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Representing Molecular Ground and Excited Vibrational Eigenstates with
Nuclear Densities obtained from Semiclassical Initial Value Representation
Molecular Dynamics

Chiara Aieta,1 Gianluca Bertaina,1, 2 Marco Micciarelli,1, a) and Michele Ceotto1, b)
1)Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano,
Italy
2)Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy

We present in detail and validate an effective Monte Carlo approach for the calculation of the nuclear vibrational
densities via integration of molecular eigenfunctions that we have preliminary employed to calculate the densities of
the ground and the excited OH stretch vibrational states in protonated glycine molecule [C. Aieta et. al. Nat Commun
11, 4348 (2020)]. Here, we first validate and discuss in detail the features of the method on a benchmark water
molecule. Then, we apply it to calculate on-the-fly the ab initio anharmonic nuclear densities in correspondence of the
fundamental transitions of NH and CH stretches in protonated glycine. We show how we can gain both qualitative and
quantitative physical insight by inspection of different one-nucleus densities and assign a character to spectroscopic
absorption peaks using the expansion of vibrational states in terms of harmonic basis functions. The visualization of
the nuclear vibrations in a purely quantum picture allows us to observe and quantify the effects of anharmonicity on
the molecular structure, and to exploit the effect of IR excitations on specific bonds or functional groups, beyond the
harmonic approximation. We also calculate the quantum probability distribution of bond-lengths, angles and dihedrals
of the molecule. Notably, we observe how in the case of one type of fundamental NH stretching the typical harmonic
nodal pattern is absent in the anharmonic distribution.

I. INTRODUCTION

Visualizing molecular vibrations in real time and at the
atomistic length scale would be of great importance to un-
derstand chemical phenomena. Experiments can usually ac-
cess molecular motions only in an indirect way. Even if
modern vibrational spectroscopies are so sophisticated as
to probe isolated molecules,1–7 only vibrational frequencies
are routinely measured. Information about vibrational mo-
tion is extracted from the spectra via the assignment of the
peaks. In this way, for instance, it has been possible to elu-
cidate the structure of bio-molecules conformers,8 character-
ize the intermediates in chemical reactions,9,10 help the ra-
tionalization of weak interactions like H-bonds,11 and sup-
port the understanding of solvation.12–14 However, this spec-
troscopic procedure sometimes does not bring to undisputed
interpretations.15,16 To directly observe molecular vibrations
it would be necessary to push the limit of spatial and en-
ergy resolution of experimental spectroscopy. A technique
which evolved in this direction is the Tip-Enhanced Raman
Spectroscopy (TERS).17–19 Recently, a TERS experiment has
produced two-dimensional spatial images at Ångström-scale
resolution, where the peaks correlate with the intensity and
direction of vibrational normal-mode displacements.20 Also,
data from elastic scattering of X-ray generated with a Free-
Electron Laser (XFEL) source can be opportunely treated
to get diffraction images of specific vibrational states of
molecules in the gas phase.21

Alongside experimental techniques, a complementary way
to get atomistic insights about molecular motions is pro-
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vided by computer simulations. Theoretical chemistry meth-
ods usually simulate molecular vibrations under the Born-
Oppenheimer (BO) approximation. The dynamics of a bound
state on the BO Potential Energy Surface (PES) is usually
treated in the small oscillation regime. This approach ap-
proximates the potential in the surroundings of a minimum
as a quadratic function of the coordinates, and the normal-
mode picture for vibrations is introduced. Several method-
ologies have been developed to project normal-mode mo-
tions onto chemically meaningful internal coordinates, such
as bond lengths, angles, and dihedrals, in the most unambigu-
ous way possible.22 However, these methods for the visualiza-
tion of nuclear motion completely overlook the effects derived
from the quantum nature of the nuclei.

Solving the nuclear time-independent Schrödinger equation
from direct diagonalization of the exact molecular Hamilto-
nian to get the vibrational eigenfunction can be achieved only
for low-dimensional systems. For larger systems, it is nec-
essary to develop specific methodologies to account for an-
harmonicity and coupling between modes in the ground and
excited vibrational states.23–33 Then, even if one is able to get
the eigenfunctions, a further issue is how to better visualize
them and get physical information. For N-atom molecules,
the vibrational eigenfunctions have a 3N − 6 dimensionality,
or 3N − 5 if the molecule has a linear shape. As a conse-
quence, such wavefunctions are usually analyzed by plotting
bidimensional cuts along some selected pairs of normal modes
bringing some information.34 For example, the presence of
nodal planes in these contour plots and their tilted shape re-
veal the resonance and anharmonic couplings between nor-
mal modes.35 Visualizing directly the vibrational behavior of
molecules in three-dimensional space in the quantum picture
would boost our physical insight.

Very recently, the analysis of quantum one-nucleus densi-
ties, i.e. the probability of finding each nucleus in a molecule

mailto:marco.miccia@gmail.com
mailto:michele.ceotto@unimi.it


2

at a given position in space independently of the location of
the others, has been proposed as a tool to get information
about molecular normal modes from the wavefunction.36 In
that work, harmonic one-nucleus densities were computed by
analytic integration of the harmonic eigenfunctions. The fo-
cus was on how the wavefunction nodal structure of the vi-
brationally excited states is reflected in the one-nucleus den-
sity. It was found that only certain vibrational excitations
change the one-nucleus density qualitatively as compared to
the ground state. In alternative one can partially represent the
density by including the lighter nuclei in the electronic struc-
ture calculation.37

In our previous work,38 we further advanced the investi-
gation of one-nucleus densities. More specifically, we intro-
duced a well-controlled Monte Carlo integration to compute
expectation values of the nuclear density operators from an-
harmonic vibrational molecular eigenstates written on a ba-
sis of harmonic states. As a first application, we estimated
the expansion coefficients for the ground and excited OH
stretch eigenfunctions of protonated glycine beyond the har-
monic approximation with a semiclassical technique recently
developed in our group.39 We represented one-nucleus den-
sities with the cube file format, that can be visualized with
3D graphics programs,40 as it is customarily done for elec-
tron density and orbitals. Comparison between the isosurface
plots of harmonic and anharmonic vibrational densities per-
mits to visualize molecular geometries and vibrations from a
quantum mechanical point of view.

In this work we include anharmonicity effects through the
Multiple Coherent states Time Averaged Semiclassical Initial
Value Representation (MC SCIVR),41–48 in which a semiclas-
sical propagator is obtained by stationary phase approxima-
tion of the exact Feynman’s path integral formulation.49 Re-
cently, Semiclassical Initial Value Representation techniques
have advanced the field of spectroscopy simulations.50–52,
including temperature-dependent spectra.39,53,54 MC SCIVR
employs information obtained by processing few classical
trajectories either on the adiabatic electronic PES or on-
the-fly. Moreover, with this technique, the anharmonic ex-
cited states are obtained at the same cost of the ground-state
wavefunction. MC SCIVR had been successfully applied
for power spectra calculations, i.e. eigenvalue calculations,
to a number of medium- and large-size molecular systems
like fullerene,55 glycine,56 benzene,57 water clusters,58, pre-
reactive complexes,59, system-bath models,60–62 the proto-
nated glycine dimer and H2-tagged protonated glycine,16 nu-
cleobases and nucleosides,63,64, the Zundel cation65 and more
recently to surface adsorbed molecules.66

In this paper, we calculate the one-nucleus densities and
density differences, and discuss the shape and the nodal struc-
ture of the corresponding excited states with an extensive ap-
plication on water molecule as a benchmark and protonated
glycine, to complement the already investigated excited OH
stretch nuclear density.38 Specifically, the differences between
anharmonic and harmonic wavefunctions with the same de-
gree of excitation highlight the effect of anharmonicity and the
relevant consequences on the molecular structure (probability
distributions of bond lengths, angles and dihedrals). In addi-

tion, we investigate the character of vibrational excitations by
considering differences between the excited and the ground-
state densities. In the harmonic picture, we propose this as an
alternative way to intuitively visualize normal-mode displace-
ments, without resorting to a classical interpretation based on
classical trajectories visualization. In the anharmonic frame-
work, these differences reveal the non-local nature of vibra-
tional excitations, which are directly associated to the peaks
observed in vibrational spectroscopy, going beyond the sim-
plified harmonic normal-mode picture.

