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A Molecule-Based Single-Photon Source Applied in
Quantum Radiometry

Pietro Lombardi, Marco Trapuzzano, Maja Colautti, Giancarlo Margheri,
Ivo Pietro Degiovanni, Marco López, Stefan Kück, and Costanza Toninelli*

Single-photon sources (SPSs) based on quantum emitters hold promise in
quantum radiometry as metrology standard for photon fluxes at the low light
level. Ideally this requires control over the photon flux in a wide dynamic
range, sub-Poissonian photon statistics, and narrow-band emission spectrum.
In this work, a monochromatic SPS based on an organic dye molecule is
presented, whose photon flux is traceably measured to be adjustable between
144 000 and 1320 000 photons per second at a wavelength of (785.6± 0.1)
nm, corresponding to an optical radiant flux between 36.5 and 334 fW. The
high purity of the single-photon stream is verified, with a second-order
autocorrelation function at zero time delay below 0.1 throughout the whole
range. Such molecule-based SPS is hence used for the calibration of a
single-photon avalanche detector against a low-noise analog photodiode
traceable to the primary standard for optical radiant flux (i.e., the cryogenic
radiometer). Due to the narrow bandwidth of the source, corrections to the
detector efficiency arising from the spectral power distribution are negligible.
With this major advantage, the developed device may finally realize a
low-photon-flux standard source for quantum radiometry.

Dr. P. Lombardi, Dr. C. Toninelli
Istituto Nazionale di Ottica (CNR-INO)
via N. Carrara 1, Sesto Fiorentino 50019, Florence, Italy
E-mail: toninelli@lens.unifi.it
M. Trapuzzano
Università degli Studi di Firenze
via G. Sansone 1, Sesto Fiorentino 50019, Florence, Italy
M. Colautti
LENS, Università degli Studi di Firenze
via N. Carrara 1, Sesto Fiorentino 50019, Florence, Italy
Dr. G. Margheri
Istituto dei Sistemi Complessi (CNR-ISC)
via Madonna del Piano 10, Sesto Fiorentino 50019, Florence, Italy
Dr. M. López, Dr. S. Kück
Physikalisch-Technische Bundesanstalt (PTB)
Bundesallee 100, 38116 Braunschweig, Germany
Dr. I. P. Degiovanni
Istituto Nazionale di Ricerca Metrologica (INRiM)
Strada delle Caccie 91, 10135 Torino, Italy

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/qute.201900083

© 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim. This is an open access article under the terms of the
Creative Commons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.1002/qute.201900083

1. Introduction

Sources of single photons are required for
fundamental quantum optics experiments
and are also key components in photonic
quantum technologies.[1] Applications
can be found in quantum cryptography,[2]

quantum imaging,[3] simulation,[4] and
quantum-enhanced optical measure-
ments.[5] Notably, they turn out to be ideal
sources for radiometry, especially in quan-
tum radiometry, where low photon fluxes
(in the fW range) have to be measured with
low uncertainty. Indeed, current standards
do not provide constant adjustable fluxes
for calibrating single photon detectors and
consequently all optical elements.[6] Even
in the intermediate step of bridging the ra-
diant power from single photon streams to
the regime accessible with standard silicon
photodiodes (calibrated against the primary
standards), the problem of fluctuations in
the average photon number per unit time

arises in the case of attenuated lasers[7,8] and a sub-Poissonian
photon stream would be desirable.
In principle, single-photon sources (SPSs) offer the possibility

to realize a new primary standard for light sources[9] in the
low-flux range, complementing the blackbody radiator and
the synchrotron radiation source. It is conceptually simple to
relate the photon flux n with the energy flux, that is, the optical
radiant flux (optical power) 𝜙 through the simple expression
𝜙 = n h𝜈 = n hc∕𝜆, with h the Planck constant, c the speed of
light, 𝜈 the frequency, and 𝜆 the wavelength of the emitted radi-
ation. In case of pulsed excitation and ideal photon source, n is
exactly the pump repetition rate f, whereas for continuous wave
(CW) pumping, the maximum average photon flux is essentially
determined by the inverse of the excited state lifetime (1∕𝜏). In
both cases a sub-Poissonian photon stream is obtained whose
variance can be related to the time-dependent Mandel’s parame-
ter as discussed in ref. [10]. Although in practice SPSs are never
ideal due to the non-unitary collection and quantum efficiency,
they may provide a reproducible photon flux once metrologically
characterized. In fact, from the quantum theory of photodetec-
tion (see, e.g., ref. [11]), considering the photon count statistics
measured in a time interval of Δt, the relationship between the
variance in the measured photon flux (ΔN)2 and the correspond-
ing variance in the emitted photon flux (Δn)2 in the same time
interval is given by (ΔN)2 = 𝜂2(Δn)2 + 𝜂(1 − 𝜂)⟨n⟩∕Δt, where 𝜂 is
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the overall emission, collection, and detection efficiency. In other
words, the advantage of using photon Fock states with respect to
weak coherent pulses, consists in a factor(1 − 𝜂) lower variance

