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Abstract.

Conformity assessment of the distribution of the values of a quantity is investigated

by using a Bayesian approach. The effect of systematic, non-negligible measurement

errors is taken into account. The analysis is general, in the sense that the probability

distribution of the quantity can be of any kind, that is even different from the

ubiquitous normal distribution, and the measurement model function, linking the

measurand with the observable and non-observable influence quantities, can be non-

linear. Further, any joint probability density function can be used to model the

available knowledge about the systematic errors. It is demonstrated that the result of

the Bayesian analysis here developed reduces to the standard result (obtained through

a frequentistic approach) when the systematic measurement errors are negligible. A

consolidated frequentistic extension of such standard result, aimed at including the

effect of a systematic measurement error, is directly compared with the Bayesian

result, whose superiority is demonstrated. Application of the results here obtained

to the derivation of the operating characteristic curves used for sampling plans for

inspection by variables is also introduced.
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1. Introduction

In the framework of the Guide to the Expression of Uncertainty in Measurement

(GUM) [1], the measurand is considered as characterized by an essentially unique value.

Unfortunately, measurements for industry are often aimed at characterizing a measurand

that is better described by a distribution of different possible values. Two distinct

situations can be identified. The first situation is the one where a quality characteristic of

the products, randomly sampled from a series production, is measured in order to assess

the compliance of the series production with specific requirements for that characteristic.

Such requirements may be expressed in terms of an upper bound, a lower bound or

an interval of acceptable values. The measurand is the distribution of the possible

values of the quality characteristic over the whole production, and it has to be inferred

from a sample of limited size. The second situation is the one where the measurand is

intrinsically unstable in time or inhomogeneous in space. Electromagnetic Compatibility

(EMC) measurements, for example, provide several occurences of the latter situation,

such as measurements of an unwanted disturbance or noise, or measurements of the

electric field intentionally generated inside a reverberation or anechoic chamber for

testing purposes. Compliance with a requirement or a specification is frequently to be

assessed also in this second situation. Both situations, although related to completely

different applications, can be dealt with the same approach in terms of the statistical

analysis. In particular, a joint probability density function (pdf) describing the product

and measurement dispersions, needs to be formulated when assessing the compliance

of the measurand with a certain prescribed limit (for example, an upper bound limit).

The main novelty of the present work is to derive, through a deductive reasoning based

on Bayesian analysis, the joint pdf of the parameters characterizing the distribution of

the measurand, as inferred from a sample of limited size and measured in presence of a

dominant (and correlating) systematic effect.

The work naturally flows into the vein of a conspicuous literature dedicated to

conformity assessment (see [2] and [3], as recent examples, and the references mentioned

therein). Many of the papers dealing with conformity assessment propose criteria and

tools for assessing the risk of incorrect decisions of conformity, considering the cost and

the impact which may derive from them. A main issue in the field is modelling and

treating the measurement uncertainty [4]; it generally appears that there is no single

method to integrate the uncertainty into the decision-making process. Moreover, when

such uncertainty is of comparable size with respect to the dispersion of the product

values, it can be difficult to separate the two terms [5, 6], a fact that may increase

the risk of incorrect decisions. Furthemore, very few papers, such as [7], address the

problem of systematic effects arising in conformity assessment tests.

In this context, we focused on the determination of an appropriate criterion for

the conformity. We considered the case of a distribution for the measurand values

sufficiently well spread in comparison with the non-repeatability of the measuring

instrumentation, a well satisfied assumption in several testing sectors, such as electrical
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and mechanical. Nevertheless, we addressed the case of a non-negligible systematic effect

affecting and correlating all the measurements, which is a rather frequent occurrence

in testing. We also provided some considerations on the applicability of the obtained

results to the determination of consumer’s and producer’s risks by means of the operating

characteristic (OC) curves [8], a standard tool developed by the consolidated theory of

acceptance sampling.