The paper starts with the definition of the density distribu-
tions and the description of the numerical approach we use to
calculate them. In Section II, we recall the semiclassical tech-
nique based on MC SCIVR, which allows the calculation of
the ground and excited state semiclassical vibrational eigen-
functions. Next, we move on to the presentation of the results
for two representative cases (Section III). We compute densi-
ties for the water molecule, for which we calculate the exact
values on the same fitted PES. We use this system to validate
our approach. In Section III B, we move to the protonated
glycine (GlyH+), a moderate dimensionality molecule con-
taining 11 atoms for which a fitted PES is not available. This
molecule is interesting for future study of molecular solva-
tion, as suggested by IR spectroscopy results.12,67 Finally, in
the last Section, we provide the conclusions and future devel-
opment outlook.

II. THEORY

A. Molecular Nuclear Densities

Under the BO approximation, an N-atom molecule can be
described by considering the spectral decomposition of the
nuclear Hamiltonian operator Ĥ |en〉 = En |en〉, where the
nuclear eigenfunctions are denoted by |en〉, and En is the cor-
responding eigenvalue.

By diagonalizing the mass-scaled potential Hessian ma-
trix at equilibrium the diagonal matrix Γ of the eigenvalues
ωα (α = 1, . . . , 3N ) is obtained, as well as the conversion
matrix between the Cartesian and the normal-mode coordi-
nates Q. In this work, we analytically determine the roto-
translational modesQRT , that we keep fixed at their null equi-
librium position, and perform a Gram-Schmidt orthogonaliza-
tion of the remaining Nv vibrational modes.65,68 This small-
displacements approximation is commonly used and corre-
sponds to separating vibrations and rotations, namely to ne-
glect their coupling. When the system lies in the n-th eigen-
state |en〉, the quantum probability density distribution of a
generic physical quantity θ(Q) is then computed as

ρn,θ(x) =

ˆ
d3NQ| 〈Q|en〉 |2δ(QRT )δ(θ(Q)− x), (1)

where x is a vector variable of the same dimensionality as θ.
Numerically, we represent the ρn,θ(x) density as a his-

togram divided into B bins of volume Ω and centered around
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the xj (j = 1 . . . B) positions. Therefore, the average value
of ρn,θ(x) in the j-th bin is

ρjn,θ =
1

Ω

ˆ
d3NQ |〈Q|en〉|2 δ(QRT )Ijθ (Q) , (2)

where, for a given coordinate Q, the index function Ijθ (Q)
is equal to 1 if θ(Q) belongs to the bin centered around xj ,
while it is null otherwise. The density normalization condi-
tion imposes the following normalization over its histogram
representation Ω

∑
j ρ

j
n,θ = 1. The calculation of the inte-

gral in Eq. 2 is particularly suited for its evaluation via simple
Gaussian Monte Carlo sampling. Thanks to the separation of
vibrations from rotations and translations, the eigenfunctions
are expanded in the basis of the harmonic vibrational states
|φK〉 as

|en〉 =
∑
K

Cn,K |φK〉 . (3)

Here,K = (K1 . . .KNv ) are positive integer vectors, indicat-
ing the excitation degree of each harmonic vibrational mode.
The harmonic case is simply retrieved by consideringCn,K =
δK̄,K . In coordinate representation, one can factor out the
Gaussian terms as 〈Q|en〉 = G(Q,Γ)

∑
K Cn,K φ̄K(Q),

where G(Q,Γ) = |Γ/(π~)|1/4 exp
(
−QTΓQ/(2~)

)
, and

φ̄K(Q) =
∏Nv
α=1

(
2KαKα!

)−1/2
hKα

(√
ωα/~ Qα

)
, with

the Kthα-order Hermite polynomial denoted as hKα . Thanks
to this factorization, Eq. 2 can be conveniently recast as

ρjn,θ =
1

Ω

ˆ [
d3NQ |G(Q,Γ)|2

]
×∣∣∣∣∣∑

K

Cn,Kφ̄K(Q)

∣∣∣∣∣
2

δ(QRT )Ijθ (Q) .

(4)

Eventually, we generate a set of independent L molecular
configurations along a multivariate Gaussian distribution with
null mean and variance equal to (2Γ/~)−1 for the vibrational
modes only, by means of the Box-Muller algorithm,69 and we
evaluate the integral in Eq. 4 as

ρjn,θ = lim
L→∞

1

ΩL

L∑
l=1

∣∣∣∣∣∑
K

Cn,Kφ̄K(Ql)

∣∣∣∣∣
2

Ijθ (Ql) . (5)

Since the function θ(Q) is always an analytical expression of
the nuclear coordinates, the computation of Eq. 4 is compu-
tationally cheap, once the anharmonic expansion coefficients
Cn,K are known for a given vibrational state n. Also, the
values of φ̄K(Ql) are analytical and can be easily evaluated
over a large number of configurations (usually in the order
of L = 108) with limited computational overhead. By only
sampling the common Gaussian term, all samples are uncorre-
lated, and physical quantities relative to multiple excited states
can be sampled at once, unlike the diffusion Monte Carlo al-
gorithm which can measure quantities only in the ground state

or in states with predetermined nodal surface.28,29 All calcu-
lations in this work are converged in order to have statistical
errorbars that are not visible in the plots. The errorbar of the
quantities are estimated in the standard way, as the square root
of the variance divided by L.

When θ = Ri, where Ri is the Cartesian position of the i-
th nucleus, the probability density of Eq. 1 assumes the form

ρn,Ri(R) =

ˆ
d3NQ |〈Q|en〉|2 δ(QRT )δ(Ri(Q)−R)

(6)
which corresponds to the marginal i-th one-nucleus density,36

that is the nuclear analogue of electron density of Density
Functional Theory for electronic structure calculations.70 Due
to the larger mass of the nuclei as compared to electrons,
the one-nucleus densities are sufficiently localized so that the
overlap of densities of different nuclei in the molecule is neg-
ligible. Therefore, we can consider the one-nucleus density
for a molecule

ρn(R) =

N∑
i=1

ρn,Ri(R) (7)

which is defined in Cartesian coordinate space,36 and allows
for the visualization of its 3D isosurfaces, as it is commonly
done for electronic structure calculations.

In this work, we also evaluate bond-length quantum distri-
butions, by considering θ = |rij |, where rij ≡ Ri − Rj ,
for all pairs of nuclei i, j, and angle quantum distributions, by
using θ = arccos (r̂ik · r̂jk), for all triplets of nuclei i, j, k
forming an angle with vertex k, with r̂ij ≡ rij/|rij |. Finally,
we evaluate dihedral quantum distributions, for quadruplets
of atoms i, j, k, l, by considering θ = arctan2(s, c), with
s = [(r̂ji × r̂kj) × (r̂kj × r̂lk)] · r̂kj and c = (r̂ji × r̂kj) ·
(r̂kj × r̂lk).71

B. MC-SCIVR anharmonic eigenfunctions

To calculate the coefficients Cn,K of Eq.3, we employ our
recently developed semiclassical method,39,53 which is sum-
marized in this section.

