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Abstract 

Engineering the metabolism of photosynthetic microorganisms with the aim of converting CO2 and 

water, by exploiting solar energy, into end-products of commercial value is a rising interest in the 

biotechnology field. The producing host that carries a genetic modification not associated with 

competitive fitness advantage usually experiences a production burden (i.e., a metabolic burden related 

to product synthesis), leading to genetic instability and abortive production phenotype. The genetic 

instability of these engineered strains is a major hindrance to the spreading of large-scale photosynthetic 

cell factory processes. This genetic instability can be studied by means of evolution experiments, which 

are often time-consuming. In these experiments, the cell population is subjected to a long-term culturing 

during which the possible variation of the number of producers and of cells that lose the production traits, 

here defined as retro-mutants, is recorded. Here, a mathematical model that describes the dynamics of 

retro-mutants into a population of metabolically engineered photosynthetic microorganisms has been 

developed. The model has been used to simulate evolution experiments, conducted both in continuous 

(chemostat and turbidostat) and semi-continuous (serial batch transfer) culturing modes. These 

simulations allowed identifying the set of operative parameters for each cultivation mode that optimizes 

an evolution experiment in terms of experimental time needed to detect the arising of retro-mutants. 

Moreover, it has been found that in a scale of number of microbial generations only two parameters, 

precisely the production burden and the mutation rate, are determinant for the appearance of retro-

mutants. These parameters are intrinsic features of any metabolically engineered strain and do not depend 

on the adopted cultivation system or on the microbial growth kinetics characteristics. This result further 

extends the applicability of the model also to non-photosynthetic metabolically engineered 

microorganisms. 
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1. Introduction 

Photosynthetic cell factories, based on prokaryotic cyanobacteria and eukaryotic microalgae, are 

promising biotechnological platforms because of their capability of directly converting CO2 and water, 

by exploiting solar energy, into end-products of commercial value, such as lipids, pigments, building 

blocks for polymer synthesis, and commodity chemicals [1–3]. Many proof-of-concept studies have been 

showcased [4–8] and many efforts have been made to increase the productivity of promising strains by 

means of metabolic engineering [9–13]. This consists in the use of different genetic engineering 

techniques to modify the metabolism of an organism by tuning specific metabolic pathways to trigger 

the targeted metabolite production [14]. To transform a wild-type microorganism in a producer of a 

specific metabolite of interest three strategies commonly used for manipulating the genome of the host 

microorganism are: (i) the over-expression of native genes to increase the production of compounds 

naturally occurring in the cell, (ii) the deletion of native genes to block competing metabolic pathways, 

and (iii) the insertion of heterologous genes for the heterologous synthesis of products. Notably, in the 

last decade a substantial contribution to this approach came from the increasing availability of fully 

sequenced genomes and genome scale metabolic models of many photosynthetic microorganisms [15–

17].  

The producing host carrying a genetic modification not associated with competitive fitness advantage 

usually experiences a production burden (i.e., a metabolic burden related to product synthesis), leading 

to genetic instability and degenerated/abortive production phenotype [18]. The genetic instability of the 

metabolically engineered strains nowadays remains one of the major constraints to the spreading of large-

scale photosynthetic cell factory processes [19]. The loss of productivity and yield in several 

metabolically engineered photosynthetic microorganisms has been mainly associated to the arising inside 

the producers’ population of retro-mutants [20–23], which are producing cells that lose their production 

capabilities by random mutation of the genes responsible for the formation of the target compound(s). 
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Indeed, the new trait(s) introduced into the producer cells can alter the carbon flux or interfere with the 

resource allocation inside the cell, often resulting in detrimental effects on the cell fitness [24]. This 

fitness impairment is determined by a production burden arising from the specific cost of the modified 

metabolic pathway in the producer cells, which can be exerted through the synthesis of additional DNA 

and protein molecules, depletion of essential endogenous compounds, and accumulation of toxic 

intermediates or by-products [24,25]. The entity of this production burden varies depending on the design 

and type of the modification to the biosynthetic pathway involved in the production of the target 

metabolite [26]. The retro-mutant cells, which have lost their production capabilities and are no longer 

affected by the production burden, have a fitness advantage compared to the producers and are subjected 

to a positive selection pressure that leads to their quick take-over of the culture. New approaches of 

metabolic engineering oriented at containing the genetic instability issue have been developed. One of 

the most promising strategies aims at aligning the target metabolite synthesis with the microbial fitness, 

so to reduce the probability of retro-mutation of the producing strain [27,28]. This metabolic engineering 

approach has been recently implemented in cyanobacterial cell factories [29,30]. Another recently 

proposed strategy consists in tying up the end-product with an intermediary metabolite that is essential 

to the growth of the producing host (i.e., metabolic addiction)  and  introducing feedback control genetic 

circuits conferring to the overproduction strain a competitive growth advantage (i.e., feedback genetic 

circuits) [31,32]. 

Evolution experiments are a common tool to assess how long an engineered strain will maintain its 

production capability [33]. During evolution experiments, microorganisms are subjected to long-term 

culturing under controlled conditions, either in continuous (chemostat, turbidostat) or semi-continuous 

(serial batch transfers) systems [33,34]. In this way, it is possible to detect the arising of retro-mutants 

with an expected increased fitness with respect to the producers and thus evaluate the instability of the 

engineered strain [35]. Evolution experiments are often time- and resource-consuming. Here we propose 
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a mathematical model describing the dynamics of retro-mutants in a population of photosynthetic 

microorganisms for the optimization of an evolution experiment carried out in chemostat, turbidostat and 

serial batch transfers systems. Precisely, the set of operative parameters that allows to detect in the 

shortest experimental time the arising of retro-mutants was identified for each cultivation system. 

