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ABSTRACT

We present in detail and validate an effective Monte Carlo approach for the calculation of the nuclear vibrational densities via integration of
molecular eigenfunctions that we have preliminary employed to calculate the densities of the ground and the excited OH stretch vibrational
states in the protonated glycine molecule [Aieta ef al., Nat Commun 11, 4348 (2020)]. Here, we first validate and discuss in detail the features
of the method on a benchmark water molecule. Then, we apply it to calculate on-the-fly the ab initio anharmonic nuclear densities in the
correspondence of the fundamental transitions of NH and CH stretches in protonated glycine. We show how we can gain both qualitative
and quantitative physical insight by inspection of different one-nucleus densities and assign a character to spectroscopic absorption peaks
using the expansion of vibrational states in terms of harmonic basis functions. The visualization of the nuclear vibrations in a purely quantum
picture allows us to observe and quantify the effects of anharmonicity on the molecular structure, also to exploit the effect of IR excitations
on specific bonds or functional groups, beyond the harmonic approximation. We also calculate the quantum probability distribution of bond
lengths, angles, and dihedrals of the molecule. Notably, we observe how in the case of one type of fundamental NH stretching, the typical
harmonic nodal pattern is absent in the anharmonic distribution.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0031391

I. INTRODUCTION weak interactions such as H-bonds,'' and support the understand-

. . 12-14 . .
ing of solvation. However, this spectroscopic procedure some-

Visualizing molecular vibrations in real time and at the atom-
istic length scale would be of great importance to understand chem-
ical phenomena. Experiments can usually access molecular motions
only in an indirect way. Even if modern vibrational spectroscopies
are so sophisticated as to probe isolated molecules," ’ only vibra-
tional frequencies are routinely measured. Information about vibra-
tional motion is extracted from the spectra via the assignment of
the peaks. In this way, for instance, it has been possible to elu-
cidate the structure of biomolecule conformers,’ characterize the
intermediates in chemical reactions,”'’ help the rationalization of

times does not bring to undisputed interpretations.'”'® To directly
observe molecular vibrations, it would be necessary to push the
limit of spatial and energy resolution of experimental spectroscopy.
A technique that evolved in this direction is the Tip-Enhanced
Raman Spectroscopy (TERS)."”'* Recently, a TERS experiment has
produced two-dimensional spatial images at Angstrom-scale res-
olution, where the peaks correlate with the intensity and direc-
tion of vibrational normal-mode displacements.l” Also, data from
elastic scattering of x-ray generated with a Free-Electron Laser
(XFEL) source can be opportunely treated to get diffraction
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images of specific vibrational states of molecules in the gas
phase.”’

Alongside experimental techniques, a complementary way to
get atomistic insight into molecular motions is provided by com-
puter simulations. Theoretical chemistry methods usually simulate
molecular vibrations under the Born-Oppenheimer (BO) approxi-
mation. The dynamics of a bound state on the BO Potential Energy
Surface (PES) is usually treated in the small oscillation regime. This
approach approximates the potential in the surroundings of a min-
imum as a quadratic function of the coordinates, and the normal-
mode picture for vibrations is introduced. Several methodologies
have been developed to project normal-mode motions onto chemi-
cally meaningful internal coordinates, such as bond lengths, angles,
and dihedrals, in the most unambiguous way possible.”” How-
ever, these methods for the visualization of nuclear motion com-
pletely overlook the effects derived from the quantum nature of the
nuclei.

Solving the nuclear time-independent Schrodinger equation
from direct diagonalization of the exact molecular Hamiltonian to
get the vibrational eigenfunction can be achieved only for low-
dimensional systems. For larger systems, it is necessary to develop
specific methodologies to account for anharmonicity and coupling
between modes in the ground and excited vibrational states.””
Then, even if one is able to get the eigenfunctions, a further issue
is how to better visualize them and get physical information. For
N-atom molecules, the vibrational eigenfunctions have a 3N — 6
dimensionality or 3N — 5 if the molecule has a linear shape. As
a consequence, such wavefunctions are usually analyzed by plot-
ting bidimensional cuts along some selected pairs of normal modes
bringing some information.” For example, the presence of nodal
planes in these contour plots and their tilted shape reveal the
resonance and anharmonic couplings between normal modes.”
Visualizing directly the vibrational behavior of molecules in three-
dimensional space in the quantum picture would boost our physical
insight.

Very recently, the analysis of quantum one-nucleus densities,
i.e., the probability of finding each nucleus in a molecule at a
given position in space independent of the location of the others,
has been proposed as a tool to get information about molecular
normal modes from the wavefunction.”® In that work, harmonic
one-nucleus densities were computed by analytic integration of the
harmonic eigenfunctions. The focus was on how the wavefunction
nodal structure of the vibrationally excited states is reflected in the
one-nucleus density. It was found that only certain vibrational exci-
tations change the one-nucleus density qualitatively as compared
to the ground state. Alternatively, one can partially represent the
density by including the lighter nuclei in the electronic structure
calculation.”

In our previous work,”* we further advanced the investigation
of one-nucleus densities. More specifically, we introduced a well-
controlled Monte Carlo integration to compute expectation val-
ues of the nuclear density operators from anharmonic vibrational
molecular eigenstates written on a basis of harmonic states. As a
first application, we estimated the expansion coefficients for the
ground and excited OH stretch eigenfunctions of protonated glycine
beyond the harmonic approximation with a semiclassical technique
recently developed in our group.”” We represented one-nucleus den-
sities with the cube file format, which can be visualized with 3D
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graphics programs,”’ as it is customarily done for electron density
and orbitals. Comparison between the isosurface plots of harmonic
and anharmonic vibrational densities permits us to visualize molec-
ular geometries and vibrations from a quantum mechanical point of
view.