The eigenvectors of a generic Hamiltonian Ĥ are a com-
plete basis set, and the spectroscopic weight of a given state
|χ〉 at the energy of each eigenvalue En, i.e. |〈χ|en〉|2, can be
obtained from the following Fourier transform

Ĩχ(E) =
1

π~
Re

ˆ τ

0

dt 〈χ| e− i
~ Ĥt |χ〉 e i~Et =

=
1

π~
Re

ˆ τ

0

dt
∑
n

〈χ|en〉 e−
i
~Ent 〈en|χ〉 e

i
~Et =

=
∑
n

|〈χ|en〉|2D(E − En; ∆τ ). (8)

In the last equality, the dynamical convolution function D is
a nascent delta function, i.e. one of the function belonging to
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the sequence of functions approaching, in the weak sense, the
Dirac delta distribution, with peak centered on En with am-
plitude ∆τ approaching zero as the simulation time τ → ∞.
We derive the Hamiltonian eigenvalues from the positions of
the spectral peaks, while the squared projections |〈χ|en〉|2 of
the reference state onto the eigenvectors are determined from
their peak intensities. Specifically, the harmonic weights of
Eq.3 can be written as |Cn,K |2 ∝ ĨφK

(En) . As shown in
detail in our previous work,39 the signed Cn,K coefficients
can be calculated from survival amplitudes using the follow-
ing formula

Cn,K =
∆Ĩφ0,φK(En)

2
√
Ĩφ0(En)

, (9)

where φ0 is the harmonic ground state, Ĩφk
(En) is the value at

energy En of the power spectrum obtained with the harmonic
state |φK〉, and

∆ĨφK1
,φK2

(E) ≡ĨφK1
+φK2

(E)− ĨφK1
(E)− ĨφK2

(E).

(10)

We obtain the quantum time evolution and the Fourier trans-
form in Eq.8 by using the MC-SCIVR approach, which relies
on the evolution of just a handful of selected classical trajec-
tories with initial conditions

(
Q

(n)
0 ,P

(n)
0

)
.43–45,56 These are

tailored to ideally correspond to the n-th vibrational state via
the Einstein-Brillouin-Keller (EBK) rules

˛

H
(
Q

(n)
0 ,P

(n)
0

)
=En

P (n)dQ(n) = ~
(
ζn +

µn
4

)
(11)

where ζn are positive integers, and µn are Maslov indexes.72

In the separable case, these rules provide a link between the
n-th vibrational state and a Nv-dimensional vector of natu-
ral numbers ν, such that ζn =

∑
α να, which is valid also

beyond the harmonic approximation. In the MC-SCIVR ap-
proach, these classical trajectories are chosen with total en-
ergy (and energy partition) corresponding to the harmonic os-
cillator spectral energies EHOννν =

∑
α (1/2 + να) ~ωα, and

are generated by considering the initial conditions

Q
(n)
0,α =

√
~ (2να + 1)

ωα
sin(δα)

P
(n)
0,α =

√
(2να + 1)~ωα cos(δα), (12)

where the equilibrium position is located at the origin and the
angles δα govern the partition of the starting energy of the
α-th normal mode into potential and kinetic terms.

In this framework, the power spectrum of the survival am-
plitude of a generic state |χ〉 is computed from the classical
evolution of a single trajectory as41,42

Ĩννν,χ(E) ∝ 1

τ

∣∣∣∣ˆ τ

0

dt 〈χ|Q(n)
t ,P

(n)
t 〉 ei[S

(n)
t +φ

(n)
t +Et]/~

∣∣∣∣2 .
(13)

When |χ〉 = |φK〉, the factor 〈χ|Q(n)
t ,P

(n)
t 〉 is analytical,

and we get

|Cn,K |2 ∝ ĨφK
(En) ' Ĩννν,φK

(En). (14)

In Eq. (13), the coherent states |Q,P 〉 have the following
normal-mode coordinate representation73–75

〈x|Q,P 〉 =

∣∣∣∣ Γ

π~

∣∣∣∣ 14 e− 1
2~ (x−Q)TΓ(x−Q)+ i

~P (x−Q), (15)

S
(n)
t is the classical action of the trajectory at time t, and φ(n)

t

is the phase of the Herman-Kluk prefactor C(n)
t .76–84 The lat-

ter accounts for quantum fluctuations and is defined as

C
(n)
t =

∣∣∣∣12 (MQQ + Γ−1MPPΓ − iMQPΓ + iΓ−1MPQ

)∣∣∣∣ 12 .
(16)

The prefactor requires the evaluation of the stability matrix
subblocks MQQ = ∂Q

(n)
t /∂Q

(n)
0 , MPP = ∂P

(n)
t /∂P

(n)
0 ,

MQP = ∂Q
(n)
t /∂P

(n)
0 and MPQ = ∂P

(n)
t /∂Q

(n)
0 , which

are computed along each trajectory via numerical integration
of their symplectic equations of motion.85 For this purpose,
the instantaneous Hessian matrix is needed along each clas-
sical trajectory. This is the most computationally-expensive
part of these calculations. Specific algorithms have been de-
veloped to reduce the computational cost in high-dimensional
applications.86–88

III. RESULTS AND DISCUSSION

A. H2O Molecule

1. Computational details

Some of us39 recently obtained the first 5 vibrational eigen-
states of the non-rotating water molecule using the analyti-
cal PES by Thiel et al.89 with the MC SCIVR method. The
eigenstates were reproduced by running five classical trajec-
tories with initial conditions chosen according to Eq.(12) and
delta alpha=0, i.e. with initial momenta such that the kinetic
energy is equal to the harmonic vibrational energy of the cor-
responding harmonic states (0,0,0), (0,1,0), (0,2,0), (1,0,0)
and (0,0,1). Here the spectroscopic notation reports respec-
tively the symmetric, bending and asymmetric normal mode
quantum numbers. The basis set was composed of the first
11 harmonic states for each degree of freedom, implying a
total of 1331 coefficients. It was shown that a good agree-
ment with the exact Discrete Variable Representation (DVR)
calculations can be achieved by dropping all the coefficients



5

smaller than 0.01 and enforcing orthonormalization by apply-
ing the Gram-Schmidt algorithm.39 In the present work, we
compute the nuclear densities from the eigenfunctions gener-
ated with the same setup, but with a smaller threshold (equal
to 10−3) and keeping more coefficients in the harmonic base
expansion. In addition, we have pruned the basis set by keep-
ing only those basis functions which have the same symme-
try as the target eigenfunction. The coefficients are reported
in the Supplementary Material. For the one-nucleus densities
we used bins of edge 0.0229Å, while for the bond-length dis-
tributions we used a bin size of 0.0077Å and for the angular
distributions a bin size of 0.45 degrees. The Monte Carlo in-
tegration has been carried out with L = 108 steps.

2. Anharmonicity effect on nuclear densities

In Fig. 1 the one-nucleus densities of Eq. 7 for the lowest 5
vibrational energy eigenstates are reported. For comparison,
we compute also the harmonic one-nucleus densities. The
plots are shown in the water molecular plane because we do
not account for rotation. First we observe that the envelopes
of the Hydrogen densities are wider than the ones of the Oxy-
gen. This immediately spots the quantum nature of nuclei in
molecules, whose wavefunctions are more and more delocal-
ized as the particle mass decreases. Then, we observe the ap-
pearance of nodes as the quantum number increases, however
this is not guaranteed in the one-nucleus density representa-
tion. As already observed in literature,36 for the harmonic
case (lower panel in Fig. 1), it is likely that the nodal structure
of the wavefunction is reflected in the one-nucleus densities
when normal mode atomic displacements are along a certain
direction. In the water molecule case, the ground-state density
correctly does not show any node. The first and second excita-
tions of the bending mode (panels (b), (b’), (c) and (c’) in Fig.
1) have respectively one and two nodal planes perpendicular
to the bending motion direction of the Hydrogens because the
bending motion is only represented by the H-O-H angle dis-
tortion. Otherwise, the first excitations of both symmetric and
asymmetric stretching equally imply a motion along the two
O-H bond distance directions. In this case the nodes are not
present, but just a depletion of one-nucleus density is observed
where one would expect the appearance of the node.