The presented mathematical model is suitable for describing the evolution dynamics of a metabolically 

engineered photosynthetic population, because it takes into account the intrinsic biological properties 

influencing its growth and evolution. Photosynthetic microorganisms are autotrophs for which the light 

is a major determinant of their photosynthetic activity and, consequently, their growth. Indeed, even 

under nutrient saturation conditions, their growth can be either inhibited, if light intensity exceeds the 

saturating light level necessary to guarantee the maximum photosynthetic rate thus causing 

photoinhibition, or limited, if light intensity is insufficient for the reverse effect. Inside a cultivation 

system, even under constant sustained incident light, the photosynthetic microbial cells can experience 

growth limitation, due to the light attenuation occurring at increased biomass concentrations. This is the 

so-called self-shading effect [36], which consists in the mutual shading of the cells occurring via 

scattering by the cells or via adsorption by the pigments. To describe the growth of photosynthetic 

microorganisms, many growth kinetic models have been proposed [37–39]. Among them, the simplest 

one derives from the adaptation of the Monod model [40], originally conceived to describe the growth 

of heterotrophic microorganisms, substituting a substrate-limited growth with a light-limited one [36]⁠. 

More complex models accounting for multiple factors influencing the growth of photosynthetic 

microorganisms, such as the intrinsic biological features related to internalization of C, N, P nutrients, 

light, temperature, and physical properties of the cultivation system, have been devised [37–39,41]. Such 

detailed models are beyond the scope of this work. For this reason, in the present work a kinetic growth 

model has been adopted to account specifically for the effects of the light on the variation of the growth 

rate, considering both light-limitation and photoinhibition, [42]. This model has been applied to simulate 
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laboratory evolution experiments performed in different cultivation systems illuminated by constant 

continuous light. It is worth noting that the use of this light-dependent growth kinetic model is relevant 

to take into account the self-shading effect, occurring when the cell density increases.  

When studying the genetic instability of a metabolically engineered strain by means of a microbial 

evolution experiment, the aim is to record the variation in the ratio between the producing population 

and the subpopulation(s) arising by random mutation. These experiments usually start from a monoclonal 

population with no recombinant capability, therefore, ideally homogeneous. In this situation, the only 

source of variability regards the spontaneous mutations arising in the population subjected to the natural 

selection [43]. Next generation sequencing technologies, together with innovative experimental 

procedures such as marker divergence analysis [44], allow detecting these mutations and gaining useful 

information about the dynamics of adaptation in microbial populations [45]. Besides the experimental 

realm, mathematical tools have been developed to model and virtually reproduce the appearance of 

random mutations and the consequent natural selection. Both deterministic [46–48] and stochastic [49–

52] models present in literature highlighted that the relative fitness advantage of each mutant within the 

population plays a key role in the evolution dynamics. These models, when including a growth rate,  

considered it as constant. Here, we will adopt a model that includes a growth rate which can vary in a 

light-dependent manner.  A plethora of models have been devised to take into account haploid populations 

(i.e., one copy of each gene per individual) as well as polyploid populations (i.e., more than one copy of 

each gene per individual), and asexually or sexually reproducing individuals [53]. Here, we will focus 

on modeling a haploid asexually reproducing photosynthetic population, in which only one type of 

mutation can occur (i.e., clonal interference, leading to competition between mutants carrying different 

beneficial variants in the population, is not present). However, it should be noted that many 

photosynthetic microorganisms, including several strains of cyanobacteria, show polyploidy [54]. The 

larger is the ploidy of the microorganism, the higher is the probability that mutations manifest themselves 



8 

 

at the phenotypic level [55]. Polyploidy is species-dependent and, within a species, varies with the growth 

phase and changing environmental factors (e.g., light intensity, phosphate concentration), making hard 

its quantification [56]. For this reason, it is difficult to accurately simulate the evolution dynamics of a 

polyploid system under varying growth and environmental conditions. Nevertheless, by assuming a 

constant probability of mutation for a polyploid population, our model can be used to describe the average 

behaviour of this population in an evolution experiment run under controlled conditions.   

In this work, a novel deterministic model describing the dynamics of a producing population of 

photosynthetic individuals that is susceptible to mutational suppression is proposed. Firstly, the model 

was validated against the stochastic Moran model [51], which takes into account the random element of 

the onset of mutations in a population, and thus better represents the randomness of evolution dynamics. 

Secondly, the model, which includes a light-dependent variable growth rate, was applied to simulate an 

evolution experiment with the model cyanobacterium Synechocystis sp. PCC 6803 cultured in chemostat, 

turbidostat and serial batch transfer modes. Finally, once the values specific for the considered strain 

have been assigned to the model parameters, the proposed model was used to identify the optimal 

operative conditions for each cultivation system to perform an evolution experiment that guarantees to 

detect the appearance of retro-mutants in the shortest experimental time. In addition, this study showed 

that on a scale of number of microbial generations the arising of retro-mutants only depends on the 

mutation rate and the production burden of the engineered strain, irrespective of the microbial growth 

kinetics characteristics. This result further widens the applicability of the model also to non-

photosynthetic metabolically engineered microorganisms. 