The structure of the work is as follows: in section 2 the basic notation and

assumptions are introduced. The posterior joint pdf for the parameters of the

distribution of the quality characteristic, or measurand, is derived in section 3. Also the

posterior predictive pdf is derived in the same section since it is deemed to be useful for

a simpler, although less informative, approach to conformity assessment, which is the

subject of section 4. A general criterion for conformity assessment, which is applicable

to any distribution of possible quantity values, is also introduced in section 4, whereas

its implementation in a simple but general case is offered in section 5. Section 6 provides

the details of the application of the criterion in the case of an upper acceptance limit and

compares the results with those obtained through a consolidated frequentistic analysis.

The impact of the derived results to the calculation of producer’s and consumer’s risks

is finally investigated in section 7. Conclusions follow in section 8.

2. Notation and assumptions

We here analyse the case where the measurand is represented by the distribution of the

possible values of a quantity Q. Q is measured by using a measuring instrument, or

system, affected by a systematic measurement error due to imperfect calibration. The

indication of the measuring instrument or system is represented by Qe, which is the

observable quantity. The non-repeatability of the measuring instrumentation or system

is assumed to be negligible with respect to the spread of the possible values of Q and

the standard uncertainty of the systematic error.

The pdf of Q is given by fQ(q;p), where q is a realization of Q and p is the set

of parameters of the pdf. For example if Q is normal then p = (µ, σ) or, equivalently,

Q ∼ N(µ, σ2), where µ is the mean and σ is the standard deviation of Q.

The first step of the analysis is to determine, through Bayesian inference, the

posterior pdf for p from the available knowledge, which consists of: the pdf of Q (e.g.

normal, with unknown parameters to be inferred), a sample of n realizations of Qe,

the pdf of the systematic error (e.g. rectangular, with known bounds, or normal, with

known parameters), and the joint prior pdf of p, represented by f0(p) (improper or a pdf

with known parameters). The second step consists in the determination of a conformity

assessment criterion for Q, based on the comparison between the distribution of its

possible values and an interval of acceptable values IQ.

Each realization qi, for i = 1, 2, ..., n, of the non-observable quantity Q univocally

corresponds to a realization qei of the observable quantity Qe and viceversa. Therefore

if qi = m(qei , e) and qei = o(qi, e), then m(qei , e) = o−1(qei , e), where e = (e1, e2, ..., er)
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represents a set of realizations of the systematic error vector E = (E1, E2, ..., Er).

Function m(qei , e) is named measurand model function, while its inverse o(qi, e) is named

observation model function. The pdf of the systematic error is represented by fE(e).

Note that e is a vector in order to accomodate for general models such as qei = e1 + e2qi
or qei = e1q

2
i /e2 + e3 (qi ≥ 0, in order to work with an invertible function).

The set of the n realizations of Q is q = (q1, q2, ..., qn) and the corresponding set

of observations of Qe is qe = (qe1 , qe2 , ..., qen). We have q = m(qe, e) and qe = o(q, e),

the interpretation of the symbols being immediate.

Random variables Qi, of which qi are the corresponding realizations, are

independent each other and each Qi is independent of E.

In the following of the paper, in order to make the notation not too heavy, small

symbols will indicate either random variables or realizations of them, the distinction

being clear by the role they play within the expression of the relevant conditional pdfs.

3. Derivation of the posterior pdf of p

Let us consider the joint pdf of the parameters p given qe; namely, the posterior pdf of

p. Due to the Bayes rule

f(p|qe) ∝ f0(p) · f(qe|p) = f0(p) ·
∫
De

∫
Dq

f(qe, q, e|p)dqde, (1)

where De and Dq are the domains of the possible values of E and Q, respectively.