We found a similar shape of the one-nucleus anharmonic
densities (upper panels in Fig. 1). In these cases, a defor-
mation of the lobes appears and minor differences are visible
by direct comparison with the harmonic results. In particu-
lar a slight tilting of the nodal planes of the bending modes is
observed.

The difference between anharmonic and harmonic densities
better clarifies the effect of the anharmonicity, as reported in
Fig. 2. For the ground state density difference (panel (a) in
Fig. 2), the one-nucleus density is anharmonically driven to-
wards longer O-H bond distances, as shown by the density ac-
cumulation (red isosurface) and its corresponding density de-
pletion (blue isosurface). Similar effects are observed for all
the investigated excited states. This shows that in the anhar-
monic case the equilibrium distances should be bigger than the

harmonic one. In addition, for the two bending modes (panels
(b) and (c)), a smaller bond angle is expected, since the bigger
red lobes are localized in the inner part of the H-O-H angle.
As regarding the symmetric and asymmetric stretches (panels
(d) and (e)), the density differences hint at a slighter deforma-
tion towards larger H-O-H angles for the asymmetric stretch
only.

These qualitative observations, driven by visual inspection
of density differences, are confirmed by a quantitative anal-
ysis of probability distributions of bond distances and angles
amplitudes derived from the quantum harmonic, the semiclas-
sical and the exact quantum eigenfunctions, the latter obtained
by normal-mode DVR simulations.39 These calculations are
reported in Fig. 3, where just one of the two bonding dis-
tances is plotted in the left column, because of symmetry.
The statistical error bars for the distributions in Fig. 3 are
smaller than the line width. In Fig. 3 the semiclassical (red
line) distributions are in good agreement with the DVR ones
(blue lines). For the ground state, it is found that the average
bond lengths are slightly increased for the anharmonic wave-
functions (panel (a)), while the bond angle is practically unal-
tered (panel (a’)). Moreover, for all the excited states, all bond
lengths are longer in the anharmonic picture with respect to
the harmonic one (panels (b), (c), (d) and (e)). In particular,
the increase in the bond length is more significant for the two
stretching modes (panels (d) and (e)). The anharmonicity ef-
fect of O-H bonds elongation is consistent with the Morse-like
shape of the potential along the direction of the bonds. Con-
versely, the angle manifests a contraction only for the excited
bending modes (panels (b’) and (c’)).

In the same figure, the bond length and angle distributions
derived from the classical trajectories employed for the semi-
classical simulation are reported as either gray or green his-
tograms. One would expect the corresponding distribution
maximum at the classical turning points if the motion along
the angle or a bond corresponds exactly to the displacement
of a single normal mode. This is clearly seen for all the classi-
cal H-O-H angle distributions (right panels in Fig. 3), because
the angle deformation can be described by the bending mode
variation only. Notice that, for all the employed EBK trajec-
tories, we assign to the bending mode a kinetic energy corre-
sponding at least to the harmonic zero-point energy (ZPE). In
contrast, the quantum ground state and stretching excited state
angle distributions are peaked around their equilibrium posi-
tions (see panels (a’), (d’) and (e’)). Instead, for the excited
bending states (panels (b’) and (c’)), the quantum mechanical
distribution becomes more similar to the classical one, as the
quantum number is increased. A more complicated picture
arises in the bond-length distribution case (left panels of Fig.
3). The probability distributions are equal for both O-H bonds
due to the symmetry of the wavefunction. However, this is not
always the case for the classical distributions (green and grey
histograms, see panel (c)). This happens because our classical
trajectories are short-time trajectories, as requested from the
semiclassical approach, and they are too short to guarantee
equilibration of the energy between the degrees of freedom
of the molecule. Nevertheless, the comparison of classical
distributions derived from these short trajectories is still use-
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Figure 1. Water molecule one-nucleus densities. Anharmonic vibrational state eigenfunction (000) in panel (a), (010) in panel (b), (020) in
panel (c), (100) in panel (d), and (001) in panel (e). Harmonic vibrational eigenfunction (000) in panel (a’), (010) in panel (b’), (020) in panel
(c’), (100) in panel (d’), and (001) in panel (e’). All isodensity surfaces are set to 10 a.u..

Figure 2. Differences of the anharmonic one-nucleus density with the corresponding harmonic one. State (000) in panel (a), (010) in (b), (020)
in (c), (100) in (d), and (001) in (e). Red indicates positive contributions, where the molecular density concentrates due to anharmonicity,
while blue stands for the negative contributions, where the density is depleted due to anharmonicity. The isodensity surfaces are set to +5 and
-5 a.u..

ful to make it evident that we are able to reproduce correct
quantum mechanical results starting from classical informa-
tion. Indeed, the quantum distributions are always wider than
the classical ones for all the considered quantities. This re-
veals that we are actually reproducing quantum effects, be-
cause semiclassical distribution probabilities are non-zero in
classical forbidden regions of the motion.

3. Anharmonicity effects on vibrational excitations

To gain deeper quantum insights into the vibrational excita-
tions, we propose in Fig. 4 the differences between the excited
state vibrational one-nucleus densities and the ground-state
ones. In the upper panel we report the differences in harmonic
approximation, while in the lower panel the anharmonic ones.
Red lobes indicate density concentration, while blue lobes in-
dicate density depletion as a consequence of the vibrational
transition from the ground to the excited state. In Fig. 4 the
harmonic bending excitations cause a deformation of the an-

gle (panels (a), (b)), while the stretching excitations deform
the density along the two O-H bond directions (see panels (c)
and (d)). Here, one can see how the nuclear delocalization is
wider in the overtone bending excitation (panel (b)) than in
the fundamental one (panel (a)), as expected by comparison
with a simple one-dimensional harmonic oscillator. This is
true because the mode variation is given by a single angular
variation. When the normal mode involves several geomet-
ric parameters, the nuclear density variation is not necessarily
so intuitive. Asymmetric and symmetric stretching density
variation looks very similar, because the correlations between
nuclear motions are lost in this one-nucleus density picture.
However, the small deformation on the Oxygen density with
vertical nodal planes which appears in panel (c), is consistent
with the symmetric stretching motion, where the Oxygen mo-
tion keeps the molecular center of mass fixed. In turn, for the
asymmetric stretch in panel (d) the lobes on the Oxygen have
the nodal planes set horizontally.

The lower panels of Fig. 4 show the anharmonic density
variation after excitations. Also in this case the shape of the
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Figure 3. Water bonds and H-O-H angle probability density distribu-
tions obtained from quantum harmonic (black dashed line), DVR39

(blue line), and semiclassical (red line) wavefunctions. Left panels
(a), (b), (c), (d), and (e) are respectively for the radial O-H distribu-
tion of the ground (000), (010), (020), (100) and (001) vibrational
eigenfunctions. Right panels (a’), (b’), (c’), (d’), and (e’) are for the
angular H-O-H distributions of the same ordered vibrational states.
The filled-area plots on the background represent the classical distri-
butions obtained from the classical trajectory used to generate each
wavefunction with our semiclassical approach. In the left panels,
gray and green histograms stand for the two bond-length distribu-
tions along each water O-H bond and, in the right panels, gray his-
tograms are for the H-O-H angle.

lobes is influenced by the motion of the corresponding nor-
mal mode that brings the biggest contribution in the harmonic
expansion of the wavefunction. Interestingly, many features
show a certain amount of anharmonicity. For example, the
symmetric stretch state density difference (panel (c’)) is accu-
mulated more towards the tip of the two O-H bonds, due to
significant anharmonicity. In the same fashion, for the asym-
metric stretch state density difference (panel (d’)) the lobes
are distributed along a curved line. Finally, the fundamental
and overtone bending excitation cases (panels (a’) and (b’))
are more similar to the harmonic densities, given the slightly
wider lobes, with respect to the anharmonic case.