 

2. Material and methods 

2.1. Deterministic modeling 

2.1.1. Growth and evolution model 
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To properly model the dynamics of an engineered producing microbial population, in which heterologous 

or extra copies of gene(s) have been inserted, at least two phenomenological observations must be 

considered. Firstly, the synthesis of a product can be burdensome for the producing population, whose 

growth rate is consequently negatively affected. Secondly, the probability of the arising of retro-mutants 

that lose the production trait is non-negligible, whereas the spontaneous development of the inserted trait 

is almost impossible in the short time-scale of laboratory experiments. 

The evolution of the engineered population inside a culture volume can be modeled by the following 

system of ordinary differential equations (ODE) [57], 

{

d𝑝

d𝑡
= 𝜇𝑝(1 − 𝑚)𝑝 − 𝐷𝑝

d𝑤

d𝑡
= 𝜇𝑤𝑤 + 𝜇𝑝𝑚𝑝 − 𝐷𝑤

, (1) 

where p(t) and w(t) are, respectively, the producing and the retro-mutant biomass densities at time instant 

t, μp and μw are the growth rates of the producing and retro-mutant populations, respectively, m is the 

specific mutation rate of the considered strain and D is the possible dilution rate. It is worth noting that 

the producers can retro-mutate only if they are growing (i.e., µp > 0). 

The growth rates of the producing and retro-mutant strains are assumed to be related each other by means 

of a constant production burden ρ, which represents the additional metabolic cost required to the 

producing strain to carry out the synthesis of the target product. Namely, μp = μw (1 – ρ). In the following, 

μw is assumed always greater than zero. The assumption of a constant production burden does not take 

into account the effects of fluctuating environmental conditions (pH, temperature, etc.) [58] and of toxic 

products  potentially affecting differently the producers and the retro-mutants [59]. Since the simulations 

aim at reproducing a controlled laboratory experiment with expected limited environmental fluctuations, 

their effect on the production burden are not considered in the modelling. In addition, for the sake of 

simplicity, also specific cases, such as unpaired toxicity of the product in the producers and retro-mutants, 

are not considered in this context.  
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To adapt the system (1) to photosynthetic microorganisms, the growth rate μw has been modeled 

according to the Aiba model [42]. This model describes the growth rate in function of the light intensity 

taking into account the light-limitation, light-saturation and photoinhibition events as 

𝜇𝑤(𝐼) = 𝑐𝑚𝑎𝑥

𝐼

𝑘𝑠 + 𝐼 + 𝐼2 𝑘𝑙⁄
− 𝑘𝑑 . (2) 

In the latter equation I is the incident light intensity, cmax is the maximum cell carbon uptake, ks and kl are 

the photo-saturation and inhibition constants, respectively, and kd is the specific decay rate of the 

microorganism, accounting for maintenance, cell turnover/repair and carbon loss. For simplicity, no 

nutrient limiting factors, such as N, P or C, other than light are assumed; nonetheless, they can be easily 

added by multiplicative modeling [38]. This simplification does not affect the presented results. 

The distribution of the light intensity I in the culture vessel, in general, is not homogeneous, because light 

is both absorbed and scattered through the culturing medium by the cells, which produce a self-shading 

effect [36]. Light extinction through the culture medium is modeled in first approximation by the 

Lambert-Beer law I(z) = I0 exp(-ξz), being I0 the incident light intensity, ξ the extinction coefficient and 

z the length of the optical path. The extinction coefficient contains both the contribution of the 

background (e.g., culture medium, bubbles) and of the cell population, here modeled as 

𝜉 = 𝜉𝑏 + 𝜀𝑝𝑝 + 𝜀𝑤𝑤, (3) 

where ξb is the extinction coefficient of the background and εp and εw are the specific extinction 

coefficient of the producing and retro-mutant populations, respectively. 

The heterogeneity of the light intensity distribution within the reactor volume forces the adoption of 

averaging to describe the system evolution in terms of ODE. To this end, two limit approximations can 

be adopted: 1) if the mixing rate is assumed higher than the photosynthetic response to light in terms of 

growth rate variation (i.e., infinite mixing assumption), then the light intensity is averaged [39]; 2) if the 

photosynthetic response of the cells to light is significantly faster than the mixing rate, then the growth 
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rate itself is averaged [39]. In the simulations, the latter approach has been used. Thus, in equation (1), µ 

was substituted with its spatial average 𝜇̅, computed as 

𝜇̅ = 𝑉−1 ∫ 𝜇(𝐼(𝑥))d𝑥
𝑉

, (4) 

where V is the volume of the cultivation system. It is worth noting that the spatial average growth rate is 

determined by the amount of light experienced by the cells in each point of the photobioreactor. For 

notation simplicity, hereafter the overbar is omitted. 

The described deterministic model has been implemented in a Python 3 code.  

 

2.1.2. Estimation of parameters assigned to the model 

In this paper, the parameters of the growth and evolution model used in the simulations refer to 

Synechocystis sp. PCC 6803 (hereafter Synechocystis) and are summarized in Table 1. 