In this work, we include anharmonicity effects through the
Multiple Coherent states Time Averaged Semiclassical Initial Value
Representation (MC SCIVR)*"* in which a semiclassical prop-
agator is obtained by stationary phase approximation of the
exact Feynman’s path integral formulation.”’ Recently, semiclassical
initial value representation techniques have advanced the field
of spectroscopy simulations,”’ > including temperature-dependent
spectra.”””>* The MC SCIVR employs information obtained
by processing few classical trajectories either on the adiabatic
electronic PES or on-the-fly. Moreover, with this technique, the
anharmonic excited states are obtained at the same cost of the
ground-state wavefunction. MC SCIVR had been successfully
applied for power spectra calculations, i.e., eigenvalue calculations,
to a number of medium- and large-size molecular systems such as
fullerene,” glycine,S(’ benzene,”’ water clusters,” pre-reactive com-
plexes,” system-bath models,” ** the protonated glycine dimer and
H,-tagged protonated glycine,'® nucleobases and nucleosides,”"’
and the Zundel cation® and more recently to surface adsorbed
molecules.”

In this paper, we calculate the one-nucleus densities and density
differences and discuss the shape and the nodal structure of the cor-
responding excited states with an extensive application on the water
molecule as a benchmark and protonated glycine to complement the
already investigated excited OH stretch nuclear density.”® Specif-
ically, the differences between anharmonic and harmonic wave-
functions with the same degree of excitation highlight the effect
of anharmonicity and the relevant consequences on the molecu-
lar structure (probability distributions of bond lengths, angles, and
dihedrals). In addition, we investigate the character of vibrational
excitations by considering differences between the excited and the
ground-state densities. In the harmonic picture, we propose this as
an alternative way to intuitively visualize normal-mode displace-
ments without resorting to a classical interpretation based on clas-
sical trajectories visualization. In the anharmonic framework, these
differences reveal the non-local nature of vibrational excitations,
which are directly associated with the peaks observed in vibrational
spectroscopy, going beyond the simplified harmonic normal-mode
picture.

This paper starts with the definition of the density distribu-
tions and the description of the numerical approach we use to
calculate them. In Sec. II, we recall the semiclassical technique
based on MC SCIVR, which allows the calculation of the ground
and excited state semiclassical vibrational eigenfunctions. Next, we
move on to the presentation of the results for two representa-
tive cases (Sec. III). We compute densities for the water molecule,
for which we calculate the exact values on the same fitted PES.
We use this system to validate our approach. In Sec. III B, we
move to the protonated glycine (GlyH"), a moderate dimension-
ality molecule containing 11 atoms for which a fitted PES is not
available. This molecule is interesting for future study of molecu-
lar solvation, as suggested by IR spectroscopy results. >’ Finally,
in Sec. IV, we provide the conclusions and future development
outlook.
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Il. THEORY
A. Molecular nuclear densities

Under the BO approximation, an N-atom molecule can be
described by considering the spectral decomposition of the nuclear
Hamiltonian operator H|e,) = En|e.), where the nuclear eigenfunc-
tions are denoted by |e,) and E, is the corresponding eigenvalue.

By diagonalizing the mass-scaled potential Hessian matrix at
equilibrium, the diagonal matrix T of the eigenvalues wq (a = 1,
..., 3N) is obtained, as well as the conversion matrix between
the Cartesian and the normal-mode coordinates Q. In this work,
we analytically determine the roto-translational modes Q®”, which
we keep fixed at their null equilibrium position, and perform a
Gram-Schmidt orthogonalization of the remaining Ny vibrational
modes.””® This small-displacement approximation is commonly
used and corresponds to separating vibrations and rotations, specif-
ically to neglect their coupling. When the system lies in the n-th
eigenstate |e,), the quantum probability density distribution of a
generic physical quantity 8(Q) is then computed as

pro®) = [ aNQl(Qe) 3@ )o0@ ), ()

where x is a vector variable of the same dimensionality as 6.

Numerically, we represent the p,,¢(x) density as a histogram
divided into B bins of volume Q and centered around the ¥/ G=1,
..., B) positions. Therefore, the average value of p, g(x) in the j-th
bin is

plo= o [ aVall@en 5@ )(Q) @

where, for a given coordinate Q, the index function F)(Q) is equal
to 1 if 6(Q) belongs to the bin centered around %, while it is null
otherwise. The density normalization condition imposes the follow-
ing normalization over its histogram representation: Q b ﬁr{,ﬂ =1
The calculation of the integral in Eq. (2) is particularly suited for
its evaluation via simple Gaussian Monte Carlo sampling. Thanks
to the separation of vibrations from rotations and translations, the
eigenfunctions are expanded in the basis of the harmonic vibrational
states |¢x ) as

|en> = ch,K‘¢K>~ (3)
K

Here, K = (Ki,...,Kn,) are positive integer vectors, indicat-
ing the excitation degree of each harmonic vibrational mode. The
harmonic case is simply retrieved by considering C,x = Ogk-
In coordinate representation, one can factor out the Gaussian
terms as (Qlex) = G(QT)YXkCuix ¢x(Q), where G(Q,T)
= [T/ (eh)["* exp (-QTTQ/(21)) and $x(Q) = TN, (2 Kat) ™
X th(\/wa/h Qa), with the Ktha—order Hermite polynomial
denoted as hg,. Thanks to this factorization, Eq. (2) can be conve-
niently recast as

i 1
Plo- 5 [l elG@D)P]

2
S(QE(Q). (4)

X

EK: Crxdx(Q)
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Eventually, we generate a set of independent L molecular configura-
tions along a multivariate Gaussian distribution with the null mean
and variance equal to (2I/h)™" for the vibrational modes only by
means of the Box-Muller algorithm,”” and we evaluate the integral
inEq. (4) as

L

i 1
Pao = Jim o7 3

2
I(Q). (5)

; Cux¢x(Q))

Since the function 6(Q) is always an analytical expression of the
nuclear coordinates, the computation of Eq. (4) is computationally
cheap, once the anharmonic expansion coefficients C, k are known
for a given vibrational state n. Also, the values of ¢k (Q;) are analyti-
cal and can be easily evaluated over a large number of configurations
(usually in the order of L = 10%) with limited computational over-
head. By only sampling the common Gaussian term, all samples
are uncorrelated, and physical quantities relative to multiple excited
states can be sampled at once, unlike the diffusion Monte Carlo algo-
rithm that can measure quantities only in the ground state or in
states with a predetermined nodal surface.”**’ All calculations in this
work are converged in order to have statistical error bars that are not
visible in the plots. The error bar of the quantities is estimated in the
standard way as the square root of the variance divided by L.

