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Discrete random media have been investigated extensively over the past century due to their ability to scatter light.
Even so, the link between the three-dimensional (3D) spatial distribution of the scattering elements and the
resulting opacity is still lively debated to date due to different experimental conditions, range of parameters
explored, or sample formulations. On the other hand, a unified numerical survey with controlled parameters
has been impractical up to date due to the sheer computational power required to address samples with repre-
sentative size. In this work, we exploit a graphics processing unit implementation of the T -matrix method to
investigate the complete range of particle volume concentration and packing-induced spatial correlations, allowing
us to reveal and elucidate a twofold role played by spatial correlations in either enhancing or suppressing opacity.
By applying these findings to the illustrative case of white paint, we determine the optimal combination of density
and spatial correlations corresponding to the highest opacity. © 2018 Optical Society of America under the terms of the

OSA Open Access Publishing Agreement

OCIS codes: (290.4210) Multiple scattering; (290.7050) Turbid media.
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1. INTRODUCTION

Multiple wave scattering by discrete random media has been stud-
ied for decades due to its relevance in a wide array of fundamental
and technological applications with several textbooks covering its
physics and principles [1–3]. The role of spatial correlations, in
particular, is drawing increasing attention for the rich array of fun-
damental mesoscopic physics [4–10] and potential applications
that it could impact, ranging from quantum optics to energy
harvesting and radiative cooling [11–15]. Despite the constant
advancements, however, the study of light transport through
an ideally simple system of scattering spheres in a homogeneous
medium still does represent an overwhelmingly complex vector
problem, hindering our ability to answer many basic questions
lying at the core of this field. Arguably the most relevant of these
questions regards the turbidity of a scattering layer. Indeed,
increasing particle density enhances opacity only up to a certain
level, above which the overall scattering efficiency is suppressed by
the close vicinity between neighboring particles. An optimal den-
sity naturally arises from this interplay, yet its value is only vaguely
expected to lie somewhere between a volume fraction of 20% and
50% [16], and even such broad limits are often debated, with
evidence supporting both lower [17–20] and higher [21,22]
optimal densities values.

Other similarly inconsistent claims are frequently found in the
literature, most of which are impossible to compare directly
due to different experimental conditions. A typical example is re-
lated to the use of titanium dioxide (TiO2) nanoparticles in coat-
ing and paint applications, which we will use as a reference test
case in this work due to its generality, technologic relevance, and
long-standing research efforts on the topic [23–27]. Indeed, while
there is general agreement on the fact that scattering nanoparticles
for an optimal white paint formulation should have a diameter
of roughly 200 nm [18,28,29], little else is agreed upon when
it comes to the optimal density, spatial correlations, and degree
of clustering. The latter is another exemplary issue of debate:
while flocculation and particle clustering is typically seen as a
detrimental factor [29–33], numerical and experimental evidence
exist showing that light scattering is either insensitive to clustering
[34] or even enhanced by it [35]. Similarly, even the onset of the
so-called “dependent” scattering regime is often questioned,
being generally set around 1% volume fraction [18–20,36] with
experimental evidence suggesting values well above that [28,37],
possibly up to 20% [38].

Reasons for such diverging conclusions arise from the large
number of experimental parameters involved in sample prepara-
tion, including the choice of nanoparticles size, inorganic
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coatings, polydispersity, resin and binder formulations, drawdown
system, chemical dispersants, solvents, and extenders. Adding to
this, conflicting interests between industrial players fostering an
increased use of either scatterering particles or inter-particle
spacers also seem to bias findings and claims in part of the
literature [33]. Finally, even when spatial correlations are explic-
itly considered, e.g., exploiting either steric or electrostatic repul-
sion between particles, the actual effect on the three-dimensional
(3D) point statistics is hard to evaluate or quantify, being at best
only indirectly inferred by time-consuming analysis of two-
dimensional (2D) micrographs [29]. As can be imagined, similar
inconsistencies affect the optical characterization of all discrete
random media beyond the illustrative case of TiO2 in paint
coatings.