Values assigned to the growth model parameters, reported in equations (2) and (3), are kd, cmax, ks, kl and 

ε. The specific decay rate kd of a photosynthetic microorganism is reasonably constant for any non-

saturating light intensity and increases under inhibiting irradiation [60]. Since all the simulations were 

performed in non-saturating light conditions (i.e., up to 150 µmol photons m-2 s-1), kd was kept constant 

and equal to 0.0079 h-1, a value reported for Synechocystis grown under similar light intensities [61]. For 

the parameters cmax, ks and kl, values were assigned by fitting the experimental data of growth rate and 

transmitted light intensities collected in Synechocystis at supplied light intensities ranging from limiting 

to photoinhibitory light conditions [62]. The specific extinction coefficient ε is subjected to dynamic 

changes due to the photoacclimation process by which photosynthetic cells modulate their pigment 

content in response to varying light intensity [63,64]. A modeling approach to describe its dynamic 

variations has been proposed [65,66]. In this study, however, photoacclimation has not been considered 

and a constant specific extinction coefficient ε, equal for producer and retro-mutant populations 
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(εp = εw = ε), was used, assigning a value of 0.16 m2 g−1 as reported for light intensities similar to those 

of our simulations [67]. Moreover, in equation (3) the turbidity of the background has been neglected by 

setting ξb = 0. 

Values assigned to the evolution model reported in equation (1) are m and ρ. The mutation rate m, which 

represents the bacterial genomic mutation rate that generates beneficial mutations, has been estimated in 

the range of 10-8-10-5 per generation in different microorganisms [68]. In this study, it was set equal to 

10-5 per generation according to [69]. The production burden ρ tested in the simulations was set equal to 

15 % and 30 %. These are realistic values of production burden in the range of those shown by 

metabolically engineered microorganisms, either cyanobacteria or heterotrophic bacteria [21,23,48,70], 

which can be estimated as the ratio between the growth rate of the producer and that of the retro-mutant, 

assumed to retrieve the wild-type growth phenotype.  

 

2.1.3. Cultivation modes and culture vessel geometries 

Three different cultivation modes have been investigated in the simulations: chemostat, turbidostat and 

serial batch transfer. 

A chemostat is a continuous cultivation mode in which the culture volume is kept constant by means of 

an outlet volumetric flow determining the continuous removal of broth culture and an inlet volumetric 

flow introducing fresh medium in the reactor, both working at the same rate. In the chemostat simulations, 

the dilution rate D in equation (1) assumes a positive and constant value. For values of D higher than the 

maximum growth rate possible for the cells under the supplied irradiance, the chemostat mode leads to 

the wash-out of the culture from the reactor; otherwise, the system tends to a steady state in which the 

growth rate of the cell population is equal to D. By setting in equation (1) the dilution rate D = 0, the 

particular case of a batch cultivation mode in principle could be simulated. In batch mode, all resources 

are provided in finite amount at the beginning of the cultivation with the exception of light. In the model, 
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however, nutrient depletion is not included, thus the growth can be described only as long as the resources 

different from light are not in limiting concentrations. Since a nutrient saturating condition cannot be 

assured indefinitely, this cultivation mode has not been simulated in the present study. 

In turbidostat mode, fresh medium is supplied to the culture and dilutions are performed according to 

optical density (OD) measurements, with the aim of keeping almost constant the OD of the culture. To 

simulate this process, two OD values are set, namely a base value (ODb) and a cut-off value (ODc). At 

the end of each time interval of a certain duration T, the OD is measured and if its value is greater than 

ODc, then a dilution with fresh medium is performed to restore the ODb. Mathematically, this process 

can be modeled by introducing in equation (1) a time-varying D; however, from a computational point 

of view, it is more convenient to set D = 0 and assume an instantaneous dilution. 

A serial batch transfer consists of the repeated inoculation of the growing culture in fresh medium for 

many rounds of cultivation. In experimental practice, this mode is performed manually in flasks by 

transferring part of a batch culture in new cultivation medium. A serial batch transfer can be considered 

as a special case of turbidostat, with the only difference of a longer duration of the time interval between 

two successive dilutions; from the computational point of view, there are no differences between these 

two modes. 

In the simulations, for all the cultivation modes a continuous supply of light was assumed. Moreover, in 

the turbidostat and serial batch transfer simulations, a fixed value of 0.8 was used for ODc. 

Each cultivation mode has been first associated to the vessel geometry most commonly used to perform 

a laboratory evolution experiment [33]. For chemostat and turbidostat modes, a flat panel of thickness 

3.70 cm laterally-illuminated by a far light source with 150 µmol photons m-2 s-1 has been considered 

(Figure S1a). For serial batch transfers, a 100 mL Erlenmeyer flask filled with 20 mL of culture and top-

illuminated by a far light source with 30 µmol photons m-2 s-1 has been used (Figure S1b). Details on 
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how to compute the average growth rate (4) for the considered vessel geometries are provided in 

Supplementary material (Appendix A). 

 

2.2. Stochastic modeling 

A stochastic process, whose behaviour recalls the random nature of the onset of mutations, can be used 

to describe the evolution dynamics, as an alternative to the deterministic model described above. 

The Moran model is one of the simplest stochastic models proposed to describe the spontaneous 

appearance of mono-allelic mutants in a population [51]. The Moran model assumes a population size 

maintained constant and equal to N individuals. The discrete stochastic process at its basis provides the 

number of retro-mutants in the population at certain time instants. It is obtained by iterating the 

elementary Moran step, which advances in time for a fraction of a generation equal to 

(log(N + 1) – log(N)) / log(2) and consists of two phases: first, one individual of the population is 

selected for duplication; then, one individual is selected to be removed. 