When 6 = R;, where R; is the Cartesian position of the i-th
nucleus, the probability density of Eq. (1) assumes the form

pnk,(R) = f 4™ Q|(Qlen)8(Q")S(R(Q) ~R),  (6)

which corresponds to the marginal i-th one-nucleus density,”® which
is the nuclear analogue of electron density of density functional the-
ory for electronic structure calculations.”’ Due to the larger mass
of the nuclei as compared to electrons, the one-nucleus densities
are sufficiently localized so that the overlap of densities of different
nuclei in the molecule is negligible. Therefore, we can consider the
one-nucleus density for a molecule,

N
pn(R) = " pur,(R), ?)
i=1

which is defined in Cartesian coordinate space’ and allows for
the visualization of its 3D isosurfaces, as it is commonly done for
electronic structure calculations.

In this work, we also evaluate bond-length quantum distribu-
tions by considering 0 = |r;|, where r;; =R; — R, for all pairs of nuclei i
and j, and angle quantum distributions by using 6 = arccos (# - #)
for all triplets of nuclei i, j, and k forming an angle with vertex k, with
#ij = rj/|r;|. Finally, we evaluate dihedral quantum distributions for
quadruplets of atoms i, j, k, and 1 by considering 6 = arctan 2(s, g),
with s = [(f‘ji X i‘kj) X (i‘kj X i'lk)] . 'A‘kj and ¢ = (f‘j,’ X i’kj) . (i‘kj X f‘]k). :

B. MC-SCIVR anharmonic eigenfunctions

To calculate the coefficients C, x of Eq. (3), we employ our
recently developed semiclassical method,””” which is summarized
in this section.

The eigenvectors of a generic Hamiltonian H are a complete
basis set, and the spectroscopic weight of a given state |y) at the
energy of each eigenvalue E,, i.e., |(y|e.)|*, can be obtained from the
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following Fourier transform:
e 1 T _if, i
B(E) = —Re [ dr(yle e
1 T ~L1E,t LEt
- R f dt S (ylen)e 75 (enly e
aiRe S et el)e

> [(xlen) PD(E - En; Ar). )

In Eq. (8), the dynamical convolution function D is a nascent delta
function, i.e., one of the functions belonging to the sequence of func-
tions approaching, in the weak sense, the Dirac delta distribution,
with peak centered on E, with width A; approaching zero as the sim-
ulation time 7 — co. We derive the Hamiltonian eigenvalues from
the positions of the spectral peaks, while the squared projections
|(xlen)|* of the reference state onto the eigenvectors are determined
from their peak intensities. Specifically, the harmonic weights of
Eq. (3) can be written as |Cuk|” o< Isc(En). As shown in detail in
our previous work,” the signed Cy k coefficients can be calculated
from survival amplitudes using the following formula:

_ Aj%’q)x (E”)
2 \/ j‘f’o (E”)

where @ is the harmonic ground state, Iy, (E,) is the value at energy
E, of the power spectrum obtained with the harmonic state |¢k }, and

Cn,K (9)

A1¢K, Pk, (E) = jﬁbk, +Px, (E) - T¢K1 (E) - j¢kz (E) (10)

We obtain the quantum time evolution and the Fourier transform in
Eq. (8) by using the MC-SCIVR approach, which relies on the evo-
lution of just a handful of selected classical trajectories with initial

conditions (Q(()"),Pén)).” 9% These are tailored to ideally corre-

spond to the nth vibrational state via the Einstein-Brillouin-Keller
(EBK) rules,

}{ P4 - h((n + ”Z) 1y

H(Qf” p{")=E,

where (, are positive integers and u, are Maslov indexes.”” In the
separable case, these rules provide a link between the n-th vibrational
state and a N,,-dimensional vector of natural numbers v such that {,
= Y aVa, which is valid also beyond the harmonic approximation.
In the MC-SCIVR approach, these classical trajectories are chosen
with the total energy (also energy partition) corresponding to the
harmonic oscillator spectral energies ES® = ¥, (1/2 + va)hw, and
are generated by considering the initial conditions

o _ [PQvetl) Lo
0,0t \/Tsm( @) 1)
P(():lx) = \/mcos(&x),

where the equilibrium position is located at the origin and the angles
8o govern the partition of the starting energy of the a-th normal
mode into potential and kinetic terms.
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In this framework, the power spectrum of the survival ampli-
tude of a generic state |y) is computed from the classical evolution of
a single trajectory as e

" 1| r- N R OINO) 2
Tua(B) o 2| [[Tar(iq RS EL )

When |y) = |¢k), the factor (X|Q§"),Pt(")) is analytical, and we get

|C”»K|2 o< j(l)K (E”) = TV;¢K (E”) (14)

In Eq. (13), the coherent states |Q, P) have the following normal-
mode coordinate representation:’”

1

T |7 _ 1 (x_0)T(x—0Q)+iP(x—
(x\Q,P):‘% ¢ HEQTEQHPE-Q) (15)

where St(") is the classical action of the trajectory at time t and

(") is the phase of the Herman-Kluk prefactor C™.”* ** The latter

accounts for quantum fluctuations and is defined as

1
2

1 _ i}
c™ = |5(MQQ + I MppI — iMqpl + il Mpq) (16)

The prefactor requires the evaluation of the stability matrix
subblocks Mog = 9Q™/9Q\", Mpp = 9P /0P, Mqp
= 8Qf")/8Pé"), and Mpq = 9P [9Q'", which are computed
along each trajectory via numerical integration of their symplectic
equations of motion.” For this purpose, the instantaneous Hessian
matrix is needed along each classical trajectory. This is the most
computationally expensive part of these calculations. Specific algo-
rithms have been developed to reduce the computational cost in

high-dimensional applications.”