The aim of this work is to provide a comprehensive framework
for rigorously surveying scattering properties in discrete random
media with a focus on the role of spatial point statistics.
To date, in fact, state-of-the-art methods consist of combining
different approximations depending on the average particle den-
sity. Even so, the collective scattering approximation based on the
structure factor is shown to fail above a particle density of ∼20%,
with attempts aimed at including near-field contributions im-
proving the agreement only qualitatively and in a limited density
range [39,40]. Here, we propose a phenomenological approach
that is not based on any simplifying hypothesis and, therefore,
is not subject to validity ranges, providing a useful benchmark
for further modeling. To this purpose, we adopt a numerical ap-
proach allowing us to define, quantify, and independently vary all
physical parameters of the scattering medium one at a time,
encompassing for the first time, to the best of our knowledge,
the whole parameter space in terms of both volume concentra-
tions and spatial correlations. Here, we focus on the specific type
of correlations induced by the packing of hard spheres, but our
approach can be applied to any kind of spatial correlation in dis-
crete systems, including deterministic aperiodic [41], potential-
based [42], hyperuniform [8], or random fractal [43] structures.
Owing to this richer characterization, novel insight is gained by
analyzing the interplay between particle density and spatial cor-
relations in terms of two key functionals of the 3D point statistics,
namely the first moments of the nearest-neighbor distance and
pore-size distributions. Based on these figures, we clearly identify
the configurations where near-field effects weaken the overall
scattering strength [40,44,45]. In addition, we reveal the existence
of a second set of spatial arrangements, where, unexpectedly, a
weakening of the scattering strength is provided by perfect particle
segregation, shedding new light on the reason for many inconsis-
tent results in the literature.

2. NUMERICAL RESULTS

A. Design of Sample Configurations

We consider cylindrical discrete random media containing
nonabsorbing spherical particles with a diameter of d � 200 nm
embedded in a uniform host environment. The refractive index is
set to 2.67 and 1.5 for the particles and host matrix, respectively,
in accordance with typical values used in the literature to describe
paint film components [29,32]. All cylindrical configurations
have a diameter/height ratio strictly above 4 to avoid finite-size
effects [40].

Particle configurations with a range of volume fractions have
been obtained with a molecular dynamics code based on the
Lubachevsky–Stillinger method [46], which allows us to generate
disordered packings of spheres up to a volume fraction of
∼64% (corresponding to the theoretical limit for an infinite com-
pression rate [47]). A slightly bidisperse population of spheres
was used with a radii ratio of 0.98 to reduce the formation
of ordered subdomains in the highly packed configurations.
Starting from a set of P � 22 packing fractions in the range
of 0.01, 0.04, 0.07,…, 0.64, we generate P�P � 1�∕2 � 253 in-
dependent configurations corresponding to every combination of
volume (f v) and packing (f p ≥ f v) fractions compatible with
nonoverlapping spheres. In other words, each configuration is
characterized by a certain degree of correlations (inherited by
an original packing of density f p), and a filling fraction obtained
by properly rescaling the point pattern until the target f v is
reached. Note that this approach, which conveniently allows
us to introduce spatial correlations in a controlled way and
independently of the final volume fraction, is equivalent to the
packing of core–shell particles with an inner diameter d and
an outer diameter d excl � d �f p∕f v�1=3 ≥ d, such that the shell
has the same refractive index as the surrounding medium acting as
a spacer [11,48]. Following this analogy, densities are defined as
f v � αd 3 and f p � αd 3

excl with α � πN∕6 V . A few exemplary
configurations with different levels of particle density and spatial
correlations are shown in Fig. 1.

To obtain a complete picture of how density and correlations
affect the overall hiding power of a scattering slab, we consider
two distinct sets of sample geometries, allowing us to address
the problem from two complementary perspectives. In the first
case [Fig. 1(a)], we generate different arrangements of particles
while keeping a constant density per unit area. This approach
is suitable to describe how the independent scattering approxima-
tion breaks down with increasing density, as was also investigated
in a recent work with similar numerical simulations on few

(a) (b)

