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ABSTRACT 

 

Total risk (probability) of a false decision on conformity of an alloy due to measurement 

uncertainty and correlation of test results is quantified. As an example, a dataset of test results of 

a PtRh alloy is studied when contents of four components of the alloy composition are under 

control. There are specification limits for contents of 1) Pt and 2) Rh; 3) three precious 

impurities - Au, Ir and Pd, and 4) eight impurities, both precious Au, Ir, Pd, and non-precious Fe, 

Pb, Si, Sn, Zn. Test results of 100 batches of the alloy produced at the same plant, obtained by X-

ray fluorescence and optical atomic emission spectrometry methods at the plant laboratory, were 

in the dataset. The Pt content was tested based on the mass balance. Measurement uncertainties 

of the test results are estimated summarizing data of validation reports of the measurement 

procedures for different elements/analytes. These test results are correlated because of the natural 

chemical origin of the raw materials used in the alloy production and mass balance constraints. 

Correlations between test results for two pairs of the components (Pt vs. Rh, and the three vs. the 

eight impurities) were strong. To assess the correlation effects on the total risk, the study was 

performed for two scenarios considering 1) correlated test results for all four components, and 2) 

practically uncorrelated test results for two components only - Rh and the eight impurities. A 

matrix Bayesian approach was applied for total risk evaluation, where the observed correlations 

are taken into account within the experimental correlation matrix. This matrix influenced all 

subsequent multivariate calculation results. It was shown that simplification of the testing by 

reducing the number of components under control leads to a significant increase of the 

probability of a false decision on conformity of an alloy batch randomly drawn from a statistical 

population of such batches. Core of the developed R code, used for the risk calculations, is 

presented.    

 

Keywords: 

 

Conformity assessment; Metals and alloys; PtRh composition; Measurement uncertainty; 

Correlated test results; Risk of false decisions  
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1. Introduction  

 

     Standard specifications for the chemical composition of an alloy limit the actual (‘true’) 

content ci of the i-th component, i = 1, 2, …, n, including base components, impurities or groups 

of impurities (‘content’ vs. ‘concentration’ is discussed in refs [1-3]). Conformity assessment of 

an alloy batch is based on comparing the content measurement/test results cim with such 

specification limits [4, 5]. Since any cim value has an associated measurement uncertainty [6], 

several kinds of risk of a false decision on conformity of a batch may be defined. The probability 

of accepting a batch of the alloy when it should have been rejected is named ‘consumer’s risk’, 

whereas the probability of falsely rejecting the batch is the ‘producer’s risk’. For a specified 

batch, they are referred to as the ‘specific consumer’s risk’ and the ‘specific producer’s risk’    
  

for the i-th particular component of the alloy under control. The risks of incorrect conformity 

assessment of a batch randomly drawn from a statistical population of such batches are the 

‘global consumer’s risk’ and the ‘global producer’s risk’    , as they characterize the material 

production globally [7].  

     Conformity of a product is assessed before it is placed on the market. Bodies that protect the 

consumer, e.g. the European Commission, would like to ensure that non-compliant products do 

not find their way to the market [8]. Therefore, conformity assessment of each manufactured 

alloy batch is performed at the plant by the producer, before selling the batch. Deciding whether 

an alloy is conforming or not, the producer should minimize the consumer’s risks. However, 

there is not a producer for whom the expenditure on production is not important. Thus, the 

producer’s risks should be also evaluated and controlled at the plant. 

     An alloy is a multicomponent material, and in general a component-by-component evaluation 

of the risks of its conformity assessment is not complete, as this approach does not give an 

answer to the question of the probability of a false decision on conformity of the alloy as a 

whole. When conformity assessment for each i-th component of an alloy is successful (i.e. the 

particular specific    
  or global     risks are small enough), the total probability of a false 

decision concerning the alloy as a whole (the total specific       
  or total global        risk) 

might still be significant [9]. Using the law of total probability relating marginal probabilities to 

conditional probabilities, the total risk can be evaluated as a combination of the particular risks 
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whenever the variables (actual component content values ci, and corresponding test results cim) 

are independent. When the number n of components of the same material under control 

increases, the total risk also increases [10, 11].  

     Evaluating total risk for correlated quantities has been discussed in our paper [12], where 

specification limits of the active components’ contents in tablets of a multicomponent medication 

were interpreted as a multivariate specification domain. Actual values of components’ contents 

and corresponding test results were modelled by multivariate distributions, and the total global 

risk of a false decision on the material conformity was evaluated based on calculation of 

integrals of their joint probability density function. A total specific risk was evaluated as the joint 

posterior cumulative function of actual values of a specific batch lying outside the multivariate 

specification domain, when the vector of test results, obtained for the batch, is completely inside 

this domain. It was shown that the influence of correlation on the risk is not easily predictable. 

     The aim of the present paper is implementation of modelling and calculation of the total risks 

in conformity assessment of an alloy as a multicomponent material with a complex nature of 

correlation among contents of components. As an example, the risks in conformity of a PtRh 

alloy (CAS No. 11107-71-4) due to measurement uncertainty are quantified when four 

components of the alloy composition are under control (n = 4) and strong correlations among test 

results are observed. Quantification of these risks can be important for understanding quality of  

such alloys, which are widely used in thermocouples for temperature measurements; for 

oxidation catalysts, in particular, automobile catalytic converters; in electronics; glass industry; 

optics; as well as for the manufacture of jewelry [13].   

     A matrix Bayesian approach is applied for total risk evaluation [12], where the observed 

correlations are taken into account within the experimental correlation matrix. This matrix 

influenced all subsequent multivariate calculation results. 

 

2. Material and test methods 

 

     Test results of a total N = 100 batches of PtRh 92.5-7.5 alloy for catalytic systems [14], 

produced during about two years at the same plant [15], were used as an example of a dataset for 

quantification of the total risks. The testing was performed at the plant laboratory for conformity 

assessment of the alloy batches to the standard [14]. 
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2.1. Specification and acceptance limits 

 

     The standard [14] sets the lower and upper specification (tolerance [7]) limits, TLi and TUi, of 

contents ci of the four following components in PtRh 92.5-7.5 alloy:  

     i = 1) Pt content c1 as mass fraction, TL1 = 92.2 % ≤ c1 ≤ 92.8 % = TU1; 

     i = 2) Rh content c2 as mass fraction, TL2 = 7.3 % ≤ c2 ≤ 7.7 % = TU2; 

     i = 3) content c3 of three precious impurities - Au, Ir and Pd - as sum of mass fractions, c3 ≤ 

0.12 % = TU3; 

     i = 4) content c4 of eight impurities, both precious Au, Ir and Pd and non-precious Fe, Pb, Si, 

Sn and Zn, as sum of mass fractions, c4 ≤ 0.18 % = TU4. 