I1l. RESULTS AND DISCUSSION
A. H,0 molecule
1. Computational details

Some of us” recently obtained the first five vibrational eigen-
states of the non-rotating water molecule using the analytical PES
by Dressler and Thiel”” with the MC SCIVR method. The eigen-
states were reproduced by running five classical trajectories with
initial conditions chosen according to Eq. (12) and 8, = 0, ie.,
with initial momenta such that the kinetic energy is equal to the
harmonic vibrational energy of the corresponding harmonic states
(0,0,0), (0,1,0), (0,2,0), (1,0,0), and (0,0,1). Here, the spectroscopic
notation reports the symmetric, bending, and asymmetric normal
mode quantum numbers, respectively. The basis set was composed
of the first 11 harmonic states for each degree of freedom, imply-
ing a total of 1331 coefficients. It was shown that a good agreement
with the exact Discrete Variable Representation (DVR) calculations
can be achieved by dropping all the coefficients smaller than 0.01
and enforcing orthonormalization by applying the Gram-Schmidt
algorithm.” In the present work, we compute the nuclear densities
from the eigenfunctions generated with the same setup, but with a
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smaller threshold (equal to 107%) and keeping more coefficients in
the harmonic base expansion. In addition, we have pruned the basis
set by keeping only those basis functions, which have the same sym-
metry as the target eigenfunction. The coefficients are reported in the
supplementary material. For the one-nucleus densities, we used bins
of edge 0.0229 A, while for the bond-length distributions, we used a
bin size of 0.0077 A, and for the angular distributions, we use a bin
size of 0.45°. The Monte Carlo integration has been carried out with
L = 10® steps.

2. Anharmonicity effect on nuclear densities

In Fig. 1, the one-nucleus densities of Eq. (7) for the lowest
five vibrational energy eigenstates are reported. For comparison,
we compute also the harmonic one-nucleus densities. The plots are
shown in the water molecular plane because we do not account for
rotation. First, we observe that the envelopes of the hydrogen den-
sities are wider than the ones of the oxygen. This immediately spots
the quantum nature of nuclei in molecules, whose wavefunctions are
more and more delocalized as the particle mass decreases. Then, we
observe the appearance of nodes as the quantum number increases;
however, this is not guaranteed in the one-nucleus density repre-
sentation. As already observed in the literature,”® for the harmonic
case (lower panel in Fig. 1), it is likely that the nodal structure of
the wavefunction is reflected in the one-nucleus densities when nor-
mal mode atomic displacements are along a certain direction. In
the water molecule case, the ground-state density correctly does not
show any node. The first and second excitations of the bending mode

% e

> )

S (a % (b

&
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\3 FIG. 1. Water molecule one-nucleus
/ densities. Anharmonic vibrational state
eigenfunction (000) in panel (a), (010)
O () in panel (b), (020) in panel (c), (100) in

panel (d), and (001) in panel (e). Har-
monic vibrational eigenfunction (000) in
/> panel (a’), (010) in panel (b’), (020) in
panel (c’), (100) in panel (d"), and (001)
in panel (e’). All isodensity surfaces are

>‘* setto 10 a.u.
O ey

[panels (b), (b'), (c), and (¢’) in Fig. 1] have one and two nodal
planes, respectively, perpendicular to the bending motion direction
of the hydrogens because the bending motion is only represented by
the H-O-H angle distortion. Otherwise, the first excitations of both
symmetric and asymmetric stretching equally imply a motion along
the two O-H bond distance directions. In this case, the nodes are
not present, but just a depletion of one-nucleus density is observed
where one would expect the appearance of the node.

We found a similar shape of the one-nucleus anharmonic den-
sities (upper panels in Fig. 1). In these cases, a deformation of the
lobes appears and minor differences are visible by direct compari-
son with the harmonic results. In particular, a slight tilting of the
nodal planes of the bending modes is observed.

The difference between anharmonic and harmonic densities
better clarifies the effect of the anharmonicity, as reported in Fig. 2.
For the ground state density difference [panel (a) in Fig. 2], the one-
nucleus density is anharmonically driven toward longer O-H bond
distances, as shown by the density accumulation (red isosurface) and
its corresponding density depletion (blue isosurface). Similar effects
are observed for all the investigated excited states. This shows that
in the anharmonic case, the equilibrium distances should be big-
ger than the harmonic one. In addition, for the two bending modes
[panels (b) and (c)], a smaller bond angle is expected, since the big-
ger red lobes are localized in the inner part of the H-O-H angle.
Regarding the symmetric and asymmetric stretches [panels (d) and
(e)], the density differences hint at a slighter deformation toward
larger H-O-H angles for the asymmetric stretch only.

% e

> )

% 0 & @ & (o

FIG. 2. Differences of the anharmonic one-nucleus density with the corresponding harmonic one. State (000) in panel (a), (010) in (b), (020) in (c), (100) in (d), and (001) in
(e). Red indicates positive contributions, where the molecular density concentrates due to anharmonicity, while blue stands for the negative contributions, where the density
is depleted due to anharmonicity. The isodensity surfaces are set to +5 and —5 a.u.
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These qualitative observations, driven by visual inspection of  distributions are in good agreement with the DVR ones (blue lines).

density differences, are confirmed by a quantitative analysis of prob- For the ground state, it is found that the average bond lengths are
ability distributions of bond distances and angle amplitudes derived slightly increased for the anharmonic wavefunctions [panel (a)],
from the quantum harmonic, the semiclassical, and the exact quan- while the bond angle is practically unaltered [panel (a’)]. Moreover,
tum eigenfunctions, the latter obtained by normal-mode DVR sim- for all the excited states, all bond lengths are longer in the anhar-
ulations.”” These calculations are reported in Fig. 3, where just one monic picture with respect to the harmonic one [panels (b)-(e)]. In
of the two bonding distances is plotted in the left column because particular, the increase in the bond length is more significant for the
of symmetry. The statistical error bars for the distributions in Fig. 3 two stretching modes [panels (d) and (e)]. The anharmonicity effect
are smaller than the linewidth. In Fig. 3, the semiclassical (red line) of O-H bonds elongation is consistent with the Morse-like shape of
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the potential along the direction of the bonds. Conversely, the angle
manifests a contraction only for the excited bending modes [panels
(b") and (<)].