B. Protonated Glycine

1. Computational Details

In this Section we consider the 11-atom protonated Glycine
(GlyH+) molecule. We are able to tackle such a system
because the MC-SCIVR technique can be applied on-the-
fly when fitted PESs are not available. As in our previous
work,38 we perform the quantum chemistry calculations at
the DFT-B3LYP level of theory using the aug-cc-pVDZ ba-
sis set with the NWChem package.90 The gas phase global
minimum has the protonated amino group which establishes
an ionic hydrogen bond with the carbonyl Oxygen.91The opti-
mized structure in Fig. 5 displays Cs symmetry (see file “ref-
erence geometry Glyp.xyz” included in the Fortran software
package92 for Cartesian coordinates), whose relevant normal-
mode frequencies and symmetry characters are reported in Ta-
ble I.

We focus on the 2600-3800 cm−1 region of the vibrational
spectrum, which has been investigated experimentally to get
structural information of solvated GlyH+clusters by compar-
ison with IR spectra of the isolated-molecule.12 Specifically,
we focus on modes 23, 25, and 26, which are the IR active
ones in this region, as confirmed by the Double Harmonic
Approximation (DHA) in Table I. The OH stretch mode 27
is also active and we have already discussed it in our previ-
ous work.38 We then run 4 on-the-fly trajectories, each one
with initial conditions corresponding to the harmonic EBK
prescription of the ZPE and the 3 fundamentals, as described
in Eq. 12. Given the freedom in choosing the angle δα in Eq.
12, we set it equal to π/2 for normal modes 24 and 26, which
correspond respectively to the N-H1/2 and C2-H4/5 asymmet-
ric stretches. The standard choice of δα = 0, i.e. the one for
the equilibrium position, would have required a longer simu-
lation time for observing the stretching of both bonds. Instead,
with this choice we can better explore the stretching motions
during the short-time semiclassical dynamics and obtain the
power spectrum displayed in Fig. 6. In the same figure, a
part from the fundamentals, we can observe side peaks which
we attribute to the combination of each fundamental with the
low frequency modes. However, in this work our analysis is
focused on the fundamental signals.

We write the eigenfunctions as a combination of 12799 co-
efficients, after restricting the harmonic basis to the simulta-
neous excitation of two modes at most, and with at most har-
monic quantum number equal to 6. The shape of the density is
always determined by the largest coefficients in the harmonic
expansion. By gradually dropping the smaller coefficients we
found that just those greater than 10−3 are significant. As in
the case of water, we enforce Cs symmetry to the harmonic-
basis wavefunctions. We also apply Gram-Schmidt orthonor-
malization between eigenfunctions starting from the ground
state one. We report the largest coefficients of the states ana-
lyzed in this work and the ground state one in the Supplemen-
tary Material. As already discussed in our previous work,38

the largest expansion coefficient in the ground-state function
is the one of the harmonic ground state (Table S2 of the Sup-
plementary Material). Similarly, for the wavefunctions com-
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Figure 4. Harmonic (top panels (a), (b), (c), and (d)) and semiclassical anharmonic (lower panels (a’), (b’), (c’), and (d’)) nuclear density
differences obtained by subtracting the zero point energy (000) state one-nucleus density to respectively the (010), (020), (100) and (001)
excited state densities. Red indicates positive contributions, where the density concentrates due to the excitation, while blue stands for the
negative contributions, where the density is depleted due to the excitation. The isodensity surfaces are set to +5 and -5 a.u..

Table I. The 6 highest fundamental frequencies (ωα) for the protonated Glycine (GlyH+) at DFT-B3LYP/aug-cc-pVDZ level of theory together
with their symmetry group Irriducible Representation (Irr. Repr.) and their Double Harmonic Approximation (DHA) IR intensities.

α-th normal mode ωα(cm−1) Description Irr. Repr. DHA IR intensity (a.u.)
22 3105 N-H3 stretch + C2-H4/5 symmetric stretch in phase A’ 0.804
23 3117 N-H3 stretch + C2-H4/5 symmetric stretch out of phase A’ 4.580
24 3170 C2-H4/5 asymmetric stretch A” 0.123
25 3445 N-H1/2 symmetric stretch A’ 2.882
26 3505 N-H1/2 asymmetric stretch A” 2.718
27 3693 O1-H6 stretch A’ 4.263

C1

C2
H5

H4

H6
O1

O2
N

H1

H3
H2

Figure 5. Protonated Glycine (GlyH+) lowest energy conformer at
DFT-B3LYP/aug-cc-pVDZ level of theory.

puted in this work, we find that the largest coefficients are
those of the harmonic state with one quantum of energy in-
take for mode 23 and 26 respectively (Table S3 of the Sup-
plementary Material). As for the ν25 = 1 anharmonic eigen-
function, there are three leading terms in the expansion whose
coefficients are comparable (Table S4 of the Supplementary
Material). However, the harmonic state with one quantum of
energy on mode 25 is the only fundamental excitation among
these three harmonic states, thus determining the overall char-
acter of the wavefunction. The other two largest coefficients
are combination of low frequency mode harmonic eigenfunc-

tions.
Eventually, we represent the one-nucleus density with a his-

togram of 3D cubes with edge equal to 0.049 Å. The Monte
Carlo integration has been carried out with L=108 steps. We
also obtained all the bond-length, angle, and dihedral densi-
ties with both harmonic and anharmonic wavefunctions for all
the considered states, with typical resolutions of 0.008 Å, 0.45
degrees, and 0.45 degrees, respectively.

2. Anharmonicity effect on nuclear densities

In this paragraph we analyze, with the aid of the calculated
one-nucleus densities, bond, angle, and dihedral distributions
and the effect of the inclusion of anharmonicity in the ex-
cited vibrational states of GlyH+. For the sake of brevity,
we only show some selected bond-length distributions in the
main text. Additional distributions are reported in the Supple-
mentary Material, when useful to support the discussion.

We start from the excited vibrational state ν23 = 1, where
the inclusion of anharmonicity shows a less mobile H3. This
localization is evident from the isodensity plot in panel (a) of
Fig. 7, where the anharmonic accumulation of the H3 one-
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Figure 6. GlyH+ MC-SCIVR power spectrum. Each peak is obtained from a trajectory with energy equal to the fundamental mode 23, 25, 26,
and 27 using the initial conditions of Eq. 12 and the relative harmonic reference state.46 The peak positions are shown relative to the ZPE one,
and the peak heights have been arbitrarily scaled, since we are interested on peak positions only, i.e. En in Eq. 14. The ZPE and v27 peaks are
taken form our previous study.38 Vertical lines are the peak positions from the experimental IR spectrumVoss, Fischer, and Garand 12 .

nucleus density toward the center of the distribution is spot-
ted by a red lobe with two symmetric blue lobes at the side.
We better render this feature by looking at the N-H3 and C2-
H4/5 bond-length distributions reported in panels (a) and (a’)
of Fig. 8. The C2-H4/5 bond length is increased with re-
spect to the ground state and to the harmonic case and the
H4-C2-H5 angle is larger (see Figure S1 in the Supplemen-
tary Information). A strong anharmonic effect is observed in
panel (a) of Fig. 8 for the N-H3 bond. Here, the harmonic
double peak distribution becomes a single peak upon anhar-
monicity inclusion. In the harmonic case, the normal mode
23 has a significant displacement vector lying along the N-H3
bond direction. This movement counterbalances the symmet-
ric C2-H4/5 stretch to keep the center of mass of the molecule
fixed. We can model the oscillation along the N-H3 as a one-
dimensional harmonic oscillator, and we observe the appear-
ance of a node in the probability distribution by giving one
quantum of excitation, consistently with the one-dimensional
harmonic oscillator model. Instead, in the anharmonic pic-
ture the oscillation along the N-H3 bond is no longer separa-
ble from other motions. Anharmonicity mixes normal mode
23 with other mode contributions and the associated displace-
ments of the N and H3 nuclei no longer lie along the bond
direction. As a consequence, no clear nodal feature is found
upon excitation.