in the measured photon flux, since
(ΔN)2

coherent

(ΔN)2
Fock

= 𝜂⟨n⟩∕Δt
𝜂(1−𝜂)⟨n⟩∕Δt =

1
1−𝜂

Few preliminary experiments in this direction have been per-
formed with color centers in diamond. However, the source pre-
sented in ref. [12], for example, is based on an NV-center-doped
nano-diamond at room temperature, and is hence not particu-
larly suitable for application in single-photon detector calibration,
because of the broad emission spectrum, (Δ𝜆FWHM ≈ 100 nm). A
much narrower bandwidth source (Δ𝜆FWHM ≈ 2 nm) is reported
in ref. [13], based on a silicon-vacancy center. In this case though,
a direct calibration could not be carried out because of the low
photon rate (60 kphoton/s), associated to an overall efficiency
of 𝜂 ≈ 0.1%. In this respect, sources based on semiconductor
quantum dots[14] or molecules[15] in cryogenic environment
look currently more suitable for applications. In particular,
polycyclic aromatic hydrocarbon molecules show an unmatched
combination of suitable properties in very simple experimen-
tal configurations: quantum yield close to unity, pronounced
branching ratio in favor of the narrow-band zero phonon line
(00-ZPL) at cryogenic temperature, and photostable emission.[16]

In this paper, we report on the optimized and metrologically
characterized photon flux from a SPS based on a dibenzoter-
rylene (DBT) molecule in an anthracene (Ac) nanocrystal,
exhibiting strong anti-bunching in the photon statistics, as well
as narrow-band, bright, and photostable emission. Delivering
more than 1 Mphoton/s at the detector under CW pumping,
the source is effectively exploited for the calibration of a single-
photon detector directly against a classical silicon photodiode.
This is in turn traced to the primary standard for optical radiant
flux, that is, the cryogenic radiometer. Based on the charac-
terization and the radiometric experiments presented here,
the developed molecule-based SPS might realize an absolute
standard of low optical radiant fluxes.
Themolecule-based SPS used for the experiments is described

in Section 2. Section 3 deals with the metrological characteriza-
tion of the source, while in Section 4 the SPS-based calibration of
a silicon single-photon avalanche detector (SPAD) is discussed.
In Section 5 we draw conclusions and outlooks, and in Section 6
the experimental steps are described in more detail.
Throughout the paper, with the expression “counts per second”

(count/s) we refer to the count rate of a SPADs, while “photons
per second” (photon/s) refers to the photon flux, evaluated as the
count rate read by the detector divided by its quantum efficiency.

2. The Single-Photon Source

DBT molecules in Ac emit narrow-band photons when cooled
down to cryogenic temperatures, exhibiting high quantum
efficiency, photostability, and quantum coherence,[17,18] even em-
bedded in small nanocrystals.[19] However, since a high photon
flux is relevant for applications in quantum radiometry, collection
efficiency of single molecule fluorescence requires optimization.
This is particularly true for low numerical aperture (NA) optics,
such as in the case of the long-working-distance microscope
objective (NA = 0.67), which is used in the setup for cryogenic
operation. In order to maximize the detected photon flux from

Figure 1. a) Wide-field (WF) fluorescence image: zoom (40 × 40 µm2)
on a region of the sample showing bright nanocrystals. b) Blue-detuned
(767 nm) pumping scheme used to collect photons emitted into the 00-
ZPL (785 nm). In order to properly model the molecule photo-physics,
the metastable triplet state should be taken into account. Fluorescence is
inhibited when the molecule is in its triplet state, which is hence responsi-
ble for blinking. However, this state is very unlikely populated in the case
of DBT in Ac, with a probability (namely inter system crossing yield) ISC
< 10−5. c) Simplified sketch of the optical setup used for themeasurement
reported in the paper (details are presented in Section 6) and sketch of the
device operated as single-photon source. Au, gold; AC, anthracene; DBT,
dibenzoterrylene; PVA, polyvinyl alcohol.