     Limitation of the impurities' contents, which assure the alloy purity, prevents a change of its 

microstructure influencing high-temperature resistance, catalytic and other alloy properties [16, 

17]. By agreement with a consumer, the number of impurities under control (each with its 

separate upper specification limit) can be increased [14], but for simplicity, this is not discussed 

further in the current work. 

     Besides specification limits for the actual contents of the components, a narrower acceptance 

interval can be applied to test results with the purpose of decreasing the consumer’s risks due to 

measurement uncertainty. In such a case, the decision rules (allowing to determine whether the 

alloy is conforming or not) are based on comparing test results with the acceptance limits [7, 18]. 

The acceptance limits in the present study are taken as coincidental with the specification limits. 

 

2.2. Multivariate sub-domain of feasible alloy compositions 

 

     The specification limits of contents of the components, TLi and TUi, form a multivariate 

specification domain of permissible alloy compositions. However, there are also two constraints 

of the mass balance to be satisfied: 1) sum of the contents of the base components and the eight 

impurities should be equal to 100 %, i.e.  c1 + c2 + c4 = 100 %, and 2) the content of the three 

precious impurities cannot exceed the content of the eight precious and non-precious impurities 

in the same alloy, i.e. c3 ≤ c4. These constraints lead to a multivariate sub-domain of feasible 

alloy compositions. For example, at the Rh content c2 = TU2 = 7.7 % and the content of the eight 
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impurities c4 = TU4 = 0.18 %, the Pt content is c1  = 92.12 %, which is less than TL1 = 92.2 %, 

hence not permissible. On the other hand, such compositions as c1 = TL1, c2 = TU2, c3 ≤ c4 and c4 = 

TU4 are within the specification domain, but cannot be realized in practice. 

     Therefore, in spite of the limitation c1 + c2 + c4 = 100 %, typical for compositional data 

“consisting of vectors of positive components subject to a unit-sum constraint” [19], the 

multivariate sub-domain of feasible alloy compositions is more complex than a simplex of 

compositional data [20]. This sub-domain, having four dimensions, can be imagined as a kind of 

the three-dimensional simplex of c1, c2 and c4, truncated by TLi and TUi (i = 1, 2 and 4), while c3 is 

the fourth dimension, limited by TU3 and influencing c4 in the simplex, shown schematically in 

Fig.1. 

 

2.3. Test methods  

 

     Platinum ingots, rhodium powder and PtRh alloy wastes are melted in a vacuum induction 

furnace, providing homogeneity of the alloy. The melt is cast into graphite molds. Samples are 

cut down from an alloy ingot as a strip for preparation of two disks for wavelength dispersive X-

ray fluorescence (XRF) analysis with an Axios spectrometer [21], measuring the Rh content. 

Samples in form of a band from the same ingot are prepared for optical atomic emission 

spectrometry (AES) analysis with a Baird spectrometer [22] for measurement of contents of the 

impurities. Metrologically traceable in-house reference materials are used for calibration of the 

spectrometers. Corresponding certified reference materials are described in the catalog [23].  

     A test result of the Pt content is calculated as a difference between 100 % and the test results 

of the Rh content and the content of the eight impurities according to the standard [24]: c1m = 

100 % - c2m - c4m . 

 

3. Modelling and calculation 

 

3.1. Analysis of raw data 

 

3.1.1. Measurement uncertainty 

 

Fig. 1 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

7 
 

     The measurement procedures are validated according to the standard [25]. It was shown, 

based on the validation data, that (repeated) measurement results of the actual component 

contents [c1, c2, c3, c4] in the same sample have normal distributions. No interference of the 

analytes, which could be interpreted as a cause of correlation of test results and taken into 

account at the measurement uncertainty evaluation, was observed. 

     The validation reports include a value  (absolute measurement error’ by ref. [26]) which is 

the expanded uncertainty of a measurement result with coverage factor 1.96 representing 95 % of 

a normal distribution:  = 1.96        
 , where    is the intermediate precision standard 

deviation, and    is the standard uncertainty arising from the trueness estimation [27, 28], 

expressed in %.  The corresponding standard measurement uncertainty is u = /1.96. For 

example, for a measured Rh content c2m in the specification interval (7.3 – 7.7) %,  = 0.08 % 

and u2 = 0.04 %.  

     Evaluation of the standard uncertainty u for an impurity is more complicated as  depends on 

the impurity content. In the report on validation of the optical AES procedure, the measuring 

interval of mass fractions [6] is divided into a number of sub-intervals in which  is considered 

constant. As an example, the u values corresponding to the mean values of the impurities’ mass 

fractions observed in the 100 tested alloy batches are presented in Table 1. Standard uncertainty 

of measured content of the three precious impurities is u3 =     
     

     
  = 0.008 %. For 

measured content of the eight impurities, it is practically the same value 

u4 =     
     

     
     

     
     

     
     

  = 0.008 % (after rounding), since the Pd 

contribution uPd is dominant in both u3 and u4 budgets, as can be seen from Table 1. Standard 

uncertainty of the Pt content for this example is u1 =    
    

  = 0.041 %, when the content of 

the eight impurities in the alloy is as in Table 1, and the Rh content is in the specification 

interval.  

     For the calculations in the present work, a single value of the relative standard uncertainty of 

each impurity is considered on its whole measuring interval, rather than using sub-intervals, each 

with a constant standard uncertainty. For example, 18 such sub-intervals are in the validation 

report for mass fractions of Pd, Fe, Sn and Zn on the measuring interval from 0.0003 to 0.16 %. 

 Table 1 
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Regression analysis of the dependence of the standard uncertainty on the element mass fraction 

w in middle of each sub-interval gives u = 0.18 w with coefficient of determination [29] R
2
 = 

0.993, corresponding to relative standard uncertainty urel = 0.18. For Ir, Pb, Au and Si the urel 

values are from 0.11 to 0.24.  

     The problem of using a single value of urel is that a given sum of the mass fractions of the 

impurities might consist of different combinations of the sum members. Each combination of the 

mass fractions of impurities is characterized by its associated measurement uncertainty, therefore 

the measurement uncertainty of the sum is ambiguous. However, because uPd is the dominant 

contribution in both u3 and u4, as shown above, for any measured value of content of the three 

and eight impurities c3m and c4m, respectively, the standard uncertainties u3 = 0.18 c3m and 

u4 = 0.18 c4m are used in the following calculations. 