Fig. 1. Rendering of illustrative configurations relative to values of f v and f p equal to 0.01, 0.04, 0.16, and 0.64. Panel (a) shows configurations with
an equal particle/area ratio (N∕A � 1.125 · 102 μm−2) and variable thickness (0.75 μm ≤ L ≤ 48 μm) comprising up to 3.6 · 106 spheres. Panel (b)
shows configurations with equal thickness (L � 3 μm) and variable density (7 μm−2 ≤ N∕A ≤ 450 μm−2) comprising up to 8.0 · 104 particles per sam-
ple. For simplicity, particles beyond a diameter/height ratio of 8 are discarded in the actual T -matrix calculations.
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smaller aggregates [40]. The alleged rationale behind this sample
design choice is that Ohm’s law for transmission through a scat-
tering slab does not depend on the sample thickness at a fixed
particle density per unit area. However, using Ohm’s law as a
reference can lead to imprecise conclusions. First, one would need
to consider extremely large samples in order to apply the diffusive
approximation, well beyond those considered so far. Second, even
in the simple diffusive approximation, additional terms must be
considered that are not accounted for in Ohm’s law, resulting in a
different scaling with thickness [49]. Finally, transmission in the
diffusive regime is also substantially affected by the effective
refractive index of the scattering slab, which clearly increases with
increasing volume density [45,50,51]. Notably, disregarding the
increased refractive index mismatch at the boundaries of a scat-
tering slab is a known source of significant overestimation of the
transport mean free path [52,53], highlighting the importance of
a rigorous approach that does not rely on the hypotheses of
approximated models.

Therefore, in addition to this first set of configurations, we
also present a second complementary survey, where we consider
slab samples with fixed thickness [Fig. 1(b)], looking for par-
ticle configurations providing the highest turbidity at a given
wavelength. Besides being a more relevant quantity from an
application point of view, absolute maximum integrated reflec-
tance represents also a more rigorous parameter compared to
the rather ill-defined transition between independent and de-
pendent scattering regimes [54,55]. More importantly, for both
sets of configurations, our approach based on the statistical
properties of the particle point patterns allows us to provide
an interpretation that does not rely on any approximated trans-
port theory.

B. T-Matrix Calculations

Several numerical studies have been published in recent years,
describing rigorous solutions of Maxwell’s equations in dense dis-
crete random media. In this respect, the superposition T -matrix
method provides a convenient approach, as it does not require any
underlying mesh or regular point lattice to describe the investi-
gated medium [3]. Even so, to date, most studies have considered
only small clusters of particles or individual configurations
[31,32,35,40,56–61] due to computational limitations.

In this study, we use a freely available, CUDA-accelerated im-
plementation of the T -matrix method named CELES [62] to
largely reduce the computational burden. By leveraging massively
parallel execution on graphical processing hardware, a block-
diagonal preconditioner and a look-up table approach for the
evaluation of costly functions, CELES allows us to efficiently ad-
dress large electrodynamics problems on inexpensive consumer
hardware. All calculations are performed at a wavelength of λ0 �
532 nm using a perpendicular Gaussian beam illumination with a
beam-waist size at least 8 times smaller than the cylinder diameter.
For every configuration, we recorded the overall transmitted and
reflected power integrated over the forward and backwards
hemisphere, verifying energy conservation to a relative error
of ∼10−3.

Figures 2(a) and 2(b) show the obtained reflectance values for
all different configurations, along with a cubic spline adaptation
that allows us to smooth the fluctuations of the individual
disorder realizations. Additional statistical averaging is inherently
provided by the large impinging beam width and size of the

samples. As expected, in the case of constant particle density,
we find that overall opacity is almost constant at low volume frac-
tions and drops abruptly above a 20% density. Similarly, the fixed-
thickness configurations exhibit a maximum opacity around a
volume fraction of 25%, which is in agreement with previous
results. More interestingly, in both sets of calculations, we find
a consistent trend where maximum opacity shifts from highly cor-
related configurations to maximally uncorrelated ones going from
low to high-volume fractions. The net result is shown in the insets
of Fig. 2, which considers for simplicity the overall reflectance
along the two extreme values of the packing fraction, namely
f p � f v and f p � 0.64. As can be seen, a crossover is observed
in both cases, switching between two opposite regimes at a
volume density of ∼30%.