singleDBTmolecules in Ac nanocrystals at low temperatures, the
multilayer configuration discussed in ref. [20] is further adapted.
The SPS used in this work is obtained from an isolated DBT

molecule, placed around 100 nm away from a metallic mirror
(160 nm thick gold layer). This distance fits within the 𝜆∕(6n) ↔
𝜆∕(4n) interval (where 𝜆 is the emission wavelength and n the
refractive index of themedium), that is, the condition whichmax-
imizes the emission directionality within a small angle around
the polar axis.[21] This simple configuration can be obtained with
a cost-effective procedure, based on the deposition of DBT-doped
Ac nanocrystals over the gold mirror. Such nanocrystals are pre-
pared as suspension inwater through a reprecipitationmethod[19]

which enables a certain control over the crystal size and emitter
concentration. For the device under investigation, we grow 200
nm thick nanocrystals containing single DBT molecules. The
fabrication protocol is terminated by spin coating a 200 nm thick
polyvinyl alcohol (PVA) layer, in order to stabilize the sample
and flatten the interface between the dielectric layer and air.
Fine adjustment of the molecule distance with respect to the

mirror is obtained by exploiting the almost flat statistics of their
spatial distribution inside the host matrix. Indeed, the sample
provides millions of SPSs, out of which few thousands appear
brighter, due to their optimal placement and orientation with re-
spect to the metallic mirror. Thanks to a very low probability of
having more than one molecule per nanocrystal, such relevant
cases correspond to the brightest spots of a fluorescent map such
as the one shown in Figure 1a, obtained under wide-field illumi-
nation and imaging on camera.
In Figure 1c, a sketch of the optical setup is outlined, represent-

ing an epifluorescence microscope, where the sample is cooled
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Figure 2. Metrological characterization of the molecule emission: a) Fluorescence spectrum, inset: fluorescence spectrum when filters are set to select
a 2 nm wide spectral window around the molecule 00-ZPL (785.6 nm in this case). b) Photon flux detected with the SPAD as a function of the laser pump
power. c) Normalized histogram of the inter-photon arrival times for maximum photon flux operation (30 µW pump power). d) Zoom on the histogram
in (c) around zero time delay, representing g(2)(t): the anti-bunching behavior shows the high purity of the single-photon stream. The red lines are a fit
to the data with the expression shown in (c), while best estimation of the fit parameters is reported in (d).

down to 3 K and which is equipped with different detection
options. More details about the optical setup are provided in
Section 6.
Once a promising nanocrystal is selected, confocal illumina-

tion (and detection) is adopted for the optical characterization of
the source. The use of isolated nanocrystals enables single emit-
ter addressing without specific spatial filtering beyond confocal
microscopy.

3. Metrological Characterization of the
Molecule-Based Single-Photon Source

Single molecules are pumped into the first electronic excited
stated (which has a lifetime 𝜏 ≈ 4 ns) via an auxiliary vibrational
level using a diode laser centered at a wavelength of 767 nm
(see Figure 1b). The Stoke-shifted fluorescence is filtered out
and characterized in terms of the photon statistics and spectral
features. In Figure 2a the emission spectrum of the molecule
which is metrologically characterized and deployed in this pa-
per is shown. The peak around 767 nm is due to the residual
laser light, whereas the most intense signal is associated to the
molecule main transition, that is, its 00-ZPL. This signal is then
filtered in a bandwidth of about 2 nm around the wavelength
𝜆 ≈785 nm. In the inset of Figure 2a, the resulting spectrum
appears limited by the spectrometer resolution (≈0.2 nm) and

can be independently measured via excitation spectroscopy to be
smaller than 100 MHz, that is, 1 pm.[19] The measurements re-
ported in the following sections are obtained in these operative
conditions.
ACWpumping scheme is employed in order to reach the high-

est average photon rates at the detector for a given overall effi-
ciency. This implies a photon statistics becoming Poissonian for
long integration times, unlike the case of pulsed operation (for
which the variance in the number of emitted photons is ideally
null for all times).
Both photon flux and g(2)(t) function are measured at the

output of a multi-mode fiber, as a function of the excitation
power. Extract from the measurement results are depicted in
Figure 2b–d, respectively.
The molecule-based SPS is able to deliver at the fiber-coupled

detector up to 1.4 × 106 photons/s, keeping high purity of the
single-photon emission for any set rate (in particular, g(2)(0) =
0.08 ± 0.01 at maximum photon rate, without deconvolving for
the SPAD response function of around 0.4 ns). These charac-
teristics are outstanding considering quantum emitters operated
in the absence of optical cavities or local nano-structuring of
the host material, especially in terms of the detected power in a
given frequency interval. Indeed, according to the linewidthmea-
surements reported in our previous works,[19] around 2/3 of the
collected photon flux, that is, more than 0.9 × 106 photons/s, falls
within a 50 MHz wide spectral window.
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Figure 3. a) Temporal stability of the photon flux under CW excitation. A drift of around 2% due to the pump light alignment within a time interval of
10 min, and less than 1% fluctuations on a time-scale of few seconds (inset) is reported. b) Spectral response of the narrow-band line as a function of
temperature, for a fixed pump power equal to 30 µW. A lower absorption cross-section is observable already at 10 K, while spectral broadening is evident
at higher temperature only, due to the limited spectrometer resolution (≈0.2 nm estimation from laser line (green curve)).