For both the ν25 = 1 and ν26 = 1 excited states (panels (b)
and (c) of Fig. 7), the most evident anharmonic effect is the lo-
calization of the one-nucleus density on the H1/2 nuclei. This
apparently contradictory feature is explained by the appear-
ance of a single peak distribution for the N-H1/2 bond lengths
in the anharmonic picture, as shown in panels (b) and (c) of
Fig. 8. The N-H1/2 symmetric and asymmetric stretches can
be compared to the water symmetric and asymmetric stretches
described above. From the normal-mode point of view they
behave similarly because normal modes 25 and 26 involve ex-
clusively two H atoms distance variations without any angle

changes. However, the inclusion of anharmonicity acts dif-
ferently for the amino group. For water, we observe that the
harmonic and anharmonic bond-length distributions have the
same double peak shape (panels (d) and (e) in Fig. 3), while
for GlyH+ the distributions become single-peaked in the an-
harmonic case (panels (a), (b), and (c) in Fig. 8), showing
once again that both ν25 = 1 and ν26 = 1 excitation dy-
namics involve several atoms, and not only the N-H1/2 and
N-H3 distances. Therefore, the inclusion of anharmonicity in
the eigenfunction highlights the couplings between these N-
H stretches and other modes. In particular, we find for both
modes a significant coupling to the breathing of the O2-C1-
C2-N-H3 ring of atoms. Concerning mode 25, there is a gen-
eral broadening of bond length and angles distributions for the
ring structure. At the same time, a clear reduction of the O2-
C1-C2 and C1-C2-N angles is observed, while the N-H3 bond
becomes longer (Fig.8, panel (b’)). However, the asymmetric
stretch state 26 predicts a deformation of the ring structure,
by shortening the O2-H3 distance and elongating the C1-C2
backbone bond. At the same time, we observe that the C2-
N bond becomes shorter and the N-H3 longer (Fig.8, panel
(c’)). All these considerations suggest that the introduction of
anharmonicity for both states leads to a picture where the H3
is increasingly shared with the O2 atom of the carbonyl group.
Finally, we note that the broadening of the dihedral angles dis-
tributions are complementary in the two states. More specifi-
cally, in the ν25 = 1 eigenstate, the dihedrals distributions for
the “carboxylic end” of the molecule are equal to the harmonic
ones, while the dihedral distributions for the “aminic end” re-
sult slightly broadened. Instead, for the ν26 = 1 eigenstate,
the effect is the opposite, since anharmonicity introduces a
significant broadening of the distributions for the carboxyl
part of GlyH+. All these information are well summarized
by the isodensity plots in Fig. 7.
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Figure 7. One-nucleus density differences between the anharmonic
and the corresponding harmonic marginal one-nucleus density for
the (a) ν23 = 1, (b) ν25 = 1, and (c) ν26 = 1 vibrational excited
states. Red indicates positive contributions, where the density con-
centrates due to anharmonicity, while blue stands for the negative
contributions, where the density is depleted due to anharmonicity.
The isodensity surfaces are respectively set to +0.15 and -0.15 a.u..

3. Anharmonicity effect on vibrational excitations

We now look at the one-nucleus density differences be-
tween excited vibrational states and the ground one, both us-
ing the harmonic and anharmonic eigenfunctions. We will
show that a significant wavefunction spreading under excita-
tions over the molecular structure occurs for all the considered
anharmonic eigenstates, at variance with the harmonic ones.

Panel (a) of Fig. 9 and panels (a) and (a’) of Fig. 10 show
the one-nucleus density differences in harmonic approxima-
tion for the case ν23 = 1.

The harmonic isodensity difference plot shows lobes on the
H3 nucleous, meaning that this vibrational mode has its ma-
jor contribution on the N-H3 stretching and a minor one on
the two C1-H4/5 stretches as shown in panel (a) of Fig. 9. In
Fig. 10, in the harmonic case (left panels), the N-H3 bond-
length distribution is a single peak around equilibrium, while
it becomes a double peak in the excited state ν23 = 1 (panel
(a)). On the contrary, the C2-H4/5 bond-length distribution
is single-peaked both in the ground and in the excited state
(panel (a’)). This agrees with the harmonic normal-mode pic-
ture, where the bigger displacements in Cartesian coordinates
are found along the N-H3 bond direction.

The semiclassical anharmonic eigenfunctions show instead
quite a different pattern and the harmonic node is not present
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Figure 8. Bond-length distributions comparison between harmonic
(black lines) and anharmonic (red lines) states for excitation ν23 = 1
along the N-H3 and C2-H4/5 stretching (panels (a) and (a’)), ν25 = 1
along N-H1/2 and N-H3 ones (panels (b) and (b’)), and ν26 = 1
along N-H1/2 and N-H3 directions (panels (c) and (c’)). The lower
part of each plot shows the difference of the two curves reported
in the upper part by subtracting the harmonic distribution from the
anharmonic one.

in the anharmonic excitation. As before, this is because the ex-
citation involves several modes and the reasoning based on the
harmonic mode excitation is not meaningful anymore. This
is really apparent by inspection of Fig. 9. In the harmonic
case, the density deformation is confined to the displacements
related to normal mode 23, while in the semiclassical anhar-
monic picture the one-nucleus density change is distributed
all over the molecular structure. One can appreciate this by
looking at the red lobes along the backbone structure in the
anharmonic excitation in Fig. 9. In the semiclassical an-
harmonic picture, the ν23 = 1 excitation includes a density
change for the far-away O1-H6 stretch displacement as well.
The two-lobe shape on H3 in this picture can be better under-
stood by looking at bond-length distributions in Fig. 10. Panel
(b) reports a single-peak distribution for the N-H3 bond length
also for the excited state, differently from the harmonic dou-
ble peak one. The three-lobe shape on H4/5 is instead qualita-
tively equivalent to the harmonic one, as it is observed for the
C2-H4/5 bond-length distributions (panel (a’) and panel (b’)).
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Figure 9. GlyH+ one-nucleus density difference plots for ν23 =
1 vibrational eigenstate. Panel (a) depicts the difference between
excited and ground harmonic densities, while panel (b) shows the
anharmonic case. Red indicates positive contributions, while blue
stands for the negative contributions. All isodensities are set to +0.1
and -0.1 a.u..

This evidence proves a strong coupling between the oscilla-
tion along N-H3 bond and the other modes in the anharmonic
picture, and a weaker coupling of the C2-H4/5 stretches with
the other motions.