     Then, the standard uncertainty of a measured Pt content c1m is  

 

u1 =    
    

  =                    .                                                                                    (1) 

 

3.1.2. Distributions of the test results  

 

     Histograms of the test results cim are shown in Fig. 2 for: a) Pt, i = 1; b) Rh, i = 2; c) the three 

impurities, i = 3; and d) the eight impurities, i = 4. The mean mi and standard deviation si of the 

test results are presented in Table 2.  

     The si values are greater than measurement uncertainty ui by about 1.5 times, since the batch-

to-batch variation of test results is due to both the measurement uncertainty and the variation of 

the production/technological factors.  

     Goodness-of-fit of theoretical normal distributions with unknown parameters to the empirical 

distributions of the data was tested by the Kolmogorov-Smirnov criterion [30]. The maximum 

absolute difference Di between empirical and theoretical cumulative distribution functions, 

calculated using R software [31], are shown in Table 2. The critical values of Di at N = 100 test 

results are Dcrit = 0.089 for the level of confidence P = 0.95, and 0.103 for P = 0.99 [32]. When 

Di > Dcrit, then the null hypothesis that the distribution is normal at the chosen level of confidence 

P should be rejected. One can see from Table 2 that D3 > Dcrit for the sum of the three impurities 

and P = 0.95. However, there is no Di value exceeding Dcrit for P = 0.99. Therefore, the null 

Fig. 2 

 Table 2 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

9 
 

hypothesis is not rejected at P = 0.99 for all tested alloy components. Corresponding theoretical 

normal probability density functions (pdfs) are shown in Fig. 2. 

 

3.1.3. Correlation 

 

     Linear correlations among the test results for different components were estimated by 

Pearson’s correlation coefficients rij, i ≠ j = 1, 2, 3, 4, and reported in Table 3. The one-tailed 

critical values of the coefficient rcrit (when the correlation sign is known) for N – 2 = 98 degrees 

of freedom are 0.197 for level of confidence P = 0.95, and 0.256 for P = 0.99 [33, 34].  

     Test results for Rh are slightly correlated with mass fractions of impurities (statistically 

significant at P = 0.95 but insignificant at P = 0.99). This is possible as some part of the 

impurities came into the alloy with rhodium: the standard [35] permits up to 0.10 – 0.20 % of the 

impurities in different marks of Rh powder. Contents of the three and the eight impurities, 

limited by the constraint c3 ≤ c4, have the correlation coefficient close to 1, as the content of the 

three impurities, especially of Pd, is the main contribution to the content of the eight impurities.  

     The contents of the base components of the alloy, Pt and Rh, have a high negative correlation:  

the greater the Rh content, the smaller is the Pt content. This is mainly due to the constraint on 

the mass fractions summing up to 100 %. Such correlation, specific for compositional data, is 

termed ‘spurious’ [36-38]. Also the correlations of the Pt content with the impurities’ contents 

are negative for the same reason. Corresponding coefficients are significant at both levels of 

confidence, in spite of the fact that the impurities’ contents in different marks of Pt ingots, used 

as a raw material, may be up to 0.07 – 0.20 % [14]. As in the case of Rh content vs. contents of 

the impurities, this is the reason for positive correlation.  

     Note, the correlation coefficients estimated analytically from the constraint c1 + c2 + c4 = 

100 % are for Pt vs. Rh contents (r12)an =       
    

   =   0.961, and for Pt vs. eight 

impurities’ contents (r14)an =       
    

     0.276 (the standard deviations si are available 

in Table 2). The absolute values of (r12)an and (r14)an are even smaller than those of r12 and r14, 

respectively, calculated directly from the experimental data, reported in Table 3. Thus, the 

observed correlations are caused as by the natural chemical origin of the raw materials used in 

the alloy production, as by the mass balance constraints, discussed in Section 2.2.  

 Table 3 
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     Taking into account the strong correlation between contents of the three and the eight 

impurities, as well as between contents of Rh and Pt, it is worthwhile to analyze the following 

two scenarios: 1) when measurement uncertainties of test results for all four components  (i = 1 

to 4) influence the probabilities of false decisions on the alloy conformity, and 2) when only two 

practically uncorrelated components - Rh and the eight impurities (i = 2 and 4) - are considered 

in this context, similar to ‘principal components’ [39-41]. Note also that there is no reason for 

‘spurious’ correlation in the second scenario.   

 

3.2. Modelling joint pdfs  

 

     There is an extensive literature stressing how traditional statistical techniques (such as 

moment estimates performed on skewed data) may produce inadequate results if applied on raw 

compositional data without suitable transformation [42-44]. However, introducing a 

methodology for a proper treatment of compositional data requires an isometric log-ratio or other 

transformation of the original experimental data. There might be no easy way to transform 

relevant estimates (results) back to the original variable space for conformity assessment 

purposes. Moreover, effectiveness of this methodology for an alloy is doubtful, since the 

multivariate sub-domain of feasible alloy compositions is more complex than a simplex of 

compositional data (Section 2.2).  

     In the present study, the effect of the mass balance constraints is embedded within the 

experimental correlation matrix (Table 3). It reflects a mixture of spurious correlation and the 

correlation caused by the native chemical properties of the raw materials used. This matrix 

influences all subsequent multivariate results. The univariate normal assumptions were tested for 

each component in Section 3.1.2. These assumptions were not affected by the compositional 

character of a part of the data, and there was no need to transform them in order to reach 

normality. The Bayesian framework for conformity assessment [7], implemented in ref. [10-12] 

for multicomponent materials and objects, is also followed here for modelling and calculating the 

total specific and global risks of false decisions in the alloy conformity assessment. 

     However, it is important to point out again that for another dataset the normal assumptions 

may be not adequate. When influence of such components like c3 (not a subject to the unit-sum 
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constraint) is minimal, a kind of compositional data analysis [45, 46] taking into account 

properties of a truncated simplex could be helpful. 

 

3.2.1. Prior pdfs 

 

     Pdfs of the theoretical normal distributions with means µi = mi and standard deviations i = si, 

shown in Fig. 2, are used as pdfs approximating the distributions of the actual components’ 

content values ci in the batches. A multivariate normal distribution was considered as the joint 

prior pdf for vector of actual components’ contents [c1, c2, c3, c4] having vector of mean values 

[m1, m2, m3, m4].  The prior covariance matrix is  

 

        
 
                   
                   

                     
                            

                    
                    

                  
                  

 , 

 

where the diagonal elements are variances i
2
 = si

2
, 

 
(si  are in Table 2), and the off-diagonal 

elements are covariances covij = rij·i·j , i ≠ j (rij are in Table 3). Both i
2
 and covij  are expressed 

in squared %. 

     When only two components - Rh and the eight impurities (i = 2, 4) - are taken into account, 

the prior covariance matrix is  

 

          
                
              

    

 

     The subscript in parentheses k = 1, 2 of the matrix symbol       indicates the scenario 

number.  