In the same figure, the bond length and angle distributions
derived from the classical trajectories employed for the semiclassi-
cal simulation are reported as either gray or green histograms. One
would expect the corresponding distribution maximum at the clas-
sical turning points if the motion along the angle or a bond corre-
sponds exactly to the displacement of a single normal mode. This is
clearly seen for all the classical H-O-H angle distributions (right-
hand side panels in Fig. 3) because the angle deformation can be
described by the bending mode variation only. Notice that, for all
the employed EBK trajectories, we assign to the bending mode a
kinetic energy corresponding at least to the harmonic zero-point
energy (ZPE). In contrast, the quantum ground state and stretch-
ing excited state angle distributions are peaked around their equi-
librium positions [see panels (a’), (d'), and (e)]. Instead, for the
excited bending states [panels (b’) and (c)], the quantum mechan-
ical distribution becomes more similar to the classical one, as the
quantum number is increased. A more complicated picture arises in
the bond-length distribution case (left-hand side panels of Fig. 3).
The probability distributions are equal for both O-H bonds due to
the symmetry of the wavefunction. However, this is not always the
case for the classical distributions [green and gray histograms, see
panel (c)]. This happens because our classical trajectories are short-
time trajectories, as requested from the semiclassical approach, and
they are too short to guarantee equilibration of the energy between
the degrees of freedom of the molecule. Nevertheless, the compar-
ison of classical distributions derived from these short trajectories
is still useful to make it evident that we are able to reproduce cor-
rect quantum mechanical results starting from classical information.
Indeed, the quantum distributions are always wider than the clas-
sical ones for all the considered quantities. This reveals that we are
actually reproducing quantum effects because semiclassical distribu-
tion probabilities are non-zero in classical forbidden regions of the
motion.

3. Anharmonicity effects on vibrational excitations

To gain deeper quantum insight into the vibrational excita-
tions, we propose in Fig. 4 the differences between the excited state
vibrational one-nucleus densities and the ground-state ones. In the
upper panel, we report the differences in harmonic approximation,
while in the lower panel, we report those in the anharmonic ones.
Red lobes indicate density concentration, while blue lobes indicate
density depletion as a consequence of the vibrational transition from
the ground to the excited state. In Fig. 4, the harmonic bending
excitations cause a deformation of the angle [panels (a) and (b)],
while the stretching excitations deform the density along the two
O-H bond directions [see panels (c) and (d)]. Here, one can see
how the nuclear delocalization is wider in the overtone bending
excitation [panel (b)] than in the fundamental one [panel (a)], as
expected by comparison with a simple one-dimensional harmonic
oscillator. This is true because the mode variation is given by a single
angular variation. When the normal mode involves several geomet-
ric parameters, the nuclear density variation is not necessarily so
intuitive. Asymmetric and symmetric stretching density variations
look very similar because the correlations between nuclear motions
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FIG. 4. Harmonic [top panels (a)-(d)] and semiclassical anharmonic [bottom pan-
els (a’)~(d")] nuclear density differences obtained by subtracting the zero point
energy (000) state one-nucleus density to the (010), (020), (100) and (001) excited
state densities, respectively. Red indicates positive contributions, where the den-
sity concentrates due to the excitation, while blue stands for the negative contribu-
tions, where the density is depleted due to the excitation. The isodensity surfaces
are setto+5and -5 a.u.

are lost in this one-nucleus density picture. However, the small
deformation on the oxygen density with vertical nodal planes, which
appears in panel (c), is consistent with the symmetric stretching
motion, where the oxygen motion keeps the molecular center of
mass fixed. In turn, for the asymmetric stretch in panel (d), the lobes
on the oxygen have the nodal planes set horizontally.

The bottom panels of Fig. 4 show the anharmonic density
variation after excitations. Also in this case, the shape of the lobes
is influenced by the motion of the corresponding normal mode that
brings the biggest contribution in the harmonic expansion of the
wavefunction. Interestingly, many features show a certain amount
of anharmonicity. For example, the symmetric stretch state density
difference [panel (c")] is accumulated more toward the tip of the two
O-H bonds due to significant anharmonicity. In the same fashion,
for the asymmetric stretch state density difference [panel (d')], the
lobes are distributed along a curved line. Finally, the fundamental
and overtone bending excitation cases [panels (a”) and (b”)] are more
similar to the harmonic densities, given the slightly wider lobes, with
respect to the anharmonic case.

B. Protonated glycine

1. Computational details

In this section, we consider the 11-atom protonated glycine
(GlyH") molecule. We are able to tackle such a system because
the MC-SCIVR technique can be applied on-the-fly when fitted
PESs are not available. As in our previous work,”* we perform the
quantum chemistry calculations at the DFT-B3LYP level of the-
ory using the aug-cc-pVDZ basis set with the NWChem package.”’
The gas phase global minimum has the protonated amino group,
which establishes an ionic hydrogen bond with the carbonyl oxy-
gen.” The optimized structure in Fig. 5 displays C; symmetry (see
file “reference_geometry_Glyp.xyz” included in the Fortran software
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FIG. 5. Protonated glycine (GlyH*) lowest energy conformer at the DFT-
B3LYP/aug-cc-pVDZ level of theory.

packagew for Cartesian coordinates), whose relevant normal-mode
frequencies and symmetry characters are reported in Table I.

