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L E T T E R  T O  T H E  E D I T O R

RF-induced heating of metallic implants simulated as PEC: Is 
there something missing?

The possible heating of metallic devices implanted in the pa-
tient’s body is a source of concern in MRI, discussed in many 
papers and standards.1-15 Two fields may produce heating in 
the presence of metallic implants: gradient fields (which may 
deposit significant Joule losses within bulky metallic ob-
jects16-20) and radiofrequency (RF) fields. In the latter case, 
thermal effects are commonly evaluated in terms of specific 
absorption rate (SAR) around the implant and, sometimes, of 
the consequent heating.21-28

In most papers investigating the problem via simulations, 
metallic implants at RF are modeled as perfect electric con-
ductors (PEC), forcing the electric and magnetic fields to be 
purely perpendicular and tangential, respectively, to the ex-
ternal surface of the implant, whose volume is removed from 
the computational domain.

As a drawback, the PEC approximation prevents from 
looking inside the object; thus, the simulation of the heating 
process misses the contribution coming from the power de-
posited by the field in the metallic volume. Moreover, when 
metallic implants are not described as PEC, but discretized 
into elements whose size is larger than the penetration depth 
(as done, for instance, in Refs. 24,27-28), the computation of 
the Joule losses deposited inside them cannot be considered 
as accurate, because the adopted mesh is unsuited to recon-
struct the internal field pattern.

Many appliances exploit medium frequency magnetic 
fields to heat/anneal/melt metallic objects by direct dissi-
pation of energy inside them.29-30 In addition, for a given 
amplitude of the incident field, analytical solutions show a 
monotonic increase of the power deposited inside conduc-
tors as the frequency increases.18 Hence, a curiosity about 
the amount of heating directly produced inside metallic im-
plants by the MRI RF fields seems to be justified. To settle 
the question, we propose to combine the Surface Impedance 
Boundary Conditions (SIBC) and the Poynting vector. For 
good conductors at RF, the SIBC allow avoiding the extremely 
tiny discretization required to obtain a proper description of 
the field distribution within metallic objects, where the pen-
etration depth (on the order of some tens of micrometers, at 

typical Larmor frequencies of MRI) would lead to very heavy 
computational burdens. At the same time, the SIBC provide 
the correct distribution of the electromagnetic field over the 
surface of the object.31-36 Therefore, this distribution can be 
used to compute the complex Poynting vector, whose real 
part allows quantifying the amount of power locally depos-
ited in a thin layer corresponding to the field penetration. The 
procedure, realized by us through the software COMSOL 
Multiphysics, has been validated by comparison with the an-
alytical calculation of the power deposited inside a metallic 
sphere exposed to a homogeneous RF magnetic field,18 obtain-
ing an excellent agreement (discrepancy < 0.2%). Figure 1A  
shows such a power and compares it to Finite Element (FE) 
solutions, for different resolutions. As reported, FE solutions 
converge to the reference value, but are not accurate until the 
resolution approaches the penetration depth. Moreover, the 
convergence may be non-monotonic.

Once validated, the proposed procedure has been applied 
to a realistic CoCrMo hip prosthesis (conductivity: 1.26 
MS/m) embedded in a cylindrical phantom (with the prop-
erties defined in Ref. 12) exposed to the field of a birdcage 
working in circular polarization at 128 MHz (Figure 1B). The 
results have been scaled to get a partial-body SAR equal to 
the limit recommended in Ref. 11 for normal operating mode. 
Finally, thermal simulations have been performed using as 
driving terms, separately, the SAR around the implant and 
the power deposited inside it (see Figure 1C). After 6 minutes 
of exposure, the maximum heating (occurring at the tip of the 
stem, where, without the implant, SAR would have produced 
a heating around 0.25 K) was about 1 K. Less than 1% of this 
temperature elevation was due to the power deposited inside 
the prosthesis. The relative contribution to the heating due to 
the internal power reached a maximum of about 15% near the 
center of the stem, where the absolute temperature was much 
lower (<0.1 K), anyway. The test was repeated for a long 
femoral nail (length: 240 mm, diameter: 9 mm) in longitu-
dinal position. After 6 minutes, the maximum heating (at the 
tip of the nail) was about 0.9 K and the contribution due to 
the internal power was lower than 1%. This confirms that the 
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heating due to Joule losses within the implant at RF is negli-
gible. Hence, on a practical side, PEC models are acceptable, 
as are previous results based on discretizations larger than the 
penetration depth.
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F I G U R E  1   RF-induced heating of CoCrMo objects at 128 MHz, where the penetration depth is ~40 μm: A, Joule losses induced in a sphere 
(radius: 1 cm; applied magnetic flux density: 1.2 μT), computed with the proposed approach based on the SIBC and Poynting vector (red horizontal 
line) and with a Finite Element solver for different values of the element size (blue dots); B, scheme of the analyzed hip implant embedded in a gel 
phantom, radiated by a birdcage antenna; C, maps comparing the temperature increases of the hip implant continuously radiated for 6 min, using as 
heat source the SAR around the implant itself or the Joule losses deposited within it.
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