Further,

f(qe, q, e|p) ∝ f(qe|q, e,p) · f(q, e|p). (2)

Now consider that if q and e are given then qe is deterministically obtained through

the observation model function, independently on p, i.e.,

f(qe|q, e,p) = f(qe|q, e) =
n∏
i=1

δ[qei − o(qi, e)]. (3)

Since q and e are independent each other and e does not depend on p then we have

f(q, e|p) = fQ(q;p) · fE(e). (4)

Since (qi)s are independent from each other, we have

fQ(q;p) =
n∏
i=1

fQ(qi;p). (5)

If we now substitute (5), (4) and (3) into (2) and then into (1) we find

f(p|qe) ∝ f0(p)

∫
De

∫
Dq

n∏
i=1

δ[qei − o(qi, e)] · fQ(qi;p) · fE(e)dqde. (6)
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Solving the integral with respect to q in the right-hand term of (6) we obtain (see [9],

p. 71)

f(p|qe) ∝ f0(p) ·
∫
De

n∏
i=1

fQ[m(qei , e);p] ·
∣∣∣∣ ∂∂qeim(qei, e)

∣∣∣∣ · fE(e)de. (7)

Finally, (7) can be written in the more usual and compact form

f(p|qe) ∝ l(p|qe) · f0(p), (8)

where l(p|qe) is the likelyhood and

l(p|qe) ∝
∫
De

n∏
i=1

fQ[m(qei , e);p] ·
∣∣∣∣ ∂∂qeim(qei, e)

∣∣∣∣ · fE(e)de. (9)

3.1. Posterior predictive pdf of Q

The posterior predictive pdf of Q is obtained as follows

fQ(q|qe) =

∫
Dp

fQ(q;p) · f(p|qe)dp. (10)

fQ(q|qe) represents the average pdf of Q over the possible values of p as inferred

through f(p|qe) and it is useful for predicting the portion of the Q values lying, in the

average, in a given interval.

4. Conformity assessment criterion for Q

The conformity assessment criterion can be stated as follows: at least the portion α1 of

the distribution of the possible values of Q shall be within a given interval (or

semi-interval) IQ with probability not less than α2. The implementation of this

criterion requires the use of the joint posterior pdf f(p|qe). Let Dp(IQ, α1) be the

region of the p parameter space such that, for any value of p belonging to that region,

at least the portion α1 of the distribution of the possible values of Q is within IQ, that

is, P (Q ∈ IQ|p) ≥ α1. In the Bayesian framework, parameters p are random variables

whose posterior pdf f(p|qe) can say which is the probability for the parameters of

lying within the interval Dp(IQ, α1). Then, the conformity assessment criterion is

mathematically expressed as∫
Dp(IQ,α1)

f(p|qe)dp ≥ α2. (11)

Another criterion for conformity assessment, based on the posterior predictive pdf

(10), is stated as follows: the portion of the distribution of the possible values of Q
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that is expected to be within a given interval (or semi-interval) IQ shall be greater

than α. Such criterion is mathematically expressed as∫
IQ

fQ(q|qe)dq ≥ α. (12)

This alternative criterion requires a more simple calculation with respect to (11) but it

is less informative because it applies in the average and to a single item randomly

selected from the production.

5. Application to additive model and normally distributed Q

The convenience of the assumption of normality stems from the fact that it physically

models several practical applications. Further, it permits to obtain results that reduce

to standardized ones (obtained through classical, non-Bayesian, derivations) for the

conformity assessment criterion, when the systematic measurement error is negligible.

The additive observation model has wide applicability, minimizes the mathematical

burden of the derivations and results are of immediate interpretation. It should be

borne in mind however that (8) and (9) are general in that they apply to any

non-linear (but monothonic) model functions and to any (non-normal) distributions

for the measurand.

The addictive observation model is

qei = o(qi, e) = qi + e. (13)

Note that the systematic error is of a single kind (r = 1). Then from (9)

l(p|qe) ∝
∞∫

−∞

n∏
i=1

fQ(qei − e;p) · fE(e)de. (14)

Further, assume that Q is normally distributed with parameters p = (µ, σ), i.e.

fQ(q;p) = fQ(q;µ, σ) =
1√
2πσ

exp

[
−(q − µ)2

2σ2

]
. (15)

Substituting (15) into (14) and after manipulation we have

l(µ, σ|qe) ∝
∞∫

−∞

1

σn
exp

{
−(n− 1)s2 + n [qe − (µ+ e)]