We focus on the 2600 cm™'-3800 cm™! region of the vibra-
tional spectrum, which has been investigated experimentally to get
structural information of solvated GlyH" clusters by comparison
with IR spectra of the isolated-molecule.'” Specifically, we focus on
modes 23, 25, and 26, which are the IR active ones in this region,
as confirmed by the Double Harmonic Approximation (DHA) in
Table 1. The OH stretch mode 27 is also active and we have already
discussed it in our previous work.”® We then run four on-the-fly
trajectories, each one with initial conditions corresponding to the
harmonic EBK prescription of the ZPE and the three fundamentals,
as described in Eq. (12). Given the freedom in choosing the angle J4
in Eq. (12), we set it equal to 71/2 for normal modes 24 and 26, which
correspond to the N-H1/2 and C2-H4/5 asymmetric stretches. The
standard choice of 8« = 0, ie., the one for the equilibrium posi-
tion, would have required a longer simulation time for observing
the stretching of both bonds. Instead, with this choice, we can better
explore the stretching motions during the short-time semiclassical
dynamics and obtain the power spectrum displayed in Fig. 6. In the
same figure, apart from the fundamentals, we can observe side peaks,
which we attribute to the combination of each fundamental with the
low frequency modes. However, in this work, our analysis is focused
on the fundamental signals.

We write the eigenfunctions as a combination of 12799 coef-
ficients, after restricting the harmonic basis to the simultaneous
excitation of two modes at most, with, at most, the harmonic
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quantum number equal to 6. The shape of the density is always
determined by the largest coefficients in the harmonic expansion.
By gradually dropping the smaller coefficients, we found that just
those greater than 107 are significant. As in the case of water, we
enforce C; symmetry to the harmonic-basis wavefunctions. We also
apply Gram-Schmidt orthonormalization between eigenfunctions
starting from the ground state one. We report the largest coefficients
of the states analyzed in this work and the ground state one in the
supplementary material. As already discussed in our previous
work,” the largest expansion coefficient in the ground-state func-
tion is the one of the harmonic ground state (see Table S2 of the
supplementary material). Similarly, for the wavefunctions computed
in this work, we find that the largest coefficients are those of the har-
monic state with one quantum of energy intake for modes 23 and
26, respectively (see Table S3 of the supplementary material). As for
the v»5 = 1 anharmonic eigenfunction, there are three leading terms
in the expansion whose coefficients are comparable (see Table S4
of the supplementary material). However, the harmonic state with
one quantum of energy on mode 25 is the only fundamental excita-
tion among these three harmonic states, thus determining the overall
character of the wavefunction. The other two largest coefficients are
combination of low frequency mode harmonic eigenfunctions.
Eventually, we represent the one-nucleus density with a his-
togram of 3D cubes with the edge equal to 0.049 A. The Monte Carlo
integration has been carried out with L = 10° steps. We also obtained
all the bond-length, angle, and dihedral densities with both har-
monic and anharmonic wavefunctions for all the considered states,
with typical resolutions of 0.008 A, 0.45°, and 0.45°, respectively.

2. Anharmonicity effect on nuclear densities

In this paragraph, we analyze, with the aid of the calculated one-
nucleus densities, the bond, angle, and dihedral distributions and the
effect of the inclusion of anharmonicity in the excited vibrational
states of GlyH". For the sake of brevity, we only show some selected
bond-length distributions in the main text. Additional distributions
are reported in the supplementary material, when useful to support
the discussion.

We start from the excited vibrational state v,3 = 1, where the
inclusion of anharmonicity shows a less mobile H3. This localization
is evident from the isodensity plot in panel (a) of Fig. 7, where the
anharmonic accumulation of the H3 one-nucleus density toward the
center of the distribution is spotted by a red lobe with two symmet-
ric blue lobes at the side. We better render this feature by looking
at the N-H3 and C2-H4/5 bond-length distributions reported in

TABLE . The six highest fundamental frequencies (w,) for the protonated glycine (GlyH*) at the DFT-B3LYP/aug-cc-pVDZ level of theory together with their symmetry group
Irreducible Representation (Irr. Repr.) and their Double Harmonic Approximation (DHA) IR intensities.

a-th normal mode we (em™ 1) Description Irr. repr. DHA IR intensity (a.u.)
22 3105 N-H3 stretch + C2-H4/5 symmetric stretch in phase A’ 0.804
23 3117 N-H3 stretch + C2-H4/5 symmetric stretch out of phase A’ 4.580
24 3170 C2-H4/5 asymmetric stretch A" 0.123
25 3445 N-H1/2 symmetric stretch A’ 2.882
26 3505 N-H1/2 asymmetric stretch A" 2.718
27 3693 O1-H6 stretch A 4.263
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FIG. 6. GlyH" MC-SCIVR power spec-
q trum. Each peak is obtained from a
&7 trajectory with the energy equal to the
fundamental modes 23, 25, 26, and 27
using the initial conditions of Eq. (12) and
the relative harmonic reference state.*
The peak positions are shown relative to
the ZPE one, and the peak heights have
been arbitrarily scaled, since we are
interested on peak positions only, i.e.,
Ep in Eq. (14). The ZPE and vy; peaks
are taken from our previous study.*® Ver-
tical lines are the peak positions from
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4

FIG. 7. One-nucleus density differences between the anharmonic and the cor-
responding harmonic marginal one-nucleus density for the (a) vo3 = 1, (b)
vp5 = 1, and (c) vy = 1 vibrational excited states. Red indicates positive contri-
butions, where the density concentrates due to anharmonicity, while blue stands
for the negative contributions, where the density is depleted due to anharmonicity.

The isodensity surfaces are set to +0.15 and —0.15 a.u., respectively

900" 2400 2700 3000 3300

3600 3900 4200 the experimental IR spectrum of Voss,

Fischer, and Garand.'”

panels (a) and (a’) of Fig. 8. The C2-H4/5 bond length is increased
with respect to the ground state and the harmonic case and the H4-
C2-H5 angle is larger (see Fig. S1 in the supplementary material).
A strong anharmonic effect is observed in panel (a) of Fig. 8 for the
N-H3 bond. Here, the harmonic double peak distribution becomes
a single peak upon anharmonicity inclusion. In the harmonic case,
normal mode 23 has a significant displacement vector lying along the
N-H3 bond direction. This movement counterbalances the symmet-
ric C2-H4/5 stretch to keep the center of mass of the molecule fixed.
We can model the oscillation along the N-H3 as a one-dimensional
harmonic oscillator, and we observe the appearance of a node in the
probability distribution by giving one quantum of excitation, consis-
tently with the one-dimensional harmonic oscillator model. Instead,
in the anharmonic picture, the oscillation along the N-H3 bond is
no longer separable from other motions. Anharmonicity mixes nor-
mal mode 23 with other mode contributions, and the associated
displacements of the N and H3 nuclei no longer lie along the bond
direction. As a consequence, no clear nodal feature is found upon
excitation.