 

3.2.2. Likelihood  

 

     The test results cim in the certificates, obtained following the laboratory measurement 

procedures, have normal distributions and measurement uncertainties as discussed above. 

Therefore, the vector [c1m, c2m, c3m, c4m] is modelled by a multivariate normal likelihood having 
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mean equal to the vector of actual components’ contents [c1, c2, c3, c4] and covariance matrix 

defined on the base of measurement uncertainties ui and correlation coefficients rij. 

     For test results cim equal, for example, to the prior means µi,= mi (Table 2), the likelihood 

covariance matrix is: 

 

         
 
                   
                   

                     
                            

                    
                    

                  
                  

 , 

 

where the diagonal elements are variances u1
2 

=                 
  by eqn. (1), u2

2
 = 0.04

2
, u3

2
 

= (0.18 c3m)
2
  and u4

2
 = (0.18 c4m)

2
. The covariances are covijm = rij·ui·uj,  i ≠ j (rij as in Table 3). 

Values ui
2 

and covijm are expressed in squared %. The subscript in parentheses k of the matrix 

symbol        indicates the same number of the scenario as for       above.  

     For the scenario with Rh and the eight impurities only (i = 2 and 4), the likelihood covariance 

matrix, in the case when the test results cim are equal to prior means µi,= mi (Table 2), is: 

 

           
                
              

    

 

     Note that in a case when a consumer decides to test the alloy batches in its own laboratory, or 

in a contract certification laboratory, the measurement methods, instruments, staff – i.e. the 

uncertainty contributions – may be different from those in the plant laboratory. In such a case the 

likelihood may be different from a multivariate normal pdf and cannot rely on to the plant 

laboratory measurement uncertainties. 

 

3.2.3. Posterior pdf 

 

     As the actual content values of the four components in the current study are jointly described 

by a multivariate prior normal pdf, and the likelihood of their test results is also modelled by a 

multivariate normal pdf, the joint posterior pdf is a multivariate normal pdf, as well. The 

posterior pdf has the following parameters [12, 47]: 
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where       and       are the posterior covariance matrix and the vector of the posterior means, 

respectively;   is the vector of the prior mean values [µ1, µ2, µ3, µ4], where µi = mi;        is the 

vector of the arithmetic means of      replicate measurement/test results (in this study, for a 

single test result,      = 1 and            [c1m, c2m, c3m, c4m]). As an example, for the vector of 

measurement results     [92.423, 7.457, 0.120, 0.120], the posterior covariance matrix is 

 

        
 
                  
                      

                       
                          

  
                 
                 

                     
                     

      , 

 

and the vector of the posterior means is       = [92.405, 7.481, 0.104, 0.111]. 

     Under scenario k = 2 with two components only (i = 2 and 4), for the vector of measurement 

results     [7.457, 0.120] corresponding to the example above, the posterior covariance matrix 

is: 

 

          
                
              

   

 
  

and the vector of the posterior means is       = [7.452, 0.088]. 

 

3.3. Computational details 

 

     Calculation of parameters of the posterior multivariate normal distribution by eqn. (2) and 

descending specific risk values were performed in the R programming environment as described 

in ref. [12]. Simulation of the posterior distribution is also possible by Markov Chain Monte 

Carlo (MCMC), using the Metropolis-Hasting algorithm and Cholesky decomposition of the 

covariance matrix with MS Excel [48]. The analytical solution (2), for parameters of the 

posterior pdf and corresponding risk values, is more accurate by definition than the MCMC 

solution, even with a large number of trials. On the other hand, an analytical solution is not 

always available, especially when prior and likelihood pdfs are more complicated than normal 
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[12]. In the present study, analytical and simulated MCMC results (parameters of the posterior 

pdf and risk values) practically coincided. 

     Core of the R code, used for calculations in this paper, is presented in Appendix A.        

 

4. Results and discussion 

 

4.1. Specific risks  

 

     For any vector of measurement/test results [c1m, c2m, c3m, c4m] within the multivariate 

specification domain, the total specific consumer’s risk       
  is calculated as one minus the 

integral of the posterior pdf on this domain. That is the probability of at least one of the actual 

components’ content lying outside its own specification interval.       
  values are dependent on 

the measured i-th component content cim as shown in Fig. 3 by line 1. The cim values are on their 

specification intervals, i.e. from TLi to TUi.  

     The risk values plotted against the measured Pt content c1m are in Fig. 3a. The sub-domain 

spreads from c1m = 100 % – TU2 – c4m = 92.24 % (line 2) to c1m = 100 % – TL2 – c4m = 92.64 % 

(line 3). That is because the Rh upper and lower specification limits are TU2 = 7.7 % and TL2 = 7.3 

%, respectively, and the assumed content of eight impurities in this case is equal to its prior 

mean, c4m = 0.059 %. The assumed content of the three impurities is also equal to its prior mean: 

c3m = 0.052 %. Line 4 indicates the minimum observed value c1m, whereas line 3 coincides with 

the maximum observed value.  

     The dependence of the total specific risk on the component content can be used for setting 

acceptance limits, and for quality control charts [49]. For example, c1m = 92.25 and 92.59 %, at 

which       
  = 0.01 in Fig. 3a, may be applied as the warning lines in the alloy control chart, and 

c1m = 92.61 % at which       
  = 0.05 as the action line.   

     Fig. 3b refers to Rh content c2m at c1m = 100 % – c2m – c4m, c3m = 0.052 % and c4m = 0.059 % 

as in Fig. 3a. Lines 2 and 3 show the minimum and maximum observed values of c2m. 

      
  dependences on c1m in Fig. 3a and on c2m in Fig. 3b have a specular reflection behavior, 

since the fixed values of c3m and c4m are the same. Thus, c1m and c2m are the members of the 

same mass balance equation. The possible warning lines here are c2m = 7.35 and 7.69 % (      
  = 

0.01 in Fig. 3b). The candidate for the action line is c2m = 7.33 % (      
  = 0.05).    

Fig. 3 
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     Fig. 3c is for       
  against content c3m of the three impurities at c1m = 100 % – c2m – c4m and 

c2m = 7.46 %. Taking into account the constraint c3m ≤ c4m, the content of the eight impurities c4m 

is set using the mean ratio between c3m and c4m, according to which c4m = 1.16 c3m. Lines 2 and 3 

indicate the minimum and maximum c3m values. The warning line is c3m = 0.113 % (      
  = 0.01 

in Fig. 3c) and the action line is c3m = 0.117 % (      
  = 0.05).   