Moving to higher frequency modes, the density differences
in harmonic approximation indicates a very neat effect on
the N-H1/2 bond oscillations for the ν25 = 1 and ν26 = 1
states, as reported in Fig. 11, panels (a) and (a’). This
is consistent with the classical normal-mode displacements.
In the same pictures, the symmetric and asymmetric N-H1/2
stretches could be distinguished only by looking at the small
contributions on the N nucleus where the distortion in the N
one-nucleus density in the symmetric stretch case is parallel to
the main distortion found on the H1/2 nuclei (panel (a)). The
reason is that, as already pointed out in the case of the wa-
ter molecule, the molecule has to keep its center of mass fixed
while undergoing a symmetric stretch. A perpendicular distor-
tion is present in the N-H1/2 asymmetric stretch (panel (a’)).
Turning our attention to the anharmonic excitations (Fig. 11,
panel (b) and panel (b’)), the spreading of the excitations over
the whole structure is once again the main feature. The exci-
tation of the eigenstate ν25 = 1 has a less evident stretching
character than the ν26 = 1. In other words, the anharmonic
lobe pattern of the H1 and H2 atoms of the amino group is
more similar to the harmonic ones for the ν26 = 1 eigen-
function than for the ν25 = 1 state. Nevertheless, the two
states can be distinguished using the same reasoning applied
to the harmonic excitations. Specifically, the nodal planes of
the two H nuclei in the amino group are set perpendicularly to
the bond axes in the case of the symmetric stretch, while for
the asymmetric stretch, they are set parallel. Another feature
of the anharmonic excitations is the shortening of O2-H3 dis-
tances, which is more pronounced for the ν25 = 1 eigenstate.
This is indicated by the position of the two anharmonic den-
sity accumulations on the O2 and H3 nuclei, and it is also con-
firmed by the corresponding bond-length distribution. In the
harmonic picture the O2-H3 distance reduction is completely
missed. There, the mode related to this intermolecular rear-
rangement is the N-H3 stretch mode 23, which instead loses
this local character in the anharmonic picture, as discussed in
the previous paragraph.
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Figure 10. The ν23 = 1 excited state (continuous lines) and the
ground state (dotted lines) bond-length distributions. Panels (a) and
(a’) in harmonic approximation along the N-H3 and C2-H4/5 stretch
directions respectively. Panels (b) and (b’) show the anharmonic
case. The ground state densities are presented in our previous work.38

The lower parts of the plots show the difference of the curves re-
ported in the upper parts.

IV. SUMMARY AND CONCLUSIONS

In this paper we have detailed how semiclassical
eigenfunctions,39,53 which are written as combinations of
products of one-dimensional harmonic vibrational eigenfunc-
tions, can be profitably employed for nuclear density calcu-
lations. Specifically, we calculate the marginal one-nucleus
density, and the bond-length, angle and dihedral distributions,
using a Monte Carlo integration over the remaining nuclei po-
sitions. Given the state of the art where one-nucleus densities
are given in harmonic approximation,36 our semiclassical ap-
proach calculates the nuclear densities including anharmonic
and quantum mechanical effects. The method is based on
classical trajectories and it is implemented either on a pre-
computed PES or on-the-fly, i.e. using an ab initio molecular
dynamics approach.93

We take the water molecule as a benchmark for checking
the accuracy of our nuclear densities and get familiar with this
quantum mechanical nuclear representation. We observe the
quantum harmonic description to be quite accurate in this case
and similar to the semiclassical and exact anharmonic ones, by
reproducing all main quantum features.

We then calculate protonated glycine molecule nuclear den-
sities, complementing our previous work.38 In this case, no
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Figure 11. One-nucleus density difference plots for the GlyH+

ν25 = 1 (panels (a) and (b)) and ν26 = 1 (panels (a’) and (b’))
vibrational eigenstates. Panels (a) and (a’) depict the difference of
the harmonic excited state and ground state densities, while panels
(b) and (b’) refer to the anharmonic case. Red indicates positive
contributions, while blue stands for the negative contributions. All
isodensities are set to 0.1 and -0.1 a.u..

PES is available and our semiclassical calculations are per-
formed by running classical trajectories on-the-fly, using the
NWChem suite of codes. We find, in this case, the coupling
to be strong and the picture provided by the harmonic approx-
imation of the normal modes to be oversimplified, since ex-
citations are typically spread all over the molecular structure.
For example, vibrational excitations ν25 = 1 and ν26 = 1
in a normal-mode picture are described only by vibrational
excitations of the amino group, i.e. N-H1/2 stretching dis-
placements. Instead, in the quantum mechanical picture pro-
vided by our semiclassical nuclear densities, all atoms are sig-
nificantly affected and we find even a strong involvement of
the O1-H6 stretch, which is located at the other end of the
molecule.

In the case of water molecule, we also point out that a clas-
sical density distribution obtained using the same trajectories
employed for the semiclassical simulations, is inadequate for
the low quantum number vibrational state density description
and it becomes more suitable as the number of quanta of ex-
citation are increased.

Finally, we find that, when considering significantly anhar-
monic states, the three-dimensional (3D) one-nucleus densi-
ties are usefully complemented by the distributions of internal
coordinates, such as bond lengths, angles, and dihedrals, be-
cause they focus more on local distortions. We expect that the
methodology presented here will provide insightful informa-
tion also for more flexible molecules, especially when con-
sidering the densities pertaining to rigid modes, provided a
judicious sampling of the floppy modes will be enacted.65

In conclusion, the quantum mechanical tool presented in
this paper allows us to show and quantify both for ground and
vibrational excited states how much nuclear densities, and nu-
clear motion in general, deviate from a harmonic description.

SUPPLEMENTARY MATERIAL

See Supplementary Material, for the list of coefficients of
the water and protonated glycine vibrational wavefunctions,
and for plots of additional distributions of the protonated
glycine molecule, useful to support the discussion. We also
provide a Fortran software package92 with instructions for the
reproduction of the results for both water and GlyH+.
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84M. Wehrle, S. Oberli, and J. Vanı́ček, J. Phys. Chem. A 119, 5685 (2015).
85M. L. Brewer, J. S. Hulme, and D. E. Manolopoulos, J. Chem. Phys. 106,

4832 (1997).
86Y. Zhuang, M. R. Siebert, W. L. Hase, K. G. Kay, and M. Ceotto, J. Chem.

Theory Comput. 9, 54 (2013).
87M. Ceotto, Y. Zhuang, and W. L. Hase, J. Chem. Phys. 138, 054116 (2013).
88R. Conte, F. Gabas, G. Botti, Y. Zhuang, and M. Ceotto, J. Chem. Phys.

150, 244118 (2019).
89S. Dressler and W. Thiel, Chem. Phys. Lett. 273, 71 (1997).
90M. Valiev, E. Bylaska, N. Govind, K. Kowalski, T. Straatsma, H. V. Dam,

D. Wang, J. Nieplocha, E. Apra, T. Windus, and W. de Jong, Comput. Phys.
Commun. 181, 1477 (2010).

91K. Zhang and A. Chung-Phillips, J. Comput. Chem. 19, 1862 (1998).
92C. Aieta, G. Bertaina, M. Micciarelli, and M. Ceotto, “Semiclassical nu-

clear density,” (2020).
93R. Conte, G. Botti, and M. Ceotto, Vibrational Spectroscopy 106, 103015

(2020).

http://dx.doi.org/10.3389/fchem.2019.00424
http://dx.doi.org/10.1103/PhysRevLett.125.083001
http://dx.doi.org/10.1103/PhysRevLett.125.083001
http://dx.doi.org/10.1063/5.0013677
http://dx.doi.org/10.1063/5.0013677
http://dx.doi.org/10.1021/acs.jctc.0c00127
http://dx.doi.org/10.1021/acs.jctc.0c00127
http://dx.doi.org/10.1063/1.5114616
http://dx.doi.org/10.1063/1.5114616
http://dx.doi.org/ 10.1002/(SICI)1096-987X(19960715)17:9<1132::AID-JCC5>3.0.CO;2-T
http://dx.doi.org/10.1016/0003-4916(58)90032-0
http://dx.doi.org/10.1063/1.442382
http://dx.doi.org/10.1063/1.459848
http://dx.doi.org/10.1063/1.1674275
http://dx.doi.org/10.1016/0301-0104(84)80039-7
http://dx.doi.org/10.1063/1.4884718
http://dx.doi.org/10.1021/acs.jpca.5b03907
http://dx.doi.org/ https://doi.org/10.1016/j.cpc.2010.04.018
http://dx.doi.org/ https://doi.org/10.1016/j.cpc.2010.04.018
http://dx.doi.org/http://doi.org/10.5281/zenodo.4046872
http://dx.doi.org/http://doi.org/10.5281/zenodo.4046872


SUPPLEMENTARY MATERIAL: Representing Molecular Ground and Excited Vibrational
Eigenstates with Nuclear Densities obtained from Semiclassical Initial Value Representation

Molecular Dynamics

Chiara Aieta
Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy

Gianluca Bertaina
Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy and

Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy

Marco Micciarelli
Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy∗

Michele Ceotto
Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy†

We report the list of coefficients of the water vibrational wavefunctions, and additional plots of distributions
of the protonated glycine molecule, useful to support the discussion in the main text. The ground state wave-
function expansion for protonated glycine were already reported in our previous study [C. Aieta et. al. Nat
Commun 11, 4348 (2020)].

