a GPU-parallelized 3D micromagnetic solver able to efficiently simulate magnetization 
dynamics in 3D magnetic samples discretized with a structured mesh. Thanks to the implementation of time-
integration schemes based on the Cayley transform, several advantages can be obtained, such as the 
preservation of the magnetization amplitude and the possibility of increasing the maximum time-step that 
guarantees stability. Moreover, the time-adaptive version is able to select time-steps that are two times larger 
than the ones used by explicit algorithms, like classic RK schemes, of the same order.  

The use of an explicit method enables us to avoid iteration processes, keeping the number of evaluations of 
the effective field to a minimum. In addition, the good stability guaranteed by the geometric integrator permits 
the use of a second-order algorithm, further reducing the number of effective field calculations. Moreover, 
thanks to the treatment of a generalized version of the LLG equation, which contains a term parallel to the 
magnetization, it is possible to speed-up the computation of equilibrium states and of static hysteresis loops, 
by simply exploiting the artificial damping phenomena arising with the numerical integration. This procedure 



 

enables us to accelerate the convergence to equilibrium as well as to increase the size of the time-step 
guaranteeing stability, thus leading to a further improvement of computational efficiency. 

Despite the possible introduction of approximations in the reconstruction of complex shaped-samples, the use 
of a structured hexahedral mesh permits the implementation of computationally efficient algorithms for the 
accurate evaluation of the exchange field (26-neighbor finite difference method) and of the magnetostatic field 
(GPU-accelerated FFT-based algorithm). Further development of the code will regard the inclusion of the 
thermal field in the expression of the effective field, and of specific interface models for the exchange field 
computation in the presence of different materials. 
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