     Fig. 3d demonstrates the risk dependence on content c4m of the eight impurities at c1m = 100 

% – cm2 – c4m, c2m = 7.46 % and c3m = c4m /1.16. Since the upper specification limit for c3m is TU3 

= 0.12 %, c3m was required to be below 0.12 % at any c4m value. Lines 2 and 3 are again the 

minimum and maximum c4m values. The warning line in Fig. 3d is c4m = 0.131 % (      
  = 0.01) 

and the action line is c3m = 0.137 % (      
  = 0.05). One can see in Fig. 3d that the observed c4m 

values are sufficiently far from both the warning and action lines. 

     The values       
  vs. cim in Fig. 3 are examples calculated at particular values of cjm, i ≠ j. 

More information can be provided using a three-dimensional representation, as in Fig. 4, where 

surfaces of       
  vs. c2m and c4m are shown. The plot in Fig. 4a is for the four-component 

scenario at c3m = c4m /1.16, but not exceeding 0.12 %, and 92.2 % ≤ c1m = 100 % – c2m – c4m ≤ 

92.8 %. The color column bar gives indication of the risk between minimum 0 and maximum 1 

on the surface. The risk slightly increases with c2m near both the specification limits of the Rh 

content and more significantly at c4m approaching its upper specification limit. This behavior 

corresponds to the two-dimensional dependences in Fig. 3, discussed above.  

     The plot in Fig. 4b shows the surface of the risks for the two-component scenario of the 

practically independent c2m and c4m. Note that the maximum risk value for this scenario is only 

0.26, in contrast to nearly 1 when all four components are considered. One can see that 

simplification of the conformity assessment task from four- to two-component scenario leads to 

undervaluation of       
 : its maximum value in Fig. 4b is four times smaller than in Fig. 4a. The 

form of the surfaces is also different. In particular, the surface in Fig. 4b is less sensitive to c4m 

increasing in comparison to the four-component scenario in Fig. 4a. In other words, the 

simplification is not usable, since the observed strong correlation increases significantly and 

complicates the dependence of specific risks       
  on the test results. 

 

4.2. Global risks 

 

Fig. 4 
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     The total global consumer’s risk        is calculated, as in the study [12], on the base of 

integrals [50] of the product of the prior and likelihood pdfs. The obtained small value of        = 

5.6×10
-7 

is an indication of a reliable quality assurance system.  

     To understand the influence of correlation on       , the risk was estimated for a simulated 

case of uncorrelated contents of the components [10, 51]. This simulation was carried out by 

setting all correlation coefficients rij = 0 (i ≠ j), hence transforming       and        into diagonal 

matrices. The result        = 6.2×10
-3

 was four orders of magnitude greater than for the 

correlated contents. In fact, the strong correlation between c1 and c2 and between c3 and c4 ties the 

variables together, dramatically decreasing the risk whenever all the measured quantities are 

within their acceptance intervals, while at least one of the actual components’ content values is 

outside its specification interval. Thus, the total global consumer’s risk for strongly correlated 

contents of the components is much smaller than for uncorrelated contents, a fact observed also 

in ref. [12]. 

     In the framework of the scenario k = 2, when c2 and c4 only are taken into account, the risk is 

       = 5.1×10
-3

 for correlated contents, and        = 4.9×10
-3

 for contents simulated as 

uncorrelated. It is seen that the risk is not practically affected by the observed (small) correlation 

between these two components’ contents. The risk for two simulated uncorrelated contents 

(4.9×10
-3

) is a little smaller than that for four uncorrelated ones (6.2×10
-3

), as predicted in ref. 

[10]. Both these values, and also the risk for the scenario of two correlated contents (5.1×10
-3

) 

are of the same order of magnitude. Therefore, reducing the number of components under control 

would lead to practically the same overestimation of the global risk as neglecting the strong 

correlation among the four components contents.  

     Note, the total global consumer’s risk        = 5.1×10
-3

 for the case of control of Rh content 

and content of the eight impurities (scenario k = 2) means accepting one non-compliant alloy 

batch in 200 produced batches, when it should have been rejected. Since 100 batches were 

produced during about two years at the plant, this false decision would be expected on average 

once every four years assuming unchanged conditions. However, de-facto each batch is tested 

according to the standards [14] and [22] for contents of the four components (scenario k = 1). 

The greater amount of information, available in this case, decreases the risk of false decisions in 

spite of the complexity of the correlations among the test results. The risk value        = 5.6×10
-7
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means that there is no practical chance for a non-compliant alloy batch to find a way out of the 

plant to the market.  

     The counterpart models for the total producer’s risks are easily obtainable.  

 

5. Conclusions  

 

     Total risk (probability) of a false decision on conformity of an alloy due to measurement 

uncertainty and correlation of test results is quantified. As an example, a dataset of test results of 

a PtRh alloy is studied when four components of its composition are under control. Since 

correlations among test results for two pairs of the components were strong, the study was 

performed for two scenarios: considering contents of all the four components in the first 

scenario, and only two practically independent components’ contents – in the second.  

     A matrix Bayesian approach is applied for total risk evaluation, where the observed 

correlations caused by the natural chemical origin of the raw materials used in the alloy 

production, and by the mass balance constraints, are taken into account within the 

experimental correlation matrix. This matrix influenced all subsequent multivariate calculation 

results.      

     The dependence of total specific risk (for a specified alloy batch) on the alloy test results was 

calculated and demonstrated using two- and three-dimensional plots. Total global risk (for a 

batch randomly drawn from a statistical population of such batches) was calculated as being very 

small, which is an indication of a reliable quality assurance system of the manufacture of alloys. 

Comparing the two scenarios, it was shown that taking into account all four correlated contents 

of the components, as is the current practice, decreases the global risk significantly with respect 

to the simulated simplifications. 