2σ2

}
· fE(e)de, (16)

where qe = 1
n

n∑
i=1

qei and s2 = 1
n−1

n∑
i=1

(qei − qe)2. Now, substituting (16) into (8) and

assuming the improper prior f0(µ, σ) ∝ 1
σ

we obtain

f(µ, σ|qe) ∝
∞∫

−∞

1

σn+1
exp

{
−(n− 1)s2 + n [qe − (µ+ e)]

2σ2

}
· fE(e)de. (17)
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For what concerns the posterior predictive pdf of Q, substituting (17) into (10), we

obtain, after manipulation

fQ (q|qe) =

∫
De

tn−1(q + e; qe, s
√

1 + 1/n) · fE(e)de, (18)

where tn−1(q + e; qe, s
√

1 + 1/n) is a Student’s t pdf with n− 1 degrees of freedom, of

argument q + e, shifted by qe and scaled by s
√

1 + 1
n
. Therefore the posterior

predictive pdf (18) is simply the pdf of the difference between a scaled and shifted

Student’s t random variable and the random variable describing the error. Hence, the

expected value of (18) is

EQ = qe (19)

and the variance is

V arQ =
n− 1

n− 3

(
1 +

1

n

)
s2 + u2e. (20)

By comparing (19) and (20) with (B.6) and (B.9) in [4] it may be acknowledged that

the posterior predictive pdf (18) is a valid Bayesian alternative to g0(η), as derived in

Annex B of [4], for the prior pdf of the measurand based on a measured sample of

items.

Two cases are of particular interest for the pdf of the residual systematic measurement

error fE(e): normal pdf and rectangular pdf. Expressions of the posterior joint pdf of

µ and σ in the two cases are given below. Note that, in those cases, the evaluation of

the posterior predictive pdf (19) is easily affordable by using commercial or freely

available software tools for numerical analysis. Also the application of the posterior

predictive pdf to conformity assessment by using (12) is straightforward and therefore

left to the interested reader.

Since known systematic effects are assumed to be corrected for, then the expected

value of the residual error is zero. Further the standard uncertainty of the residual

error is assumed to be known and given by ue. The generalization to the case where

the systematic effect is known but uncorrected is immediate.

5.1. Normal pdf for the residual systematic error

We have

fE(e) =
1√

2πue
exp

(
− e2

2u2e

)
. (21)

Substituting (21) into (17) and integrating we find, after normalization,

f(µ, σ|qe) =
2
s

(
s
σ

)n (n−1
2

)n−1
2

Γ
(
n−1
2

)
·
√

2π
√
σ2/n+ u2e

· exp

[
−1

2

(n− 1)s2

σ2

]
· exp

[
−1

2

(qe − µ)2

σ2/n+ u2e

]
. (22)
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This same result was obtained in [10] by using an entirely different derivation from

that described in section 3, tailored to the specific assumptions of an additive model

and of normality and independence of Q and E, hence resorting to a multivariate

normal likelihood for the observations, whose covariance matrix took into account u2e
as the covariance term between the observations. In the same paper, the expression for

the marginal posterior pdfs for µ and σ are also provided and discussed.

5.2. Rectangular pdf for the residual systematic error

The pdf of the residual systematic measurement error is

fE(e) =

{
1
2T

if − T < e < T

0 otherwise
(23)

where T > 0.

Substituting (23) into (17) and integrating we find, after normalization,

f (µ, σ|qe) =
1

2Ts

(
n−1
2

)n−1
2

Γ
(
n−1
2

) ( s
σ

)n
exp

[
−(n− 1) s2

2σ2

]
·
[
erf

(√
n
T − µ+ qe√

2σ

)
+ erf

(√
n
T + µ− qe√

2σ

)]
. (24)

6. Comparison with an upper limit L

Given the values of µ and σ, the fraction α1 of the production satisfing the (upper)

limit prescription value L is

P (Q < L|µ, σ) = P

(
Q− µ
σ

<
L− µ
σ
|µ, σ

)
= α1. (25)

Hence, whenever (L− µ)/σ ≥ zα1 , where zα1 is the αth
1 quantile of a standard normal

distribution, probability (25) is larger or equal to α1.