It is interesting to compare these results to the enhanced scat-
tering strength that few authors claim to be achievable by acting

(a)

(b)

Fig. 2. Numerical results and cubic spline adaptation of integrated re-
flectivity calculations. Panels show data relative to (a) fixed particle area
density and (b) fixed-thickness configurations. Edges of the phase space
corresponding to f p � f v and f p � 0.64, representing, respectively,
the least and maximum amount of spatial correlations, are plotted in the
inset. Pairs of configurations most impacted by spatial correlations are
highlighted in panel (b).
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solely on an optimized inter-particle spacing (see, e.g., discussion
in Ref. [33] and references therein). In this respect, our controlled
calculations cast a rigorous bound on the role of spatial correla-
tions to improve reflectance at the wavelength of interest.
While we indeed find that perfect particle segregation (corre-
sponding to the so-called cermet topology) enhances opacity
up to moderately high densities, the opposite is true after the
crossover. A more quantitative take on this issue can be obtained
by considering the fixed-thickness survey of Fig. 2(b). Limiting
ourselves to the configurations with the highest (f p � 0.64) and
least (f p � f v) degrees of spatial correlations, we seek these pairs
of samples exhibiting equal reflectance, while having the largest
relative difference of particle volume concentrations. This is a
relevant figure of merit especially for paint manufacturers, as it
directly connects to the possibility of having two equally perform-
ing paint formulations using maximally differing amounts of
TiO2 pigments—an expensive component in paint systems. As
shown in the inset of Fig. 2(b), we find that an uncorrelated con-
figuration with a particle volume concentration of f v � 0.0765
achieves the same reflectance (R � 0.57) of the maximally corre-
lated configuration with a particle concentration of just 0.0635,
corresponding to a 17% TiO2 reduction. Conversely, the oppo-
site result is observed at higher densities, where a total reflectance
of R � 0.68 can be obtained, saving up to 9.3% of particles by
completely avoiding spatial correlations, e.g., moving from a
correlated configuration at f v � 0.436 to a maximally random
one at a smaller volume density of f v � f p � 0.396.

Another prominent configuration that we successfully identify
is that with the highest absolute reflectance, obtained at f v �
0.25 and f p � 0.49 for the fixed-thickness survey. The result
of this particular calculation, corresponding to a total reflectance
R > 77% achieved in just 3 μm of thickness, is particularly re-
markable if we consider the relatively low refractive index contrast
of 1.78 between the TiO2 nanoparticles and the host matrix, and
it represents a good estimate of the ultimate scattering strength
that can be achieved in these systems at typical visible frequencies.
Figure 3(a) shows a cross-cut along f v � 0.25 of the reflectance
data plotted in Fig. 2(b), featuring a peak for an intermediate de-
gree of correlations. Based on the optical and geometric param-
eters of the simulated structures, we solve the radiative transfer
equation for these configurations using the Monte Carlo method
[63,64] in order to estimate an associated transport mean free

path l�. To this purpose, we ran several Monte Carlo simulations
with 109 photons each, considering an average slab thickness of
L� d∕2 with an uncertainty of �d∕2. The effective refractive
index of the scattering layer is estimated numerically from the
exctinction of the coherent (ballistic) component of a plane-wave
excitation for different configurations [65] (see Section 1 of
Supplement 1); its exact value and dependence on the degree
of correlations are nonetheless found to only marginally affect
the inverse solution due to the static nature of the integrated re-
flectance. Even at fixed particle density, optimizing the degree of
correlations allows to decrease the transport mean free path length
by more than 10%, reaching an estimated minimum value of
0.43 μm. It is worth noting that this figure, corresponding to
a value of keff l� > 9, is still far from the expected transition to
the strong localization regime. This is due to the moderately
low refractive index contrast between the TiO2 nanoparticles
and the host medium: much smaller values for keff l� have been
reported in the case of dry aggregates of nanoparticles, even
though they are not sufficient to reach the Anderson localization
regime [66,67]. Comparable figures for the total reflectance are
obtained at different wavelengths in the visible range, as reported
in Section 2 of Supplement 1. Figure 3(c) shows a cross-cut of the
electric-field distribution in the xz plane of the most opaque con-
figuration illuminated with a Gaussian beam from the negative z
direction, illustrating how a large fraction of incoming radiation is
back-reflected within a few units of l�.