     The R code presented here, used for risk calculations, may be helpful in similar 

investigations.    
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Appendix A. Core of the R code   

  

A.1. Calculation of the total specific consumer’s risk 

    

# Initializations and settings  

lsl1 = 92.2  # Lower specification limit  

usl1 = 92.8  # Upper specification limit 

lsl2 = 7.3  # Lower specification limit  

usl2 = 7.7  # Upper specification limit 

lsl3 = 0  # Lower specification limit  

usl3 = 0.12  # Upper specification limit  

lsl4 = 0  # Lower specification limit  

usl4 = 0.18  # Upper specification limit 

 

mu1 = 92.483   # Prior mean value  

mu2 = 7.457    # Prior mean value  

mu3 = 0.052  # Prior mean value  

mu4 = 0.059  # Prior mean value  

uc1 = 0.081  # Prior uncertainty  

uc2 = 0.073  # Prior uncertainty 

uc3 = 0.019  # Prior uncertainty 

uc4 = 0.021  # Prior uncertainty 

ucm1 = sqrt(0.04^2+0.18^2*mu4^2)/mu1*100 # Relative (%) measurement uncertainty 

ucm2 = 0.04/mu2*100    # Relative (%) measurement uncertainty 

ucm3 = 0.18*100     # Relative (%) measurement uncertainty 

ucm4 = 0.18*100     # Relative (%) measurement uncertainty 

 

# Prior covariance matrix 

Sc = diag(4) 

Sc[1,1] = uc1^2 

Sc[2,2] = uc2^2 

Sc[3,3] = uc3^2 

Sc[4,4] = uc4^2 

Sc[2,1] = Sc[1,2] <-  -0.967*uc1*uc2 

Sc[3,1] = Sc[1,3] <-  -0.469*uc1*uc3 
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Sc[4,1] = Sc[1,4] <-  -0.467*uc1*uc4 

Sc[3,2] = Sc[2,3] <-   0.239*uc2*uc3 

Sc[4,2] = Sc[2,4] <-   0.228*uc2*uc4 

Sc[4,3] = Sc[3,4] <-   0.970*uc3*uc4 

Sc 

 

# Likelihood covariance matrix   

# NOTE: each term in Scm is to be multiplied by cim*cjm in order to get the covariance matrix 

Scm = diag(4) 

Scm[1,1] = ucm1^2 

Scm[2,2] = ucm2^2 

Scm[3,3] = ucm3^2 

Scm[4,4] = ucm4^2 

Scm[2,1] = Scm[1,2] <- -0.967*ucm1*ucm2 

Scm[3,1] = Scm[1,3] <- -0.469*ucm1*ucm3 

Scm[4,1] = Scm[1,4] <- -0.467*ucm1*ucm4 

Scm[3,2] = Scm[2,3] <-  0.239*ucm2*ucm3 

Scm[4,2] = Scm[2,4] <-  0.228*ucm2*ucm4 

Scm[4,3] = Scm[3,4] <-  0.970*ucm3*ucm4 

Scm 

 

############### 

# SR1: total specific risk for the FIRST component 

library(mvtnorm) 

step = 0.001    # Increasing step for the measured values 

lower = c(lsl1,lsl2,lsl3,lsl4)  # Lower specification limits 

upper = c(usl1,usl2,usl3,usl4)  # Upper specification limits 

n=1     # Number of repeated measurements for the component 

Scinv = solve(Sc)     # Inverse matrix of Sc 

c3m = mu3    # Fixed considered value for c3m 

c4m = mu4     # Fixed considered value for c4m 

t1 = seq(100 - c4m - usl2,100 - c4m - lsl2,step) # Values which the component can get 

SR1 = rep(0,length(t1))    # Initialization of the vector of the risk         

# values 

 

for (i in 1:length(t1)) 

{ 

 c1m = t1[i] 

       c2m = 100 - c4m - c1m    # Constraint on c2m 

 Scminv = solve(t(c(c1m,c2m,c3m,c4m)*Scm/10000)*c(c1m,c2m,c3m,c4m)) 

 varPost = solve(Scinv  + n*Scminv) 

 muPost = crossprod(varPost, (crossprod(Scinv,c(mu1,mu2,mu3,mu4)) +    

crossprod(n*Scminv,c(mean(c1m),mean(c2m),mean(c3m),mean(c4m)))) ) 

 muP = as.vector(muPost) 

 SR1[i] = 1 - pmvnorm(lower, upper, mean = muP, sigma = varPost) 

} 
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SR1     # Vector of the total specific risk values for the component  

 

Notes:  

     1. Use of relative measurement uncertainties of Rh content as ucm2 = 0.04/mu2*100, and of 

Pt content as ucm1 = sqrt(0.04^2+0.18^2*mu4^2)/mu1*100, is an approximation in the code, 

acceptable because of the narrow specification intervals for Pt and Rh.  

     2. Time spent for calculation with an ordinal PC is less than two seconds when step = 0.001, 

and less than eight seconds when step = 0.0001. 

 

A.2. Calculation of the total global consumer’s risk  

 

     Consider the same “Initializations and settings” and the same covariance matrices as in 

calculation of the total specific consumer’s risk. 

 

# Multivariate normal prior pdf: [c1, c2, c3, c4] ~ MVN(c(mu1,mu2,mu3,mu4),Sc) 

# where Sc is the 4 x 4 covariance prior matrix 

# Multivariate normal likelihood: [c1m,c2m,c3m,c4m|c1,c2,c3,c4] ~  

# MVN(c(c1,c2,c3,c4),Scm_mod) 

# where Scm_mod = t(c(c1m,c2m,c3m,c4m)*Scm/10000)*c(c1m,c2m,c3m,c4m) and 

# Scm is the 4 x 4 likelihood covariance matrix above defined. 

# The consumer global risk GRc is made by the sum of several terms, each being a multiple  

# integral of the prior pdf times the likelihood, where dummy variables x[1-4] of the prior pdf    

# vary outside the specification domain, whereas the measured values x[5-8] of the likehood  

# vary inside the acceptance domain (equivalent to the specification domain, here). 

 

# For 4 components 

library(cubature) 

# Defintion of the function to be integrated: product of the prior pdf and the likelihood 

Jointpdf = function(x)  {dmvnorm(c(x[1],x[2],x[3],x[4]), mean = c(mu1,mu2,mu3,mu4), sigma = 

Sc) * dmvnorm(c(x[5],x[6],x[7],x[8]), mean = c(x[1],x[2],x[3],x[4]), sigma = 

t(c(x[5],x[6],x[7],x[8])*Scm/10000)*c(x[5],x[6],x[7],x[8])) } 

 

ME = 10^6      # Maximum number of function evaluations 

 

CB1A = adaptIntegrate(Jointpdf, lowerLimit = c(92,7,0,0,lower), upperLimit = 

c(92.2,8,0.13,0.19, upper), maxEval = ME)   

CB1B = adaptIntegrate(Jointpdf, lowerLimit = c(92.8,7,0,0,lower), upperLimit = 

c(93,8,0.13,0.19, upper), maxEval = ME)  

CB1 = CB1A$integral + CB1B$integral   

CB1  #  4.163485e-24 (ME=10^5); 4.156291e-24 (ME=10^6)   
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CB2A = adaptIntegrate(Jointpdf, lowerLimit = c(92,7,0,0,lower), upperLimit = 

c(93,7.3,0.13,0.19, upper), maxEval = ME)  

CB2B = adaptIntegrate(Jointpdf, lowerLimit = c(92,7.7,0,0,lower), upperLimit = 

c(93,8,0.13,0.19, upper), maxEval = ME) 