However, according to the Bayesian view, µ and σ are random variables, the state of

knowledge about which is encoded by their joint pdf (17). Hence, the requirement is

that the probability of (L− µ)/σ being larger than zα1 should be at least equal to α2.

Therefore the scope is to determine the limit value L so that

P

(
L− µ
σ

> zα1 |qe
)

= P (µ+ zα1σ < L|qe) ≥ α2. (26)

Let Lα2 be the limit value such that P (µ+ zα1σ < Lα2|qe) = α2, then Lα2 satisfies the

following equation:∫ ∞
0

∫ Lα2−zα1σ

−∞
f(µ, σ|qe)dµdσ = α2. (27)

Therefore, for any given probabilty values α1 and α2, the corresponding limit value

Lα2 was numerically determined by calculating integral (27) of expression (22) or (24),

relation (27) holding, consequently, for any L ≥ Lα2 . It can be shown that

Lα2 = kα2s+ qe, (28)
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where kα2 is a function of n and s/ue. Tables 1 (normal residual systematic

measurement error with zero mean and standard deviation equal to ue) and 2

(rectangular residual systematic measurement error with T =
√

3ue, hence having the

same standard deviation as the normal error) show some kα2 values calculated for

several values of n and s/ue, when α1 = α2 = 0.8. The resulting conformity criterion,

relying on the whole available information about the series production, is then a

relationship between probabilities α1 and α2 and limit L: given two of the three

ingredients, the third one can be always obtained.

Table 1. Values of kα2
obtained for several values of n and s/ue, when α1 = α2 = 0.8

and the pdf of the residual systematic measurement error is normal. The values of

kα2
reported in the table are accurate to within ±0.01.

kα2 values
n

2 3 4 5 6 7 8 9 10 20 50 100

s/ue

∞ 3.42 2.02 1.67 1.51 1.42 1.35 1.30 1.27 1.24 1.10 0.99 0.95

10 3.43 2.02 1.68 1.52 1.43 1.36 1.31 1.28 1.25 1.11 1.02 0.98

3 3.46 2.07 1.75 1.60 1.51 1.45 1.41 1.38 1.35 1.24 1.17 1.15

2 3.49 2.15 1.83 1.69 1.61 1.55 1.51 1.48 1.46 1.36 1.30 1.28

1 3.71 2.47 2.18 2.04 1.97 1.91 1.88 1.85 1.83 1.75 1.71 1.69

0.5 4.50 3.28 2.97 2.84 2.76 2.71 2.68 2.66 2.64 2.58 2.54 2.53

0.3 5.72 4.40 4.07 3.93 3.86 3.81 3.78 3.76 3.74 3.69 3.66 3.66

0.2 7.28 5.79 5.45 5.31 5.25 5.20 5.18 5.16 5.14 5.09 5.07 5.07

0.15 8.81 7.19 6.84 6.70 6.64 6.60 6.58 6.56 6.54 6.49 6.47 6.47

0.1 11.8 9.99 9.63 9.50 9.44 9.40 9.38 9.36 9.34 9.30 9.27 9.27

6.1. Frequentist approach

The theory for acceptance sampling by variables, adopted by the ISO 3951 standard

series, is developed by using a frequentist approach and it is based on the assumptions

of normal distribution for Q and negligible residual systematic measurement error. In

the last edition of the standard ISO 3951-2 [8] an informative annex has been

introduced for the purpose of taking into accout a non-negligible random measurement

error. The case of a non-negligible residual systematic measurement error is analysed

in [11] (a reference which appears among those listed in the bibliography of [8]). It is

worth comparing the frequentist result in [11] with the Bayesian one obtained here and

reported in table 1, both valid for zero mean, normal systematic measurement error.