These observations underline the twofold role of spatial
correlations in either enhancing or weakening the overall turbidity
of a scattering layer based on the volume fraction occupied by the
scattering particles. The onset of the high-density behavior chal-
lenges the common view that high-density configurations are
associated with a so-called “particle crowding” effect that is
detrimental to the overall opacity of the scattering layer. On
the contrary, we find that perfect separation between particles
does eventually weaken opacity above a certain filling fraction.
To the same extent, we also show that the simple interpretation
of a near-field assisted regime for light transport that has been
recently proposed [39,40] provides an incomplete description
for the observed behavior for intermediate and moderate particle
densities, as it would predict a monotonic decrease of scattering
strength with decreasing inter-particle distance. On the other
hand, the typical “particle crowding” picture is recovered at lower

(a) (c)

(b)

Fig. 3. Maximum integrated reflectance for equal-thickness samples. Panel (a) shows a cross-cut of Fig. 2(b), showing that the maximum opacity is
reached for an intermediate degree of spatial correlations. Panel (b) shows the corresponding estimated transport mean free path l� obtained by a Monte
Carlo fit of the total reflectance. Error bars correspond to a thickness uncertainty between L ≤ L� d∕2 ≤ L� d . The absolute value of the total electric
field in the xz plane for the configuration with f v � 0.25 and f p � 0.49 is depicted in panel (c).
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densities and is particularly evident for the fixed-area/density con-
figurations, where the presence of strong spatial correlations is
capable of preserving high scattering performance up to higher
particle concentrations. A consistent picture is also obtained on
a broader wavelength range (see Section 2 of Supplement 1),
where it is shown that high spatial correlations are indeed not
generally associated with optimal scattering performances.

3. SPATIAL POINT ANALYSIS

In order to provide a more quantitative explanation of the ob-
served behavior, we introduce two useful descriptors associated
with the different roles of spatial correlations. To this purpose,
we use Voronoi tessellation [68,69] as a versatile framework to
define and test several functionals of the 3D point pattern statis-
tics of the scattering configurations. A few notable examples have
already been reported in the literature, also in connection with the
local homogeneity of point configurations and their consequences
for effective medium theories in electrodynamics [69,70]. In our
case, we exploit Voronoi tessellation as the most computationally
efficient tool to define the list of all neighbors to each particle, as
well as to calculate the pore-size distribution of the medium with
the trial sphere method, based on the Voronoi cells where the trial
sphere centers fall [71]. We choose these two figures because of
their intuitive connection to the two main mechanisms weaken-
ing the turbidity of a scattering layer, namely the near-field
contacts between neighboring spheres and the high spatial homo-
geneity arising in highly correlated configurations.

If we consider parameters normalized to spheres of unit diam-
eter, the mean distance between nearest-neighbor particles for a
statistically isotropic 3D packing of hard spheres is defined as [72]

hδnni �
Z

∞

1

e−3·2
3f v

R
r

1
y2G�y�dydr,

where G�r� is the nearest-neighbor conditional pair distribution
function, expressing the probability of finding a particle center in
a spherical shell of radius r, given that there are no other particle
centers in the spherical region except for the particle located at its
origin. In the following, we refer to the surface-to-surface distance
between particles hδnni − 1 rather than to the distance between
their centers in order to connect more directly to the relevant
physical picture of near-field coupling of evanescent waves. On
the other hand, we consider the probability p�δp�dδp that a ran-
domly chosen point in the host volume lies at a distance between
δp and δp � dδp from the nearest point on the particle–solid in-
terface with p�δp� representing the pore-size probability density
function. It is worth noting that the pore-size distribution con-
tains some degree of information about the 3D connectedness of
the host phase of the medium, making δp a fundamentally 3D
descriptor that cannot be extracted from the 2D cross-section
of the material [73]. Also, in this case, we consider the first
moment of the associated density function

hδpi �
Z

∞

0

δpp�δp�dδp

and refer to the average diameter size of the pores 2hδpi for a more
intuitive connection to the physical picture and to the definition
of our nearest-neighbor descriptor.