In presence of a production burden, impaired probabilities are used to select the duplicating individual 

according to 

𝑃(duplicating producer) =
𝑝

𝑁 + 𝑠𝑤
, 𝑃(duplicating retro-mutant) =

(1 + 𝑠)𝑤

𝑁 + 𝑠𝑤
, (5) 

where P(E) is the probability that the generic event E is verified, p and w are the number of producers 

and retro-mutants in the population, respectively, and s is the selective advantage of the retro-mutants 

with respect to the producers. The latter is related to the production burden ρ, introduced in (1), by 

s = ρ / (1 – ρ). If the individual selected for duplication is a retro-mutant, then its offspring will be a retro-

mutant, too; otherwise, it may be a retro-mutant with probability m * log(2), i.e. the mutation rate, 

introduced in (1), in a scale of number of microbial generations. On the other hand, all individuals have 

the same uniform probability of being selected to be removed. 
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The values for the model parameters m and ρ have been assigned as described for the deterministic model 

(Table 1). The Moran model has been implemented in a C++ code. 

 

3. Results and Discussion 

3.1. Validation of the deterministic model 

The output of a deterministic model is completely determined by the values assigned to its parameters 

and the initial conditions, and is representative of the average behaviour of a population. On the other 

hand, the output of a stochastic process is affected by the presence of a randomness source. This means 

that the same set of parameters and initial conditions will lead, in principle, to different output at each 

execution of the stochastic model better reproducing the variability of the biological system. 

Despite requiring more input parameters, the adoption of the deterministic model has remarkable 

advantages with respect to the stochastic approach [71]. Indeed, it is significantly faster to be simulated, 

especially with large populations [72], and provides results of evolution dynamics in a temporal scale, 

whereas the stochastic model only in terms of number of generations occurred. This is due to the fact 

that the stochastic model only contains two biological parameters (i.e., the mutation rate and the fitness 

advantage) and cannot be further tailored on a specific strain, differently from the deterministic model. 

Given the advantages of the deterministic model, it has been validated against the stochastic one to assess 

its suitability to describe the evolution dynamics. To this aim, simulations were performed with the two 

methods and results of the trends of percentage of producers r, defined by 

𝑟 =
𝑝

𝑝 + 𝑤
100 %, (6) 

were compared (Figure 1). 

First, it has been verified whether the output of the stochastic simulations has a deterministic behaviour 

by testing different values of population size (N), ranging from 105 to 108 individuals (Figure 1a). From 
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this analysis, it was evident that the random nature of the mutations outcome becomes relevant only for 

small populations (i.e., N < 107), as indicated by the larger variability of the output with both production 

burdens of 15 % and 30 % (Figure 1a). Thus, the system shows a deterministic behaviour when the 

population size is sufficiently large, a requirement easily satisfied in common operative conditions (e.g., 

for a Synechocystis culture, 0.25 OD730 = 108 cells per ml [73]). Secondly, the trend of the percentage of 

producers has been simulated with both the stochastic and the deterministic models setting N equal to 

108 individuals, and the results were compared in a scale of number of generations of producers  

(calculated as shown in Supplementary Material, Appendix B and Appendix C) (Figure 1b). The 

comparison shows a complete overlapping between the results obtained with the two approaches for both 

values of ρ, confirming that the deterministic model perfectly describes the dynamics of retro-mutant 

appearance inside a sufficiently large population. 

The validated deterministic model was used in all the following simulations. 

 

3.2. Dynamic simulations of evolution experiments 

In all the simulations, the percentage of producers r was computed for the entire duration of the evolution 

experiment, 80 days for chemostat, 60 days for turbidostat and 120 days for serial batch transfer. The 

temporal evolutions of a culture system in different cultivation modes were simulated assuming that no 

retro-mutants were originally present in the culture (i.e., r(0) = 100 %) and that the initial producers 

biomass density p(0) was such that the initial OD is equal to 0.1. The OD value was converted to the 

biomass density by using the conversion factor of 148 mg/L/OD730, according to [74]. The results are 

reported in day time-scale. 

 

3.2.1. Chemostat 
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The chemostat simulations were performed by testing increasing values of D from 0.01 h-1 to 0.07 h-1 

(Figure 2). The trends of biomass density obtained with ρ = 15 % (Figure 2a) show that the producing 

population reaches in few days a first, temporary steady state. During this steady state, the producers' 

growth rate μp is equal to D and its biomass density p remains almost constant. This state, at a certain 

point, is perturbed by the appearance of retro-mutants (Figure 2a), which, by virtue of their fitness 

advantage, take over the culture and lead to a new, stable steady state. When this occurs, the producing 

population is depleted and the retro-mutant population keeps a constant biomass density w, such that its 

growth rate μw is equal to D. The disruption of the first apparent steady state happens sooner at higher 

values of D (Figure 2a) and is reflected in the faster reduction of the percentage of producers reported 

in Figure 2b. In particular, within the time-frame of the simulation, the instability does not appear with 

D = 0.01 h-1, whereas it leads to about 80 % reduction of the producers with D = 0.03 h-1 and an almost 

complete loss of producers with higher values of D by the end of the simulation (Figure2b). 