From section 3 of [11] we have

kα2 =
tα2√
n∗
, (29)
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Table 2. Values of kα2
obtained for several values of n and s/ue, when α1 = α2 = 0.8

and the pdf of the residual systematic measurement error is rectangular. The values

of kα2 reported in the table are accurate to within ±0.01.

kα2 values
n

2 3 4 5 6 7 8 9 10 20 50 100

s/ue

∞ 3.42 2.02 1.67 1.51 1.42 1.35 1.30 1.27 1.24 1.10 0.99 0.95

10 3.42 2.02 1.68 1.52 1.43 1.36 1.31 1.28 1.25 1.11 1.02 0.98

3 3.45 2.07 1.75 1.60 1.51 1.46 1.41 1.38 1.36 1.26 1.21 1.20

2 3.48 2.14 1.84 1.70 1.62 1.57 1.53 1.50 1.48 1.41 1.38 1.37

1 3.68 2.48 2.23 2.12 2.06 2.02 1.99 1.98 1.96 1.92 1.89 1.89

0.5 4.40 3.45 3.23 3.13 3.08 3.05 3.03 3.01 3.00 2.96 2.93 2.93

0.3 5.81 4.87 4.62 4.52 4.47 4.43 4.41 4.40 4.39 4.34 4.32 4.31

0.2 7.73 6.63 6.36 6.25 6.20 6.17 6.14 6.13 6.12 6.07 6.05 6.05

0.15 9.62 8.37 8.09 7.98 7.93 7.90 7.88 7.86 7.85 7.80 7.78 7.78

0.1 13.3 11.9 11.6 11.4 11.4 11.4 11.3 11.3 11.3 11.3 11.2 11.2

where

n∗ =
n

1 + n(ue/σ)2
(30)

and tα2 is the αth
2 quantile of the non-central Student’s t pdf with n− 1 degrees of

freedom and non-centrality parameter δ = zα1

√
n∗. Table 3 is similar to table 1 but its

entries are calculated by using (29) and (30) in place of (22), (27) and (28). When

Table 3. Values of kα2 obtained for several values of n and σ/ue, when α1 = α2 = 0.8

and according to the frequentist analysis outlined in [11]. The pdf of the residual

systematic measurement error is normal. The values of kα2 reported in the table are

accurate to within ±0.01.

kα2 values
n

2 3 4 5 6 7 8 9 10 20 50 100

σ/ue

∞ 3.42 2.02 1.67 1.51 1.42 1.35 1.30 1.27 1.24 1.10 0.99 0.95

10 3.42 2.02 1.68 1.52 1.43 1.36 1.31 1.28 1.25 1.11 1.02 0.98

3 3.47 2.09 1.75 1.60 1.51 1.45 1.41 1.37 1.35 1.24 1.17 1.15

2 3.53 2.17 1.84 1.69 1.61 1.55 1.51 1.48 1.46 1.36 1.30 1.28

1 3.88 2.53 2.21 2.07 1.98 1.93 1.89 1.87 1.85 1.76 1.71 1.70

0.5 4.95 3.46 3.10 2.94 2.85 2.79 2.75 2.72 2.70 2.61 2.56 2.54

0.3 6.63 4.82 4.37 4.17 4.06 3.98 3.93 3.89 3.87 3.75 3.69 3.67

0.2 8.84 6.55 5.98 5.72 5.58 5.48 5.42 5.37 5.33 5.18 5.10 5.07

0.15 11.1 8.31 7.60 7.28 7.10 6.99 6.91 6.85 6.80 6.61 6.51 6.48

0.1 15.6 11.8 10.9 10.4 10.2 10.0 9.89 9.81 9.74 9.48 9.34 9.30
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ue = 0, the obtained kα2 values in tables 1 and 3 are identical each other and to those

actually prescribed by the “80 %/80 % rule” as implemented so far, see [12]. For

ue 6= 0, the values obtained through the frequentist analysis are larger than those

obtained through the Bayesian one. This suggests that the supplemental information

provided by the pdf of the residual systematic error is more efficiently taken into

account through the Bayesian analysis, especially in those cases where it is expected

that the frequentist analysis may not work well (i.e. when n is small and ue is large).

