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Abstract: In this work, the interface composition of the superconducting Ti/PdAu bilayer is tuned by
an annealing process in N2 from 100 to 500 ◦C to control the superconducting transition temperature
(Tc). This Ti-PdAu composition layer is characterized with a high-resolution transmission electron
microscopy (HRTEM) and energy-dispersive spectrometer (EDS) to show the infiltration process.
The surface topography, electrical, and cryogenic properties are also shown. The inter-infiltration of
Ti and PdAu induced by the thermal treatments generates an intermixed layer at the interface of the
bilayer film. Due to the enforced proximity effect by the annealing process, the Tc of Ti (55 nm)/PdAu
(60 nm) bilayer thin films is tuned from an initial value of 243 to 111 mK which is a temperature that
is suitable for the application as the function unit of a superconducting transition edge sensor.

Keywords: Ti/PdAu; proximity effect; interfere; composition; annealing; superconductivity

1. Introduction

Superconducting transition-edge sensors (TES) [1] have been widely used in the
infrared-visible region [2], and for X-ray [3] and γ-ray [4] detection with the superiority of
photon-number and energy resolving capability, high quantum efficiency, and negligible
dark-count rate. TES usually works on the sharp transition edge between the supercon-
ducting and normal state of superconducting films, and the energy resolution (∆E) in the
strong electro-thermal feedback is expressed as follows [5]:

∆E =

√
4kT2

c C
√

n/2
α

∝ T
3
2

c (1)

where k is the Boltzmann constant, n is an exponent factor of thermal conductance, C and α
are the heat capacity and thermal sensitivity of a superconducting thin film which acts the
key function unit of a TES. From (1), we can see that the Tc should be as low as possible to
obtain a better ∆E [6].

Superconducting Ti films have been widely used especially for optical TES. The Tc
of pure Ti is from 360 to 500 mK [7–11] as the thicknesses changes. However, for a better
∆E, the Tc should be ≈ 100 mK [12–17]. The tunable range of Tc of a pure Ti film is limited.
The common method to control the Tc is exploiting the proximity effect [18–21] between a
superconducting and a normal metal film. According to the Usadel theory [19,22], the Tc
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of a bilayer film composed by a superconducting film layer and a normal metal film layer
is expressed as:

Tc = Tc0

[
ds
d0

1
1.13

(
1+ 1

β

) 1
t

]β

1
d0

= π
2 kTc0λ2

Fns

β = dnnn/dsns

(2)

Here dn and ds are the thickness of the normal metal film and the superconducting
metal film, nn and ns are the density of states for the respective materials, Tc0 is the Tc of
the superconducting metal film, λF is the Fermi wavelength of the normal metal, and t is
the unitless modified parameter to describe the transmission through the interface of the
bilayer film. From (2), we can see that there are two methods to tune the Tc of a pure Ti film:
one is changing the thickness ratio dn/ds, the other is tuning the interface property t. The
interface status plays a key role to influence the Tc. Au is usually used as the normal metal
for Ti [23–32]. However, nanometer Au films are not stable, and the surface roughness
becomes larger as time goes by. Moreover, the baking temperature obviously affected the
Tc of Ti/Au films even below 100 ◦C [27].

In this paper, a PdAu alloy film, which is more stable than a pure Au film, is used
as the normal metal film to tune the Tc of Ti films. An annealing process in N2 from 100
to 500 ◦C is performed. The inter-infiltration of Ti and PdAu induced by the thermal
treatments enforces the proximity effect and tunes the Tc from an initial value of 243 to
111 mK. From the results of the high-resolution transmission electron microscopy (HRTEM),
energy-dispersive spectrometer (EDS), X-ray diffraction (XRD), surface topography, and
electrical characterization, to obviously tune the Tc (>10%), the annealing temperature
should be above 100 ◦C, which is beneficial for the nanofabrication process and application
of TES using Ti/PdAu films.

2. Materials and Methods

A commercial 3-inch monocrystalline silicon substrate with a 500 nm low-pressure
chemical vapor deposition (LPCVD) SiNx layer is cleaned with acetone, isopropyl alcohol,
ethanol, de-ionized water, and then dried with N2, in sequence. A Ti (55 nm)/PdAu (60 nm)
bilayer thin film is deposited on it using an ultrahigh vacuum confocal DC magnetron
sputtering system (Sky technology development ltd., Shenyang, China). The base pressure
of the main chamber is ≈10−6 Pa. The deposition rates are 1.1 Å/s for the Ti and 7.4 Å/s
for the PdAu layer. During the deposition process, the substrate temperature is kept at
20 ◦C by a circulating water cooler. The films are cut into slices of 5 mm × 10 mm for the
following annealing process.