Figure 2c and 2d show analogous trends for ρ = 30 %. With this higher production burden it is more 

evident that for D > 0.03 h-1 the first temporary steady state of the producer population reaches a lower 

biomass density with respect to that reached by the retro-mutants at the following steady state (Figure 

2c). Nevertheless, at these two steady states the growth rates of the producers and retro-mutants are the 

same and equal to D. The higher biomass of the steady state of the retro-mutants relies on the higher 

capacity of this sub-population to attenuate the self-shading effect with respect to the producer 

population, which, suffering from a metabolic production burden affecting negatively this capacity, at 

steady state reaches the same growth rate of the retro-mutants but at lower biomass. Moreover, with 

ρ = 30 % the instability of the producer population (Figure 2d) shows up faster than with ρ = 15 %, and 

at the end of the simulations already with D = 0.03 h-1 the producers completely disappear from the 

culture. 
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3.2.2. Turbidostat and serial batch transfer 

Both the turbidostat and the serial batch transfer cultivation modes are systems in which the culture 

experiences repeated dilutions. To assess the impact of the operative parameters adopted for the dilution 

process on the outcome of an evolution experiment, simulations were performed testing different values 

of interval duration between two consecutive OD checks (T) and base OD (ODb) (Figure 3). Precisely, 

for the parameter T, values of 0.1 h, 0.5 h, 1 h and 6 h for turbidostat and of 24 h, 48 h, 72 h and 96 h for 

serial batch transfer were tested in the simulations. For the parameter ODb, for both cultivation modes, 

values in the range between 0.2 and 0.7 were tested, that are respectively close to the initial and the cut-

off OD values set in the simulations (see Methods section 2.1.3).  

In the simulations of the turbidostat and serial batch transfer cultivation modes, the biomass and the 

growth rate of the population varied during the interval duration between two consecutive dilutions, 

depending on the operative parameters set (Table S1). This variation ranged between a minimum value 

of biomass, corresponding to the maximum growth rate observed immediately after each dilution (i.e., 

cells are in exponential growth phase), and a maximum value of biomass, corresponding to the minimum 

growth rate observed just before the dilution. 

In the simulations of the turbidostat mode, a negligible dependence of the variation of the trend of the 

percentage of producers with respect to T was observed for both values of ρ (Figure 3a) and only for 

ρ = 15 % and ODb = 0.7 a slight delay of few days appeared between the trends computed with T of 1 h 

and 6 h. In this cultivation mode, the ODb exerted a slightly higher effect on the appearance of retro-

mutants, which was slightly faster (Figure 3b). However, varying the ODb, the estimated delays in retro-

mutants appearance was limited to few days, and in general, the lower was the ODb value, the sooner the 

percentage of producers decreased within the population (Figure 3b). When comparing results of the 

simulations with ρ = 15 % and ρ = 30 %, the impact of varying either T or ODb on the trend of the 
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percentage of producers was always higher at lower production burden, and in general for both operative 

parameters a retarded appearance of retro-mutants occurred for ρ = 15 % compared to ρ = 30 %. 

The simulations of the serial batch transfer cultivation mode (Figure 3c and 3d) showed a slower 

decrease of the percentage of producers with respect to the turbidostat mode (Figure 3a and 3b) when 

comparing the same operative parameters and production burden. In this cultivation mode, both T 

(Figure 3c) and ODb (Figure 3d) had a significant impact on the evolution of the producer population. 

In particular, low values of T (Figure 3c) as well as low values of ODb (Figure 3d) induced a faster 

appearance of the retro-mutants. Analogously to the turbidostat, also in serial batch transfer cultivation 

mode the variation between the different trends of percentage of producers was larger with a lower 

production burden. 

 

3.3. Comparison between cultivation systems 

To select the best operative conditions to perform an evolution experiment aiming at detecting the 

appearance of retro-mutants in the shortest time in the different cultivation modes, we compared the 

results of all the simulations by looking at the time-instant at which the percentage of producers is 

reduced to the 50 % of the population. Indeed, this time-instant, hereafter referred to as t50%, is indicative 

of a remarkable instability in the producing strain at a certain time of the evolution experiment. 

Comparison of t50% for the different cultivation modes is reported in Figure 4. In general, it is evident 

that, irrespective of the cultivation system, the higher is the production burden of the producing strain, 

the smaller is t50%. In the chemostat cultivation mode, t50% decreased with increasing values of D (Figure 

4a), and thus with increasing growth rates at steady state. For D between 0.03 h-1 and 0.07 h-1, t50% varied 

from about 70 to 30 days for ρ  = 15 % and from 29 to 14 days for ρ = 30 %, showing a two-fold 

difference between the two production burdens. The same difference is evident in the results for 

turbidostat and serial batch transfer cultivation modes (Figure 4b and Figure 4c). The turbidostat mode 
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was barely affected by the variation of T (Figure 4b) and ODb (Figure 4c) in the range of values adopted 

for the simulations. Moreover, the chemostat operated with D = 0.07 h-1 (Figure 4a) and the turbidostat 

in all the simulated operative conditions (Figure 4b and Figure 4c) showed similar t50% for both 

production burdens (i.e., t50% of about 14 and 30 days respectively for ρ = 30 % and 15 % in the chemostat 

and of about 15 and 27 days respectively for ρ = 30 % and 15 % in the turbidostat). Indeed, in the 

turbidostat simulations, for all the ODb and T tested, the growth rate oscillated around 0.07 h-1 (Table 

S1), that is the growth rate at stationarity of the chemostat with D = 0.07 h-1 (Figure 4a). Thus, 

considering this specific case, the two cultivation modes led to almost equivalent output of population 

dynamics.  