Examples of numerically evaluated probability density func-
tions for δnn − 1 and 2δp are shown in Figs. 4(a) and 4(b) for
a representative set of particle densities. The final values of
hδnni − 1 and 2hδpi have been evaluated numerically on ensem-
bles of 8 · 106 packed spheres and are shown in Fig. 5 for the
whole space of possible configurations. In the case of maximally
correlated configurations, the distribution of δnn exhibits a narrow
peak that spans from 1 to 4, i.e., from 200 to 800 nm, which
might suggest the presence of sharp spectral features as seen,
e.g., in 2D inverse structures [48]. Nonetheless, our numerical
results do not exhibit any such feature, either as a function of
correlations (Fig. 2) or as a function of wavelength (see Section 2
of Supplement 1). Several reasons explain this apparent difference
with the 2D case: first, in 3D, TE and TM polarizations cannot
be decoupled into a scalar description. Second, we study the case
of direct structures where the high-permittivity inclusions do not
form a continuum phase—a condition that is inherently associ-
ated with weaker dispersion [74], especially at the low index
contrast of our structures. Finally, the use of bidisperse sphere
packings further weakens any wavelength dependence. In this
respect, our results are consistent with previous surveys that have
shown a weak dependence of scattering properties with spatial
correlations [42] and wavelength [61].

Apart from the trivial cubic-root scaling along f v, it is inter-
esting to comment on the opposite behaviors exhibited by
the nearest-neighbor distance and the average pore size along the

(a)

(b)

Fig. 4. Illustration of structural descriptors and their typical probabil-
ity density functions as derived from auxiliary Voronoi tessellations for
f v � f p � f0.01, 0.04, 0.16, 0.64g (solid lines) and for f v � 0.01,
f p � f0.04, 0.16, 0.64g (dotted lines). Panel (a) refers to the normalized
surface-to-surface distance between nearest-neighbors particles δnn − 1.
Panel (b) shows the distribution for the normalized pore diameter 2δp
estimated using the trial sphere method with 106 trials. Insets show sim-
plified illustrations of the structural descriptors in a 2D geometry.
All distributions have been evaluated on independent configurations
containing 8 · 106 particles.
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direction of increasing spatial correlations. As can be seen, the
former always increases with increasing spatial correlations, result-
ing in a reduced near-field coupling between neighboring par-
ticles. Conversely, high spatial correlations—corresponding to
perfect particle segregation—are systematically accompanied by
a shrinkage of the average pore diameter. This effect is connected
to a homogenization of the scattering medium as local density
fluctuations are progressively suppressed, which eventually over-
compensates for the increased nearest-neighbor spacing to give a
decreased scattering strength. In this respect, the dependency of
the overall turbidity on spatial correlations emerges from the in-
terplay between these two opposite effects, which are weighted
differently depending on the physical parameters of the problem.

To get a clearer overview of this interplay, we build a phase
diagram representation to highlight the twofold role of spatial cor-
relations in the space of all configurations tested, as shown in
Fig. 6. For this purpose, we rely on the reflectance data calculated
for our fixed-thickness survey [Fig. 2(b)], since it allows us to un-
ambiguously identify the structural parameters resulting in the
highest opacity. In particular, we define two regions characterized
by an opposite behavior based on the sign of ∂R∕∂f p. In other
words, we propose a classification of the particle configurations

depending on whether increasing the degree of spatial correlations
enhances or weakens the overall scattering strength of the random
medium. The boundary between these two phases is formed by
the loci of the scattering configurations that provide the maximal
reflectance for a fixed filling fraction, shifting from highly corre-
lated to maximally uncorrelated arrangements with increasing
particle density.

Having units of length, these structural parameters can be
directly compared to the wavelength of incident light to get a
more direct connection to the physics of the problem. For this
reason, we cast our phase diagram in units that are normalized
both by the particle diameter d and the wavelength in the host
medium of the scattering film λ � λ0∕1.5. In this framework,
the configuration exhibiting the highest reflectance corresponds
to a separation between nearest-neighbor particles of 0.261d ∼
λ∕6.8 and a pore diameter size of 0.375d ∼ λ∕4.7. Notably,
due to the type of packing and rescaling algorithm that followed
to generate these configurations, these optimal parameters can
be reproduced, in principle, by packing together core–shell par-
ticles with an internal radius of 100 nm for the TiO2 core and
a ∼125 nm outer shell with an index of refraction matched to
the host matrix.