CB2 = CB2A$integral + CB2B$integral 

CB2 #  3.191624e-07 (ME=10^5); 5.599096e-07 (ME=10^6) 

 

CB3B = adaptIntegrate(Jointpdf, lowerLimit = c(92,7,0.12,0,lower), upperLimit = 

c(93,8,0.13,0.19, upper), maxEval = ME) 

CB3 = CB3B$integral 

CB3 # 4.221176e-11 (ME=10^5); 2.779241e-11 (ME=10^6)  

 

CB4B = adaptIntegrate(Jointpdf, lowerLimit = c(92,7,0,0.18,lower), upperLimit = 

c(93,8,0.13,0.19, upper), maxEval = ME) 

CB4 = CB4B$integral 

CB4 # 0 (ME=10^5); 0 (ME=10^6) 

 

CB1B2A = adaptIntegrate(Jointpdf, lowerLimit = c(92,7,0,0,lower), upperLimit = 

c(92.2,7.3,0.13,0.19, upper), maxEval = ME)  

CB1B2B = adaptIntegrate(Jointpdf, lowerLimit = c(92.8,7.7,0,0,lower), upperLimit = 

c(93,8,0.13,0.19, upper), maxEval = ME) 

CB1B2 = CB1B2A$integral + CB1B2B$integral 

CB1B2 # 0 (ME=10^6); 0 (ME=10^6) 

 

CB1B3A = adaptIntegrate(Jointpdf, lowerLimit = c(92,7,0.12,0,lower), upperLimit = 

c(92.2,8,0.13,0.19, upper), maxEval = ME)  

CB1B3B = adaptIntegrate(Jointpdf, lowerLimit = c(92.8,7,0.12,0,lower), upperLimit = 

c(93,8,0.13,0.19, upper), maxEval = ME) 

CB1B3 = CB1B3A$integral + CB1B3B$integral 

CB1B3 # 3.155852e-69 (ME=10^5); 3.359202e-69 (ME=10^6)   

 

CB1B4A = adaptIntegrate(Jointpdf, lowerLimit = c(92,7,0,0.18,lower), upperLimit = 

c(92.2,8,0.13,0.19, upper), maxEval = ME)  

CB1B4B = adaptIntegrate(Jointpdf, lowerLimit = c(92.8,7,0,0.18,lower), upperLimit = 

c(93,8,0.13,0.19, upper), maxEval = ME) 

CB1B4 = CB1B4A$integral + CB1B4B$integral 

CB1B4 # 0 (ME=10^5); 0 (ME=10^6) 

 

CB2B3A = adaptIntegrate(Jointpdf, lowerLimit = c(92,7,0.12,0,lower), upperLimit = 

c(93,7.3,0.13,0.19, upper), maxEval = ME)  

CB2B3B = adaptIntegrate(Jointpdf, lowerLimit = c(92,7.7,0.12,0,lower), upperLimit = 

c(93,8,0.13,0.19, upper), maxEval = ME) 

CB2B3 = CB2B3A$integral + CB2B3B$integral 

CB2B3 # 2.9111e-21 (ME=10^5); 6.390908e-20 (ME=10^6)  
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CB2B4A = adaptIntegrate(Jointpdf, lowerLimit = c(92,7,0,0.18,lower), upperLimit = 

c(93,7.3,0.13,0.19, upper), maxEval = ME)  

CB2B4B = adaptIntegrate(Jointpdf, lowerLimit = c(92,7.7,0,0.18,lower), upperLimit = 

c(93,8,0.13,0.19, upper), maxEval = ME) 

CB2B4 = CB2B4A$integral + CB2B4B$integral 

CB2B4 # 0 (ME=10^5); 0 (ME=10^6)  

 

CB3B4A = adaptIntegrate(Jointpdf, lowerLimit = c(92,7,0.12,0.18,lower), upperLimit = 

c(92,8,0.13,0.19, upper), maxEval = ME)  

CB3B4 = CB3B4A$integral 

CB3B4 # 0 (ME=10^5); 0 (ME=10^6)  

 

CB1B2B3A = adaptIntegrate(Jointpdf, lowerLimit = c(92,7,0.12,0,lower), upperLimit = 

c(92.2,7.3,0.13,0.19, upper), maxEval = ME)  

CB1B2B3B = adaptIntegrate(Jointpdf, lowerLimit = c(92.8,7.7,0.12,0,lower), upperLimit = 

c(93,8,0.13,0.19, upper), maxEval = ME) 

CB1B2B3 = CB1B2B3A$integral + CB1B2B3B$integral 

CB1B2B3 # 0 (ME=10^5); 0 (ME=10^6)  

 

CB1B2B4A = adaptIntegrate(Jointpdf, lowerLimit = c(92,7,0,0.18,lower), upperLimit = 

c(92.2,7.3,0.13,0.19, upper), maxEval = ME)  

CB1B2B4B = adaptIntegrate(Jointpdf, lowerLimit = c(92.8,7.7,0,0.18,lower), upperLimit = 

c(93,8,0.13,0.19, upper), maxEval = ME) 

CB1B2B4 = CB1B2B4A$integral + CB1B2B4B$integral 

CB1B2B4 # 0 (ME=10^5); 0 (ME=10^6)  

 

CB1B3B4A = adaptIntegrate(Jointpdf, lowerLimit = c(92,7,0.12,0.18,lower), upperLimit = 

c(92.2,8,0.13,0.19, upper), maxEval = ME)  

CB1B3B4B = adaptIntegrate(Jointpdf, lowerLimit = c(92.8,7,0.12,0.18,lower), upperLimit = 

c(93,8,0.13,0.19, upper), maxEval = ME) 

CB1B3B4 = CB1B3B4A$integral + CB1B3B4B$integral 

CB1B3B4 # 0 (ME=10^5); 0 (ME=10^6)  

 

CB2B3B4A = adaptIntegrate(Jointpdf, lowerLimit = c(92,7,0.12,0.18,lower), upperLimit = 

c(93,7.3,0.13,0.19, upper), maxEval = ME)  

CB2B3B4B = adaptIntegrate(Jointpdf, lowerLimit = c(92,7.7,0.12,0.18,lower), upperLimit = 

c(93,8,0.13,0.19, upper), maxEval = ME) 

CB2B3B4 = CB2B3B4A$integral + CB2B3B4B$integral 

CB2B3B4 # 0 (ME=10^5); 0 (ME=10^6)  

 

CB1B2B3B4A = adaptIntegrate(Jointpdf, lowerLimit = c(92,7,0.12,0.18,lower), upperLimit = 

c(92.2,7.3,0.13,0.19, upper), maxEval = ME)  