It should be noted that the saturation curve reported in
Figure 2b decays for very high pump powers. To the best of
our knowledge, this behavior has not been reported before
for organic molecules and is currently under investigation.[22]

Among different possible explanations, there could be a power-
dependent heating of the host matrix induced by the pump
light, with a corresponding reduction of both the molecule
absorption cross-section and emission branching ratio in the
spectrally selected transition (ZPL). An alternative hypothesis
relies on a more complex nonlinear dynamics occurring in the
system, resulting in a power-dependent shelving effect. Despite
the physical origin of such behavior, the accessible photon flux
is sufficient for the proposed radiometric applications. An SPS
brightness (B) may also be defined as the relative probability
of having a photon within the collection angle of the first lens
with respect to the ideal case. A detailed discussion about
brightness of the presented device and possible strategies for its
optimization is provided for general interest in Section 6.
The photon statistics of the source presented in Figure 2c,d

is obtained by measuring the histogram of the difference in the
photon arrival times, using start and stop signals from two SPAD
detectors, arranged in aHanbury-Brown and Twiss (HBT) config-
uration (for details on the setup refer to Section 6 and Figure 5).
It is well known that such data set represents correctly the g(2)(t)
only for short times. Indeed, for long times the coincidence prob-
ability is suppressed by the high detected count rate.
The g(2)(t) function can be fitted with the expression

g(2) (t) =
(
1 − b ⋅ e−|t|∕t1

)
⋅ e−R⋅t (1)

where b and t1 represent the depth and the time constant of the
anti-bunching dip, respectively,[23] and the last term accounts for
the arrival time probability, considering a Poissonian distribution
(R is the average count rate per SPAD). We can exclude in first
approximation a bunching contribution to the histogram pro-
file given by the intermittency in fluorescence emission (blink-
ing) occurring when the molecule falls in the metastable triplet
state (see Figure 1b). Indeed, in DBT:Ac system this transition
has a relative probability with respect to fluorescence emission
smaller than 10−5, and the triplet lifetime is limited to few

Table 1. Attainable flux and purity of the single-photon stream for different
temperatures.

Temperature [K] Powera) [µW] Max photon flux [Mphoton/s] g(2)(0)

3 30 1.36 0.08+/−0.01

5 42 1.27

10 42 1.20

15 42 1.09 0.06+/−0.02

15 72 1.19

20 72 1.08 0.09+/−0.02

a)Power measured at the entrance of the objective lens.

microseconds.[17] These characteristics lead to dark periods of
fewmicroseconds separated bymillisecond-long bright intervals,
with a negligible bunching contribution to the g(2)(t) profile. This
assumption is confirmed by the agreement between the value
for R obtained by the fit and the count rate directly read by each
detector.
In the framework of metrological applications, it is relevant

to determine also the stability of the photon flux over time. We
report less than 1% fluctuations on short time-scales (seconds),
and a drift of around 2% due to the pump light alignment within
a time interval of 10 min (see Figure 3a).
Another set of measurements has been devoted to the deter-

mination of the highest temperature at which the device is able
to guarantee a photon stream with reasonable optical properties
for metrological applications (see discussion in Section 4).
Raising the temperature indeed, line-broadening is expected,

together with a lowering of both the absorption cross-section and
of the branching ratio into the 00-ZPL. In Figure 3b, the emission
spectrum for different temperatures is shown for a fixed pump
power. Due to the limited resolution of the spectrometer (evalu-
ated to be around 0.2 nm by measuring a laser line with actual
linewidth < 5 MHz, that is, < 10 fm), broadening of the line be-
comes evident only around 20 K. However, the combined effect
of the other two aspects is effective already at 10 K and can be
only partially mitigated by a stronger excitation. Table 1 gathers
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the results of this analysis, which fixes the maximal operating
temperature of the device to ≈20 K.