4. CONCLUSIONS

In this work, we tried to answer two simple questions regarding
multiple scattering in discrete random media, namely: “What is
the optimal density for a system of scattering particles?” and
“Given the optimal particle volume concentration, do spatial
correlations enhance or weaken the overall turbidity?” To
investigate these issues, we addressed the problem from a twofold
perspective, each pertinent to different applications. In one case,
we considered a finite amount of “resources” (e.g., number of
TiO2 nanoparticles) per unit area without any constraint on
how to arrange them (e.g., their dilution ratio in the resin matrix).

(a)

(b)

Fig. 5. Structural descriptors for the ensemble of particles over the
space of configurations. Panel (a) shows the average surface-to-surface
distance between nearest-neighbor spheres. Panel (b) shows the average
size (diameter) of empty regions in the particle ensemble. All quantities
are normalized by the particle diameter d � 200 nm.

Fig. 6. Phase diagram for the role of spatial correlations in terms of the
pore size and the nearest-neighbor distance based on the numerical results
of Fig. 2(b). Structural parameters are shown normalized either by the
diameter d of the scattering spheres (lower and left axes) or by the wave-
length in the host medium λ � λ0∕1.5 (upper and right axes). Circles
indicate the location of the simulated samples. Dotted lines highlight
the combination of structural parameters resulting in the highest
turbidity.
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Indeed, understanding the role of spacing and dilution of nano-
particles is of great interest to paint manufacturers, as TiO2 is an
expensive component of the formulation of paint systems and
optimizing its scattering efficiency is a key cost/performance
factor. On the other hand, we looked at the same problem using
an unconstrained number of particles and a fixed-thickness gap
for where to fit them. Arguably, the underlying question in this
case—how far can we push density to gain opacity—is even more
interesting, as it inherently accounts for how the particle density
inevitably affects spatial correlations and the effective permittivity.
This approach is in turn relevant for the design of diffuse reflec-
tors for photon-management applications in the illumination and
photovoltaic fields that are likewise subject to similar thickness
constraints.

As we have shown, answering these simple questions revealed a
surprisingly complex role played by spatial correlations and inter-
particle separation, whose effect is not simply that of universally
enhancing the overall opacity. Indeed, we found that particle
configurations can be classified into two groups, depending on
whether inter-particle separation enhances or diminishes their
overall scattering strength. This allowed us to provide well-
defined structural specifications relative to the highest scattering
performance at a given wavelength, as well as to those density
parameters that are most impacted by the introduction—or
the complete removal—of spatial correlations.

By performing a complete survey in the phase space of possible
configurations, we were able to set a limit for the shortest possible
transport mean free path that can be achieved in a discrete random
medium of spherical particles, considering the optical parameters
of a typical white paint formulation (size parameter πd∕λ � 1.77
and index contrast n � 1.78), a figure with potential implications
both for applied and fundamental aspects of the physics of
light transport [66,75]. In this case, we observed that an inter-
mediate amount of correlations is able to induce a reduction of
l� of ∼13% compared to its value for a random packing of
particles.

A lot of work remains to be done beyond the oversimplified
model of equal-sized spheres. Relevant aspects remain to be con-
sidered, such as arbitrary polidispersity, more realistic clustering
distributions, and particle interaction potentials, or the fact that
high-volume concentrations are usually associated with air inclu-
sions as the host matrix cannot perfectly wet all particles.
Similarly, it could be interesting to further study multiple
scattering for optically soft spheres, where evidence exists for
yet a different interplay with correlations [19], as well as for
core–shell or spheroidal particles, which are also sometimes as-
sociated with enhanced scattering strength [76,77]. Beyond the
illustrative case of common paint coatings, further exciting
opportunities are open to studying more exotic media that,
due to their long-range correlations or multi-scale nature, have
been prohibitive for studying numerically in representative 3D
geometries.
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