On the other hand, the serial batch transfer resulted very sensitive to the variation of the operative 

parameters T and ODb and t50% occurred always later compared to the turbidostat mode (Figure 4b and 

Figure 4c). Moreover, the variation of t50% at different ODb (shade areas in Figure 4b) and T (shade areas 

in Figure 4c) was always almost double for ρ = 15 % with respect to ρ = 30 % (i.e., at varying either T 

or ODb, t50% always ranged from about 70 to 87 days for ρ = 15 %, and from about 38 to 45 days for ρ 

= 30 %). Working at a small enough T (e.g., 24 h, Figure 4b), the dependence of t50% on ODb was limited; 

similarly, working at a sufficiently low ODb (e.g., 0.2, Figure 4c), t50% appeared to be slightly dependent 

on T. The operative parameters T and ODb set respectively to 24 h and 0.2 (Figure 4b and Figure 4c) 

provided the conditions to observe the shortest t50% (i.e., about 70 and 40 days for ρ = 15 % and 30 %, 

respectively) in the serial batch cultivation mode. In the case of ρ = 15 %, these conditions for serial 

batch transfer led to a t50% similar to that of a chemostat operated with a D = 0.03 h-1 (Figure 4a). This 

reflects the similar growth rate experienced by the cultures in the two cultivation modes under these 

operative conditions (Table S1 and Figure 4a). It is worth noting that T is the duration of the time interval 

between two consecutive checks and, therefore might not correspond to the interval between two dilution 

operations. This fact can be appreciated in the case of ρ = 15 % and ODb 0.2 where the same t50% was 
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observed using either T of 24 h, when a dilution every two checks occurs, or T of 48 h, when a dilution 

every check occurs (Figure 4b). These evidences are of interest to optimize the design of an evolution 

experiment in repeated batch transfer mode. Indeed, this is a very common technique for evolution 

experiments, due to its low cost and easiness of implementation in any laboratory, but it suffers from the 

possibility to perform the sampling due to the constrain of manual performance. Therefore, the outcome 

of the simulations provides useful indications about the operative conditions of ODb that allow 

accomplishing the evolution experiment in the shortest time using a time interval T compatible with a 

manual repeated batch transfer experiment. 

 

3.4. Roles of the mutation rate and the production burden in the population dynamics 

In general, the results of the simulations suggest that, given a certain value of production burden, the 

reduction of the percentage of producers within the population is accelerated when cells experience high 

growth rates in the cultivation system. Indeed, when using the chemostat, the loss of the producer 

phenotype is faster working at the highest D not causing wash-out, which corresponds to the highest 

growth rate at steady state (Figure 4a). Conversely, in case of the turbidostat and serial batch transfer 

modes frequent or large dilutions, avoiding a long permanence of cells in the slow non-exponential 

growth phase responsible for lower growth rates (Table S1), induce a faster loss of the producer 

phenotype. 

To understand the relationship observed in the simulations between the growth rate of the producer 

population and the trend of the percentage of producers r, it is convenient to convert the trend of r from 

the day time-scale into a scale of number of microbial generations of producers. By doing this (see 

Supplementary Materials Appendix B for the complete mathematical demonstration), it is evident that 

the trend of the percentage of producers depends exclusively on the parameters ρ and m, irrespective of 

the cultivation mode adopted. Consequently, once the producing strain is characterized in terms of 
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production burden and mutation rate, it is possible to evaluate the number of generations of producers 

after which the percentage of producers drops to 50 %, designated as gp,50%, which is independent of the 

cultivation mode adopted in the evolution experiment. For an optimal design of the evolution experiment, 

maximizing the elapsing of generations per day will minimize the t50% at which the appearance of a 

substantial number of retro-mutants is observed. 

Figure 5 shows the counting of generations of producers for the operative conditions that minimize the 

t50% of evolution experiments performed in the different cultivation modes, which are respectively D = 

0.07 h-1 for chemostat, T = 0.1 h and ODb = 0.2 for turbidostat and T = 24 h and ODb = 0.2 for serial 

batch transfer, as deduced from Figure 4. In our simulations, the critical generation gp,50% corresponded 

to the generation number 39 for ρ = 30 % and 80 for ρ = 15 % and occurred at diverse time instant t50% 

for each cultivation mode (Figure 5), since the growth rate of the culture changes according to the 

cultivation system. In Figure 5, the values of t50% can be retrieved from the intersection between the 

generation counting curves of each cultivation mode and the horizontal lines indicating the gp,50%. The 

generation counting in the chemostat and turbidostat modes was almost the same during the first 20 days 

for ρ = 30 %, whereas it was slightly different since the beginning for ρ = 15 %. On the other hand, the 

generation counting in the serial batch transfer was slower with respect to the chemostat and turbidostat 

modes. In Figure 5, the different slope of the generation counting curves is proportional to the averaged 

growth rate of the producers in the different cultivation modes. Therefore, it is evident that, for a given 

value of production burden, the higher is the growth rate during the evolution experiment, the sooner the 

instability of the engineered strain will show up. 

The trend of the percentage of producers in a scale of number of microbial generations, as well as the 

value of gp,50%, is completely determined by the parameters ρ and m. The influence of ρ has been deeply 

discussed in the simulations above, testing values equal to 15 % and 30 %. We extended this investigation 

also to the influence of m, comparing simulation results obtained setting values equal to 10-8 and 10-5 per 
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generation (Figure S2), two limit mutation rates reported in literature for different microorganisms [68].  