∗ marco.miccia@gmail.com
† michele.ceotto@unimi.it



2

I. EXPANSION COEFFICIENTS FOR WATER MOLECULE EIGENFUNCTIONS

Table S1. Expansion coefficients for the ground state semiclassical eigenfunction of water.
|e0〉 |e1〉 |e2〉 |e3〉 |e4〉

K1 K2 K3 CSC
0,K K1 K2 K3 CSC

1,K K1 K2 K3 CSC
2,K K1 K2 K3 CSC

3,K K1 K2 K3 CSC
4,K

0 0 0 0.986265 0 1 0 -0.988406 0 2 0 0.978856 1 0 0 0.910605 0 0 1 0.950271
1 0 0 -0.161410 1 1 0 0.135606 1 0 0 0.120459 2 0 0 -0.339461 0 1 1 0.056333
2 0 0 0.023172 0 2 0 0.044834 0 3 0 -0.107257 0 0 0 0.160178 0 2 1 0.017098
1 0 2 -0.015495 0 3 0 -0.033905 1 2 0 -0.071794 0 2 0 -0.122539 1 0 1 -0.291333
3 0 0 -0.014678 2 1 0 -0.020645 0 4 0 0.059891 3 0 0 0.076325 1 1 1 -0.013388
0 0 2 0.009129 3 1 0 0.016937 0 1 0 0.045155 4 0 0 -0.056048 1 2 1 0.002040
0 2 0 0.008690 1 1 2 0.014008 1 1 0 -0.031993 0 0 2 -0.051814 2 0 1 0.068064
0 1 0 0.004981 0 4 0 0.012612 2 0 0 -0.031021 1 2 0 0.035378 0 0 3 0.019709
1 2 0 0.004192 1 3 0 -0.011635 0 5 0 -0.028050 2 0 2 -0.023173 2 1 1 0.002551
2 0 2 0.003212 0 1 2 -0.011629 1 4 0 0.024698 1 0 2 0.022954 0 1 3 0.006701
4 0 0 0.003152 1 0 0 0.006086 0 2 2 0.017476 5 0 0 0.021571 0 2 3 0.004479
0 1 2 0.002151 0 0 0 0.005891 2 2 0 0.017059 1 1 0 0.013387 3 0 1 -0.024522
0 3 0 -0.001890 0 0 2 -0.005262 3 2 0 -0.015825 3 0 2 0.010423 1 0 3 -0.048320
0 2 2 0.001261 2 0 0 -0.004613 1 2 2 -0.014788 6 0 0 -0.005492 3 1 1 -0.001152
2 1 0 0.001094 0 2 2 -0.002934 1 3 0 -0.012247 3 2 0 0.005342 1 1 3 -0.003678
0 0 4 0.001085 4 1 0 -0.002844 0 0 0 0.011773 0 1 0 0.004997 1 2 3 -0.001345

2 1 2 -0.002491 0 1 2 0.008662 2 1 0 -0.003580 4 0 1 0.008717
0 3 2 -0.002463 1 5 0 -0.007141 2 2 0 0.003232 2 0 3 0.016934
2 2 0 -0.001795 2 1 0 0.006155 4 0 2 -0.002829 0 0 5 0.004325
2 3 0 -0.001752 3 0 0 0.004772 1 2 2 0.002680 5 0 1 -0.002471
1 4 0 0.001744 4 0 0 -0.004519 1 0 4 0.002574 3 0 3 -0.003855
0 1 4 -0.001066 0 6 0 0.004510 0 0 4 -0.002488 1 0 5 -0.001709

2 4 0 0.003407 1 4 0 -0.002351 4 0 3 0.001228
0 3 2 0.003247 7 0 0 0.002254 2 0 5 0.001665
0 4 2 0.003215 4 2 0 -0.001982
2 0 2 -0.002869 1 3 0 -0.001914
1 0 2 0.002624 3 1 0 0.001778
2 2 2 0.002591 0 1 2 -0.001629
1 6 0 0.001900 1 1 2 0.001612
1 1 2 -0.001860 0 2 2 -0.001578
2 5 0 -0.001796 5 0 2 0.001322
4 2 0 0.001487 2 0 4 -0.001086
0 2 4 0.001379 2 2 2 -0.001026
3 3 0 0.001343
2 6 0 0.001114
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Table S2. The nine largest coefficients in the ground state wavefunction of protonated Glycine.
K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 K17 K18 K19 K20 K21 K22 K23 K24 K25 K26 K27 CSC

0,K

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9,28E-01
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9,82E-02
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -8,80E-02
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8,09E-02
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -7,68E-02
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 6,70E-02
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -6,42E-02
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 5,31E-02
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -4,78E-02

Table S3. The fourteen largest coefficients in the ν23 = 1 excited state wavefunction of protonated Glycine.
K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 K17 K18 K19 K20 K21 K22 K23 K24 K25 K26 K27 CSC

23,K

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 3,66E-01
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3,56E-01
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 -3,38E-01
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2,04E-01
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1,75E-01
0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,42E-01
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1,41E-01
0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,35E-01
0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1,27E-01
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 -1,19E-01
0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -1,12E-01
0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1,12E-01
0 0 0 0 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,08E-01
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 -1,07E-01

II. EXPANSION COEFFICIENTS FOR PROTONATED GLYCINE EIGENFUNCTIONS

Table S4. The eleven largest coefficients in the ν25 = 1 excited state wavefunction of protonated Glycine.
K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 K17 K18 K19 K20 K21 K22 K23 K24 K25 K26 K27 CSC

25,K

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3,77E-01
0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 3,69E-01
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3,67E-01
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2,00E-01
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 -1,76E-01
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1,72E-01
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1,59E-01
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1,32E-01
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1,26E-01
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1,19E-01
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1,12E-01
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Table S5. The eleven largest coefficients in the ν26 = 1 excited state wavefunction of protonated Glycine.
K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 K17 K18 K19 K20 K21 K22 K23 K24 K25 K26 K27 CSC

26,K

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 6,95E-01
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 4,18E-01
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -2,73E-01
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 9,36E-02
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 9,28E-02
0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9,20E-02
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 9,05E-02
0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 8,67E-02
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 8,39E-02
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 -8,34E-02
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -8,00E-02

III. ADDITIONAL PLOTS OF RELEVANT BOND-LENGTH, ANGLE AND DIHEDRAL DISTRIBUTIONS FOR
PROTONATED GLYCINE MOLECULE

A. ν23 = 1 state

1. Angle distributions

 80  90  100  110  120  130  140

H4−C2−H5 angle (deg)

ν23 = 1

harm.
anh.

Figure S1.

2. Bond-length distributions

 0.8  0.9  1  1.1  1.2  1.3  1.4

C2−H4/5 bond (Å)

ν23 = 1

harm.
anh.

Figure S2.



5

3. Dihedral distributions
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Figure S3.

B. ν25 = 1 state

1. Angle distributions
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ν25 = 1

harm.
anh.
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Figure S4.

2. Bond-length distributions

 1.4  1.6  1.8  2  2.2  2.4

O2−H3 bond (Å)

ν25 = 1
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anh.

Figure S5.
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3. Dihedral distributions
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Figure S6.

C. ν26 = 1 state

1. Angle distributions
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Figure S7.
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2. Bond-length distributions
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Figure S8.

3. Dihedral distributions
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Figure S9.
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