The annealing process is performed in high-purity N2 as the protection atmosphere
with a programmable UniTemp GmbH RTP-100 oven (Universal Temperature Processes,
Pfaffenhofen, Germany). Six slices of 5 mm × 10 mm samples from the same 3-inch film
is used to perform the annealing process with the temperature ranges from 100 to 500 ◦C
respectively, as shown in Figure 1. The films are firstly heated to 120 ◦C with a rate of
1 ◦C/s and kept for 2 min to remove the humidity. Above 120 ◦C, the heating rate is set to
0.5 ◦C/s, and the temperature is kept at 225 ◦C for 10 min to make the potential organic
matter gasified out. The maximum temperatures are held for 2 h to realize sufficient
annealing. Finally, the cooling rate is set as −1 ◦C/s to room temperature.
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Figure 1. The annealing progress of Ti (55 nm)/PdAu (60 nm) films.

3. Results
3.1. Morphology of Interface Composition

After the annealing process, the cross-section of the bilayer Ti/PdAu films are fabri-
cated by a focus ion beam milling method with a Pt layer as the protective layer. Then a
55 nm Ti layer and 60 nm PdAu layer are clearly shown in the SEM and EDS images of
Figure 2. The interface is clear below 300 ◦C, and the intermixed layer is not obviously
shown in Figure 2a–d, presumably because the extent of inter-diffusion is not sufficient for
a FEI Helios NanoLab G3 SEM characterization (FEI, Hillsboro, OR, USA). From the EDS
analysis (FEI, Hillsboro, OR, USA), when the annealing temperature is lower than 300 ◦C,
the atoms diffuse only several nanometers to ≈ 10 nm at the interface and slightly deeper
and deeper when the annealing temperature increases.

However, when the annealing temperature is 400 ◦C, the interface shows obviously an
atomic inter-diffusion blurring the interface, as shown in Figure 2f. The two layers start to
mix, and a Ti-PdAu intermixed layer with a thickness around 40 nm generates. Moreover,
when the annealing temperature rises to 500 ◦C, as shown in Figure 2g, atomic diffusion
is enhanced to the extent that Ti diffuses uniformly throughout the whole structure and
PdAu diffuses to the bottom layer. The atomic diffusion at the interface will enforce the
proximity effect and tune the Tc of the Ti/PdAu films [22].

Figure 3 shows the Ti, Pd, and Au surface elements distribution at the cross-section of
the Ti/PdAu layer and demonstrates the diffusion process of Ti and PdAu at the interface.
The element distribution of the bilayer structure is separated at the Z-axis to Ti, PdAu
bilayers. In Figure 3a, the Pd and Au elements stay at the same altitude, which means
PdAu is the alloy that stays at same layer. The Ti layer is just below the PdAu layer. When
the annealing temperature increases, the Ti, Pd, and Au atoms cross the interface and start
the diffusion process. When the annealing temperature rises to 400 ◦C, as shown in Figure
2f, there is a 40 nm thick layer in which Ti, Pd and Au atoms are intermixed. When the
annealing temperature increases to 500 ◦C, as shown in Figure 2g, Ti atoms are distributed
throughout the original area of the Ti/PdAu layers and Pd as well as Au atoms diffuse into
the lower layer. The whole bilayer area is converted into a Ti-Pd-Au intermixed layer.
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The Ti/PdAu interface is also characterized by FEI Tecnai F20 HRTEM (FEI, Hillsboro,
OR, USA), as shown in Figure 4. The spacing (bright part) between the (110) lattice planes
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of the cubic Ti crystal is 2.34 Å, and that of the (111) planes of cubic Au and Pd (dark part)
are 2.35 Å and 2.25 Å separately. Considering that the lattice planes of Ti (110) and Au (111)
are quite similar, Pd (111) is selected as the characteristic factor to identify atomic diffusion
across the interface. Pd (111) lattice planes can be identified only near the interface when
the annealing temperature is low. When the annealing temperature rises above 300 ◦C, the
Pd atom crosses the interface and diffuse into the Ti layer. For 500 ◦C, the Ti and PdAu
phase mix, redistribute, and enrich in inversion. The HRTEM results shows the consistency
with the EDS characterization.
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The roughness of the annealed Ti/PdAu thin films is measured on a scan size of
2 µm × 2 µm using a Veeco Dimension Icon system (Veeco, New York, NY, USA). The
result of roughness Rq (root mean surface squared roughness) is plotted vs. annealing
temperature as shown in Figure 5. When the annealing temperature is below 300 ◦C, the
Rq is around 0.6 nm, which is similar or better than in previous work [7,12,15,20,30], as
shown in Table 1. With good morphological property (lower roughness), the thin films
present better performance in proximity effect and robust process compatibility in further
TES fabrication with the multilayer readout wiring.