Given a fixed value of m, higher values of the production burden ρ determine a decrease of producers at 

a lower number of generations characterized by a higher velocity of their disappearance (Figure S2). On 

the other hand, given a fixed value of ρ, higher values of the mutation rate m determine a decrease of 

producers at a lower number of generations, without altering the velocity of this decrease (Figure S2). 

 

4. Conclusions 

In the laboratory practice, evolution experiments to check the genetic instability of metabolically 

engineered microorganisms are often time-consuming. To identify the optimal set of operative conditions 

that minimizes the experimental time required for an evolution experiment suited for metabolically 

engineered photosynthetic microorganisms, a novel mathematical model has been developed and used to 

simulate the dynamics of retro-mutants appearance in three common cultivation modes (chemostat, 

turbidostat and serial batch transfer). This model has been tailored to specifically take into account the 

variation of the growth rate in dependence of the light intensity experienced by the photosynthetic 

microorganisms, considering both the light effects of self-shading and photoinhibition. In general, the 

simulations showed that, in each cultivation system, the appearance of retro-mutants is faster when 

operative parameters that guarantee high growth rates are adopted. The identification of these parameters 

allows the fine-tuning of the cultivation set up to reduce the time duration of an evolution experiment. 

The analysis of the model revealed that, when assuming a linear relationship between the growth rates 

of producers and retro-mutants by means of a constant production burden (i.e., μp = μw (1 – ρ)), the 

appearance of retro-mutants in a scale of number of microbial generations depends exclusively on the 

production burden and the mutation rate and is independent of cultivation mode and operative conditions. 

It is worth saying that this result holds even when other factors than photoinhibition and self-shading are 

considered. Indeed, since the trend of the percentage of producers expressed in a scale of number of 
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microbial generations is affected only by these two parameters, other growing conditions characterized 

by limiting substrates, photoacclimation and other complex phenomena can be easily investigated within 

the same mathematical framework here proposed. Conversely, a case-by-case investigation is required if 

the relation between the growth rates of producers and retro-mutants is non-linear, for instance when the 

production burden and the mutation rate are influenced by fluctuating factors, such as variable 

environmental conditions. Hence, the mathematical model here proposed will be seminal for future in-

depth analysis of more complex relations existing between the growth rates of the producers and retro-

mutants in long-term evolution experiments. Moreover, the proposed model could be used to describe 

other experimental procedures involving the arising of spontaneous mutations, such as the adaptive 

laboratory evolution used to select microorganisms accumulating beneficial mutations [75]. 
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Tables and figures captions 

 

Parameter Assigned value Reference 

cmax 0.223 h-1 Fitted from data by [62] 

ks 112 µmol photons m-2 s-1 Fitted from data by [62] 

kl 748 µmol photons m-2 s-1 Fitted from data by [62] 

kd 0.00790 h-1 [61] 

ε 0.160 m2 g−1 Calculated from [67] 

m 10-5 per generation [69] 

ρ 15 %, 30 % [21,23,48,70]  

 

Table 1. Parameters assigned to the model to simulate the dynamics of a photosynthetic retro-mutant 

sub-population of Synechocystis sp. PCC 6803. 
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Figure 1. Trends of the percentage of producers with increasing number of generations of producers, 

calculated by setting the production burden to 15 % and 30 % and the mutation rate to 10−5 per generation. 

(a) Trend of the percentage of producers obtained with the stochastic model using different values of 

population size (N). Lines indicate the average values of up to 10 random Moran runs, whereas the shade 

areas cover from the minimum to the maximum value obtained at each generation and collapse to a line 

for the largest populations. (b) Trends of the percentage of producers obtained with the deterministic 

model and the stochastic model estimated with population size of 108. 
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Figure 2. Simulations of population dynamics in a flat panel cultivation system operated in chemostat 

mode with different values of dilution rate (D). Trends of the biomass contribution of the producers and 

retro-mutants (a and c) and of the percentage of producers (b and d), calculated setting the production 

burden respectively to 15 % and 30 % and the mutation rate to 10-5 per generation. 
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Figure 3.  Simulations of population dynamics in turbidostat and serial batch transfer cultivation modes. 

Trends of the percentage of producers at varying T (a and c) and ODb (b and d) in a flat panel operated 

in turbidostat mode (a and b) and in serial batch transfer mode in Erlenmeyer flask (c and d), calculated 

setting the production burden to 15 % and 30 % and the mutation rate to 10-5 per generation.  
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Figure 4. Trends of the time-instant (t50%) at which a drop to 50 % of the producers is observed in the 

different cultivation modes at different values of operative parameter D, T and ODb. Trends of t50% at 

increasing values of D in the chemostat mode (a), and at increasing values of T (b) and ODb (c) in the 

turbidostat and serial batch transfer modes. In panel b, the shade areas between two lines comprise the 

trends of t50% for the values of ODb ranging between 0.2 (bottom line) and 0.7 (top line) for both 

cultivation modes; for the turbidostat mode, the shade areas collapse to a line and an inset shows an 

enlarged view of the results. In panel c, the shade areas between two lines comprise the trends of t50% for 

the values of T ranging between 0.1 h (bottom line) and 6 h (top line) for the turbidostat mode, and 

between 24 h (bottom line) and 96 h (top line) for the serial batch transfer mode; for the turbidostat mode, 

the shade areas collapse to a line. 
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Figure 5. Comparison of the generation counting versus time in chemostat, turbidostat and serial batch 

transfer modes optimized for the shortest t50%. The horizontal dashed and solid lines indicate the gp,50% 

respectively for production burden set to 15 % and 30 %. 

 