Finally note from (30) that, in order to calculate n∗, the true value of the standard

deviation σ should, in principle, be known, which is not actually possible. Thus, in

practice, one has to assume that σ ∼ s in order to select the relevant entry of table 3,

a typical inconvenient arising from the frequentist approach to inference.

7. Evaluation of producer’s and consumer’s risks: the OC curve

In statistical quality control it is of interest to determine the acceptability of a lot of

items on the basis of the fraction of nonconforming items in the lot [8]. The decision

about accepting or rejecting the lot relies upon measurements of a quality

characteristic performed on a random sample of items from the lot. Assume that the

consumer is expected to reject a lot whose fraction of nonconforming items is 1− α1 or

greater. Further, let 1− α2 be the risk that the consumer accepts a lot whose fraction

of nonconforming items is greater than 1− α1. The consumer accepts the lot if, see

(28), L > qe + kα2s and the lot is not conforming if L− µ < zα1σ. Therefore the risk of

the consumer (risk of acceptance of a nonconforming lot) is

P (qe + kα2s− µ < L− µ < zα1σ| qe) = 1− α2, (31)

then, from (27) and (31),

1− α2 = 1−
∫ ∞
0

∫ kα2s+qe−zα1σ

−∞
f(µ, σ|qe)dµdσ, (32)

The operating characteristic (OC) curve is a diagram showing the probability of

acceptance of a lot as a function of the fraction of nonconforming items in the lot [8].

If f is the fraction of nonconforming items and zf is the (1− f)th quantile of the

standard normal distribution, then the probability of acceptance of a lot whose

fraction of nonconforming items is f is, from (32),

OC(f) = 1−
∫ ∞
0

∫ ks+qe−zfσ

−∞
f(µ, σ|qe)dµdσ, (33)

where k = kα2 is the acceptability constant, according to the terminology in [8].

The OC curves shown in figure 1 with continuous and dashed lines are obtained

assuming a sample size n = 6 and α1 = α2 = 0.8. The residual systematic

measurement error is taken as normal. The continuous line corresponds to the case

ue = 0 and the dashed line corresponds to the case ue = 1/2 s. The chosen values of

α1 and α2 are those stipulated by the “80 %/80 % rule” and the value of k is taken
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from table 1 (k = 1.42 if ue = 0 and k = 1.61 if ue = 1/2 s). Note that expression (22)

or (24) is substituted in (33) when assuming normal or rectangular residual systematic

error, respectively. For the normal case, for example, figure 1 shows that the effect of

the systematic error is significant since, in order to obtain a producer’s risk of 5 % (i.e.

an acceptance probability of 95 %), the maximum acceptable fraction of

nonconforming items reduces from 9 · 10−3 (ue = 0) to 14 · 10−4 (ue = 1/2 s).

f
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Figure 1. OC curves corresponding to a sample size n = 6, minimum fraction

of rejectable items equal to 0.2, consumer’s risk equal to 0.2 and normal residual

systematic measurement error with ue = 0 (continuous line) and ue = 1/2 s (dashed

line).

8. Conclusions

Bayesian analysis provides a powerful and consistent theoretical framework within

which the measurement uncertainty associated with random variability is propagated

and mixed up with the uncertainty associated with unknown, but sizeable, systematic

effects. Random variability may arise from both the fluctuation of the observed

quantity and/or the non repeatability of the measurement system. Results are derived

here that generalize the classical (and standard) analysis of acceptance sampling by

variables to the case where systematic measurement errors are not negligible with

respect to the spread of the quality characteristic (the measurand) over the produced

items. Assessment of compliance of a series production is performed and producer’s

and consumer’s risks, as a function of the fraction of nonconfoming items in a lot, are

calculated taking measurement uncertainty into account. It is demonstrated that the

standard results are obtained in the limiting case where measurement uncertainty
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tends to zero. The frequentist approach to the inclusion of systematic measurement

errors is proved to provide more conservative results than the Bayesian one. Further

investigation will be devoted to extending the analysis in order to include the non

repatability of the measuring system (which superimposes to the random variability of

the production process) and vague knowledge of the standard uncertanty associated

with the systematic effects.
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