CB1B2B3B4B = adaptIntegrate(Jointpdf, lowerLimit = c(92.8,7.7,0.12,0.18,lower), upperLimit 

= c(93,8,0.13,0.19, upper), maxEval = ME) 

CB1B2B3B4 = CB1B2B3B4A$integral + CB1B2B3B4B$integral 

CB1B2B3B4  # 0 (ME=10^5); 0 (ME=10^6)  
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# Formula for the total global risk 

GRc = CB1 + CB2 + CB3 + CB4 - CB1B2 - CB1B3 - CB1B4 - CB2B3 - CB2B4 - CB3B4 + 

CB1B2B3 + CB1B2B4 + CB1B3B4 + CB2B3B4 - CB1B2B3B4 

GRc  # 3.192046e-07 (ME = 10^5); 5.599374e-07 (ME = 10^6) 

 

Notes:  

     1. The integration intervals for integrating out dummy variables x[1-4] (actual content values 

of the components) were chosen encompassing the bulk of the distributions shown in Fig. 2: [92, 

93], [7, 8], [0, 0.13] and [0, 0.19] for x[1], x[2], x[3] and x[4], respectively. 

     2. Time spent for calculation with an ordinal PC is less than two minutes when ME = 10^5, 

and about 23 minutes when ME = 10^6. 

     3. Validation of the code in the case of four uncorrelated variables with respect to analytical 

expressions in ref. [10, 11] showed a relative error of about 29 % when using ME = 10^6 (GRc =  

0.0062 to be compared with the analytical solution equal to 0.0048). For the scenario for two 

variables the relative error is about 4 % (GRc = 0.0049 to be compared with the analytical 

solution equal to 0.0047). They are acceptable errors taking into account the order of magnitude 

of the compared risk values. 
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Figure captions 

 

Fig. 1. A scheme of the four-dimensional sub-domain of feasible compositions of the PtRh 

alloy. This is a three-dimensional simplex (each its vertex is ci = 100 %, i = 1, 2, 4), where the 

feasible alloy compositions are shown as a space filled in red, while the fourth dimension of c3 is 

indicated by a blue curve-pointer. The dotted lines are the specification limits truncating the 

simplex. 
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Fig. 2. Distributions of the test results. Histogram of the measured i-th component content cim 

%, and corresponding theoretical normal pdf for: a) Pt, i = 1; b) Rh, i = 2; c) the three impurities, 

i = 3; and d) the eight impurities, i = 4. 

 

Fig. 3. Total specific consumer’s risk       
  values in dependence on the measured i-th 

component content cim. The cim values vary on their specification intervals from TLi to TUi. The 

risk values are shown by line 1 versus:  

a) Pt content c1m at the Rh content c2m in the specification interval from 7.3 to 7.7 %, and the 

contents of the three and the eight impurities, c3m = 0.052 % and c4m = 0.059 %, respectively; 

lines 2 and 3 demonstrate the sub-domain of feasible alloy compositions, respectively; dotted 

line 4 is for the minimum observed c1m value, whereas line 3 coincides with the maximum 

observed c1m value; 

b) Rh content c2m at c1m = 100 % – c2m – c4m, c3m = 0.052 %, and c4m = 0.059 %; lines 2 and 3 

show the interval of observed c2m values;  

c) content c3m of the three precious impurities at c1m = 100 % – c2m – c4m, c2m = 7.46 % and c4m = 

1.16 c3m; lines 2 and 3 show the interval of observed c3m values;  

d) content c4m of the eight impurities at c1m = 100 % – c2m – c4m,  c2m = 7.46 % and c3m = 

c4m /1.16 ≤ 0.12 %; lines 2 and 3 show the interval of observed c4m values . 

 

Fig. 4. Surface of       
  vs. Rh measured content c2m and measured content c4m of the eight 

impurities. The plot in Fig. 4a is for the four-component scenario at c3m = c4m /1.16, but not 

exceeding 0.12 %, and 92.2 % ≤ c1m = 100 % – c2m – c4m ≤ 92.8 %. The second plot, in Fig. 4b, 

shows the surface of the risks       
  for the two-component scenario, when c1m and c3m are not 

taken into account as strongly correlated with c2m and c4m, respectively. A color column bar gives 

indication of the risk values between the minimum and the maximum on the surface. The same 

scale of the risk axis from 0 to 1 is used in both the Fig. 4 plots, but each color bar refers to its 

plot only.  



Novelty Statement 

 

An alloy is considered as a multicomponent material with complex correlations among contents 

of its components. Evaluation of a total risk of a false decision on conformity of an alloy due to 

measurement uncertainty and correlation of test results is developed. Studying test results of a 

PtRh alloy, it was shown that simplification of the testing by reducing the number of the 

components under control, from strongly correlated to those which are practically uncorrelated, 

leads to a significant increase of the total (global) risk. 
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Table 1. Standard measurement uncertainties of the impurities 

 

 

Impurity       mimp, %             simp, %             , %                u                        

Symbol Value, %    

Pd    0.048    0.018 0.016 uPd 0.008 

Ir     0.0038    0.0036 0.0015 uIr 0.0008 

Au < 0.0030 < 0.0030 0.0011 uAu 0.0006 

Fe    0.0071    0.0052 0.0028 uFe 0.0014 

Pb < 0.0003 < 0.0003 0.0002 uPb 0.0001 

Si < 0.0005 < 0.0005 0.0003 uSi 0.0002 

Sn < 0.0003 < 0.0003 0.0002 uSn 0.0001 

Zn    0.0003    0.0002 0.0002 uZn 0.0001 

 

Note: mimp and simp are the mean and the standard deviation, respectively, of the measurement 

results of the impurity mass fractions, %; symbol < is used with the limit of detection (LOD) as 

‘less than LOD’;  is the value equal to the expanded measurement uncertainty at coverage 

factor 1.96 and normal distribution; and u is the standard measurement uncertainty.  
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Table 2. Parameters of the distributions of the test/measurement results cim 

 

Component              Index Parameter 

 i mi , % si , % Di 

Pt 1 92.483 0.081 0.063 

Rh 2   7.457 0.073 0.064 

Three impurities 3   0.052 0.019 0.094 

Eight impurities 4   0.059 0.021 0.086 

 

Note: mi is the mean, and si - the standard deviation; Di - the maximal absolute difference 

between empirical and theoretical cumulative distribution functions. 
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Table 3. Pearson’s correlation coefficients rij of test results  

 

Component 

 

Index   Pt       Rh Three impurities Eight impurities 

i               j   1  2        3      4 

Pt 1   1 -0.967       -0.469     -0.467 

Rh 2      1        0.239      0.228 

Three impurities 3           1      0.970 

Eight impurities 4                1 
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