Rq increases to 1.4 nm at 400 ◦C. Afterwards, an abrupt jump to 6.4 nm (i.e., 1 order of
magnitude) is observed as the annealing temperature reaches 500 ◦C. It is mainly attributed
to the atom diffusion, which also could be obvious in Figure 3g.
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Table 1. Roughness of the superconductive thin film used in TES.

Ref. [7] Ref. [15] Ref. [12] Ref. [20] Ref. [30] This Work

Superconductive
materials Ti Mo Mo/Cu Ti/Au Ti/Au Ti/PdAu

Thickness 100 nm 200 nm 72 nm/
95 nm

40 nm/
70 nm

100 nm/
20 nm

55 nm/
60 nm

Roughness Rq 1.5 nm 1.7 nm 0.75 nm 4.5 nm 0.4 nm 0.6 nm

3.2. Structure and Phase

The X-ray diffraction (XRD) pattern of the films was performed using a Panalytical
X’Pert PRO MPD diffractometer (Cu λKα = 1.541874 Å) (Malvern Panalytical Ltd, Malvern,
United Kingdom) with the incidence angle fixed at 0.5◦, and the 2θ angle ranged from 10◦

to 90◦ with a step of 0.05◦, as shown in Figure 6. Two strong preferential orientation of
PdAu alloy (Gold, JCPDS card # 04-0784 and Palladium, JCPDS card # 46-1043) peaks are
clearly recorded at 2θ = 39.52◦ and 66.82◦, which represent the (111) and (220) planes of the
PdAu alloy phase. In addition, two weaker diffraction signals at 2θ = 45.73◦ and 80.26◦

correspond to the PdAu alloy (200) and (311) planes, respectively [33–36]. The peak at
2θ = 69.48◦ is mainly due to Ti (211) planes (Titanium, JCPDS card # 44-1288), and another
Ti (110) plane appears at 2θ = 38.48◦, which is merged under the high intensity of the PdAu
(111) plane. PdAu alloy has heavy density, which could easily scatter the X-ray from the
copper cathode, and the small incidence angle (0.5◦) increases the path length of the X-ray.
These effects make the signal from the Ti layer weak. When the annealing temperature is
500 ◦C, two strong peaks of the rutile TiO2 (110) phase (TiO2, JCPDS card #21-1276) appear
at 2θ = 27.45◦, and the rutile TiO2 (211) phase appears at 2θ = 54.32◦. Thermal oxidation of
the Ti at 500 ◦C causes the appearance of the TiO2 peaks.
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The sheet resistance R� of Ti/PdAu bilayer films is an important factor influenced
by the annealing temperature and affects the sensitivity of the voltage biased TES. R� is
determined by mapping measurements with a CDE Resmap 178 system (Creative Design
Engineering Inc., Cupertino, CA, USA) based on the van der Pauw method. Figure 7 shows
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around 3.5 Ω/�. Above 300 ◦C, R� significantly increases because of the thermal oxidation
of Ti and interface composition.
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3.4. Cryogenic Property

Figure 8 shows the resistance temperature curve of the annealed Ti/PdAu films
measured in an adiabatic demagnetization refrigerator (ADR) system (High Precision
Devices, Inc., Boulder, CO, USA). After the annealing at 100 ◦C, the Tc is 236.5 mK, which
is slightly lower than the unannealed films (243.5 mK). As the annealing temperature
increases, the Tc gradually decreases from 160.4 mK (200 ◦C) to 147.4 mK (250 ◦C), and
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then to 111.5 mK (300 ◦C). Above 400 ◦C, the temperature maybe too high as shown in
the HRTEM and SEM characterization, the Ti/PdAu films do not show superconducting
transition down to 30 mK. For the TES application equipped in a dilution refrigerator or
ADR, Tc ≈ 100 mK is suitable. Therefore, the annealing process at 300 ◦C is applicable.
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4. Conclusions

A 60 nm PdAu film is deposited on the top surface of 55 nm Ti to tune the Tc of
the Ti film. An annealing process is performed to modify the proximity effect. After
annealing, Ti and PdAu atoms recombine at the Ti/PdAu interface to form an intermixed
layer. Due to the intermixed layer, the Tc of the Ti/PdAu bilayer film is successfully tuned
from 243 mK to the ideal 111 mK, which is optimal for TES applications. The Tc could
be controlled by the interface property without changing the thickness ratio between the
superconducting and normal metal. The annealing temperature should be below 400 ◦C.
Otherwise, the bilayer film will show a normal metal state even at the temperature down
to 50 mK. The Ti-PdAu intermixed layer at the interface is characterized by SEM, EDS and
HRTEM to analyze the mechanism of Tc adjustment. As a new superconducting/normal
film combination, annealed Ti/PdAu bilayer films have shown great potential for TES
applications.
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