For both the v,5 = 1 and v,6 = 1 excited states [panels (b) and (c)
of Fig. 7], the most evident anharmonic effect is the localization of
the one-nucleus density on the H1/2 nuclei. This apparently con-
tradictory feature is explained by the appearance of a single peak
distribution for the N-H1/2 bond lengths in the anharmonic pic-
ture, as shown in panels (b) and (c) of Fig. 8. The N-H1/2 symmetric
and asymmetric stretches can be compared to the water symmetric
and asymmetric stretches described above. From the normal-mode
point of view, they behave similarly because normal modes 25 and
26 involve exclusively two H atoms distance variations without any
angle changes. However, the inclusion of anharmonicity acts differ-
ently for the amino group. For water, we observe that the harmonic
and anharmonic bond-length distributions have the same double
peak shape [panels (d) and (e) in Fig. 3], while for GlyH", the distri-
butions become single-peaked in the anharmonic case [panels (a)-
(c) in Fig. 8], showing once again that both v,5 = 1 and v, = 1 exci-
tation dynamics involve several atoms and not only the N-H1/2 and
N-H3 distances. Therefore, the inclusion of anharmonicity in the
eigenfunction highlights the couplings between these N-H stretches
and other modes. In particular, we find for both modes a significant
coupling to the breathing of the O2-C1-C2-N-H3 ring of atoms.
Concerning mode 25, there is a general broadening of bond length
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FIG. 8. Bond-length distributions com-
parison between harmonic (black lines)
and anharmonic (red lines) states for
excitation v,3 = 1 along the N-H3 and
C2-H4/5 stretching [panels (a) and (a’)],
vo5 = 1 along N-H1/2 and N-H3 ones
[panels (b) and (b’)], and vy = 1 along

N-H1/2 and N-H3 directions [panels (c)
and (c’)]. The lower part of each plot
shows the difference of the two curves
reported in the upper part by subtract-
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and angles distributions for the ring structure. At the same time, a
clear reduction of the 02-C1-C2 and C1-C2-N angles is observed,
while the N-H3 bond becomes longer [Fig. 8, panel (b’)]. However,
asymmetric stretch state 26 predicts a deformation of the ring struc-
ture by shortening the O2-H3 distance and elongating the C1-C2
backbone bond. At the same time, we observe that the C2-N bond
becomes shorter and the N-H3 longer [Fig. 8, panel (c)]. All these
considerations suggest that the introduction of anharmonicity for
both states leads to a picture where the H3 is increasingly shared with
the O2 atom of the carbonyl group. Finally, we note that the broad-
ening of the dihedral angles distributions are complementary in the
two states. More specifically, in the v,5 = 1 eigenstate, the dihedrals

1.2 1.4

N-H3 bond length (A)

distributions for the “carboxylic end” of the molecule are equal to
the harmonic ones, while the dihedral distributions for the “aminic
end” result slightly broadened. Instead, for the v;s = 1 eigenstate,
the effect is the opposite, since anharmonicity introduces a signifi-
cant broadening of the distributions for the carboxyl part of GlyH".
All these information is well summarized by the isodensity plots in
Fig. 7.

3. Anharmonicity effect on vibrational excitations

We now look at the one-nucleus density differences between
excited vibrational states and the ground one, both using the
harmonic and anharmonic eigenfunctions. We will show that a
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FIG. 9. GlyH* one-nucleus density difference plots for the vo3 = 1 vibrational
eigenstate. Panel (a) depicts the difference between excited and ground harmonic
densities, while panel (b) shows the anharmonic case. Red indicates positive con-
tributions, while blue stands for the negative contributions. All isodensities are set
to +0.1 and —0.1 a.u.

significant wavefunction spreading under excitations over the
molecular structure occurs for all the considered anharmonic eigen-
states, at variance with the harmonic ones.

Panel (a) of Fig. 9 and panels (a) and (a’) of Fig. 10 show the
one-nucleus density differences in harmonic approximation for the

Harmonic
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case v23 = 1. The harmonic isodensity difference plot shows lobes
on the H3 nucleus, meaning that this vibrational mode has its major
contribution on the N-H3 stretching and a minor one on the two
C1-H4/5 stretches, as shown in panel (a) of Fig. 9. In Fig. 10, in the
harmonic case (left panels), the N-H3 bond-length distribution is
a single peak around equilibrium, while it becomes a double peak
in the excited state v;3 = 1 [panel (a)]. On the contrary, the C2-
H4/5 bond-length distribution is single-peaked both in the ground
and in the excited state [panel (a’)]. This agrees with the harmonic
normal-mode picture, where the bigger displacements in Cartesian
coordinates are found along the N-H3 bond direction.

The semiclassical anharmonic eigenfunctions show instead
quite a different pattern, and the harmonic node is not present in
the anharmonic excitation. As before, this is because the excitation
involves several modes and the reasoning based on the harmonic
mode excitation is not meaningful anymore. This is really apparent
by inspection of Fig. 9. In the harmonic case, the density defor-
mation is confined to the displacements related to normal mode
23, while in the semiclassical anharmonic picture, the one-nucleus

Anharmonic

FIG. 10. The w3 = 1 excited state
(continuous lines) and the ground state
(dotted lines) bond-length distributions.
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Panels (a) and (a’) in harmonic approx-
imation along the N-H3 and C2-H4/5
stretch directions, respectively. Panels

(b) and (b") show the anharmonic case.
The ground state densities are presented
in our previous work.*® The lower parts
of the plots show the difference of the
curves reported in the upper parts.
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density change is distributed all over the molecular structure. One
can appreciate this by looking at the red lobes along the backbone
structure in the anharmonic excitation in Fig. 9. In the semiclassical
anharmonic picture, the v,3 = 1 excitation includes a density change
for the far-away O1-H6 stretch displacement as well. The two-lobe
shape on H3 in this picture can be better understood by looking at
bond-length distributions in Fig. 10. Panel (b) reports a single-peak
distribution for the N-H3 bond length also for the excited state, dif-
ferently from the harmonic double peak one. The three-lobe shape
on H4/5 is instead qualitatively equivalent to the harmonic one, as
it is observed for the C2-H4/5 bond-length distributions [panel (a")
and panel (b")]. This evidence proves a strong coupling between the
oscillation along N-H3 bond and the other modes in the anhar-
monic picture, and a weaker coupling of the C2-H4/5 stretches with
the other motions.

Moving to higher frequency modes, the density differences in
harmonic approximation indicates a very neat effect on the N-H1/2
bond oscillations for the v,5 = 1 and 1,6 = 1 states, as reported in
panels (a) and (a’) of Fig. 11. This is consistent with the classical
normal-mode displacements. In the same pictures, the symmetric
and asymmetric N-H1/2 stretches could be distinguished only by
looking at the small contributions on the N nucleus where the dis-
tortion in the N one-nucleus density in the symmetric stretch case
is parallel to the main distortion found on the H1/2 nuclei [panel
(a)]. The reason is that, as already pointed out in the case of the
water molecule, the molecule has to keep its center of mass fixed
while undergoing a symmetric stretch. A perpendicular distortion
is present in the N-H1/2 asymmetric stretch [panel (a’)]. Turning
our attention to the anharmonic excitations [see panel (b) and panel
(b") of Fig. 11], the spreading of the excitations over the whole struc-
ture is once again the main feature. The excitation of the eigenstate
v25 = 1 has a less evident stretching character than the v;6 = 1. In
other words, the anharmonic lobe pattern of the H1 and H2 atoms
of the amino group is more similar to the harmonic ones for the
v = 1 eigenfunction than for the v,5s = 1 state. Nevertheless, the
two states can be distinguished using the same reasoning applied to
the harmonic excitations. Specifically, the nodal planes of the two H

PN 2
(a) % M
(a') ‘ (b") oa

FIG. 11. One-nucleus density difference plots for the GlyH* v,5 = 1 [panels (a)
and (b)] and vy = 1 [panels (a’) and (b’)] vibrational eigenstates. Panels (a) and
(a’) depict the difference of the harmonic excited state and ground state densities,
while panels (b) and (b’) refer to the anharmonic case. Red indicates positive
contributions, while blue stands for the negative contributions. All isodensities are
setto 0.1a.u.and -0.1 a.u.
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nuclei in the amino group are set perpendicularly to the bond axes in
the case of the symmetric stretch, while for the asymmetric stretch,
they are set parallel. Another feature of the anharmonic excitations
is the shortening of O2-H3 distances, which is more pronounced
for the va5 = 1 eigenstate. This is indicated by the position of the two
anharmonic density accumulations on the O2 and H3 nuclei, and it
is also confirmed by the corresponding bond-length distribution. In
the harmonic picture, the O2-H3 distance reduction is completely
missed. There, the mode related to this intermolecular rearrange-
ment is the N-H3 stretch mode 23, which instead loses this local
character in the anharmonic picture, as discussed in the previous
paragraph.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have detailed how semiclassical eigenfunc-
tions,”””” which are written as combinations of products of one-
dimensional harmonic vibrational eigenfunctions, can be profitably
employed for nuclear density calculations. Specifically, we calcu-
late the marginal one-nucleus density, also the bond-length, angle
and dihedral distributions using a Monte Carlo integration over
the remaining nuclei positions. Given the state of the art where
one-nucleus densities are given in harmonic approximation,” our
semiclassical approach calculates the nuclear densities, including
anharmonic and quantum mechanical effects. The method is based
on classical trajectories and it is implemented either on a pre-
computed PES or on-the-fly, i.e., using an ab initio molecular
dynamics approach.”

We take the water molecule as a benchmark for checking the
accuracy of our nuclear densities and get familiar with this quantum
mechanical nuclear representation. We observe the quantum har-
monic description to be quite accurate in this case and similar to the
semiclassical and exact anharmonic ones by reproducing all main
quantum features.

We then calculate protonated glycine molecule nuclear densi-
ties, complementing our previous work.” In this case, no PES is
available, and our semiclassical calculations are performed by run-
ning classical trajectories on-the-fly using the NWChem suite of
codes. We find, in this case, the coupling to be strong and the pic-
ture provided by the harmonic approximation of the normal modes
to be oversimplified, since excitations are typically spread all over the
molecular structure. For example, vibrational excitations v,5 = 1 and
v26 = 1 in a normal-mode picture are described only by vibrational
excitations of the amino group, i.e., N-H1/2 stretching displace-
ments. Instead, in the quantum mechanical picture provided by our
semiclassical nuclear densities, all atoms are significantly affected
and we find even a strong involvement of the O1-H6 stretch, which
is located at the other end of the molecule.

In the case of water molecule, we also point out that a classical
density distribution obtained using the same trajectories employed
for the semiclassical simulations is inadequate for the low quantum
number vibrational state density description and it becomes more
suitable as the number of quanta of excitation are increased.

Finally, we find that, when considering significantly anhar-
monic states, the three-dimensional (3D) one-nucleus densities are
usefully complemented by the distributions of internal coordinates,
such as bond lengths, angles, and dihedrals, because they focus more
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on local distortions. We expect that the methodology presented here
will provide insightful information also for more flexible molecules,
especially when considering the densities pertaining to rigid modes,
provided a judicious sampling of the floppy modes will be enacted.”

In summary, the quantum mechanical tool presented in this
paper allows us to show and quantify for both ground and vibra-
tional excited states how much nuclear densities and nuclear motion,
in general, deviate from a harmonic description.

SUPPLEMENTARY MATERIAL

See the supplementary material for the list of coefficients of the
water and protonated glycine vibrational wavefunctions and plots of
additional distributions of the protonated glycine molecule useful to
support the discussion. We also provide a Fortran software pack-
age’” with instructions for the reproduction of the results for both
water and GlyH".
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