4. Calibration of a Single-Photon Detector with a
Molecule-Based SPS

Overall the developed source shows promising characteristics
in order to operate as a secondary standard source for SPAD
calibration.
Indeed, as a rule of thumb, an SPS delivering a photon stream

with flux at detector > 1 Mphoton/s, g(2)(0) < 0.1, and spectrum
FWHM < 2 nm, yields comparable results in the calibration
process as an attenuated laser. These figures arise from the
following considerations: a photon flux of 1 × 106 photons per
second at a wavelength of ≈785 nm corresponds to ≈250 fW
of optical power. As described in ref. [24], this power level is
reasonably measurable with silicon photodiodes and is therefore
set as a lower limit. The bandwidth limit of 2 nm reduces the
measurement uncertainty associated with the spectral sensitivity
of the silicon detector itself. Finally, a method based on the
pulsed excitation of such a quantum emitter would get beyond
the break-even point and become advantageous with respect
to the use of attenuated laser pulses. In particular, under the
condition g(2)(0) = 0.1, the influence of multi-photon events on
the measured detector efficiency would be comparable to the
one obtained in the Poissonian regime for an average number
of photon per detector dead time of 0.1.[8]

In this work, the detection efficiency of a Si-SPAD detector is
determined by comparing the photon flux measurements of the
SPS (see Section 2) performed with the SPAD detector (device
under test) with an analog reference Si-detector. Details about
the traceability chain for the calibration of the latter device are
given in Section 6. The reference detector and the SPAD are
equipped with a FC/PC fiber connector and their coupling effi-
ciency is optimized for a multi-mode fiber. The photon flux mea-
surements are performed sequentially. Thus, the SPAD detection
efficiency 𝜂SPAD is determined as 𝜂SPAD = ⟨NSPAD⟩

⟨Nref ⟩
, where NSPAD is

the count rate (counts/s)measuredwith the SPADdetector, while
Nref is the photon flux rate derived from the source optical flux
measurement Φs and the photon energy E (E = 2.53 × 10−19 J
for photon at 785.6 nm). Φs is obtained as the ratio between the
measured average photocurrent <If > and the reference detector
responsivity sref , and hence ⟨Nref ⟩ = ⟨Φs⟩

E
= ⟨If ⟩∕sref

E
Figure 4 shows the detection efficiency obtained for the SPAD

detector (Perkin Elmer, SPCM-AQRH-13-FC) within the photon
rate range from 0.144 to 1.32 Mphoton/s, which corresponds to
an optical power range between 36.5 and 334 fW. To the best of
our knowledge, such broad flux interval was never explored so
far with an SPS, in the framework of detectors’ calibration. In-
terestingly, the molecule emission rate approaches the regime in
which the detector dead time (𝜏dead) affects the measurement of
the detection efficiency 𝜂SPAD.

[8]

The standard uncertainty associated with each measurement
value is indicated by an error bar. It was calculated following
the guidelines expressed in ref. [25]. The achieved uncertainty
varies within the range from 2% to 6%, depending on the pho-
ton rate, that is, the lower the photon rate, the higher the un-

Figure 4. Calibration result for the SPAD detection efficiency (Perkin
Elmer, SPCM-AQRH-13-FC) using the molecule-based single-photon
source and a low-noise reference analog detector.

Table 2. Uncertainty budget for the Si-SPAD detection efficiency 𝜂SPAD de-
termined for an optical power of ≈193 fW, which corresponds to a photon
flux rate of ≈764 kphoton/s. The model used for the estimation of the un-

certainty is given by 𝜂SPAD = hc
𝜆
⋅
SsiFAmpSPADCounts

Vf (1−FLin)
, where h is the plank´s

constant, c is the speed of the light, 𝜆 is the wavelength, FAmp is the am-
plification factor of the internal amplifier of the reference detector, Vf is
the photo-voltage measurement (Si-detector measurement), FLin is the
linearity factor correction of the Si reference detector and SPADCounts is
the SPAD counts including dark counts correction.

Source of uncertainty Standard uncertainty [%]

Planck´s constant, h —

Wavelength, 𝜆 0.008

Speed of light, c —

Si-detector spectral responsivity, ssi 0.400

Si-detector measurement, Vf 1.870

Amplification factor, FAmp 0.100

Linearity factor of the Si-detector, FLin 0.030

Si-SPAD Counts, SPADCounts 0.020

Combined uncertainty, uc 1.92

certainty. This can be ascribed to the reference detector random
noise, which is the highest contribution to the total uncertainty at
fW levels, as observed in the uncertainty budget shown in Table
2. The final value obtained for the Si-SPAD quantum efficiency
is 𝜂SPAD = (0.603 ± 0.012).

5. Conclusions

In this paper we demonstrate the realization of an absolute SPS
based on the emission of an organic dye molecule operated at
cryogenic temperature. This result is obtained by linking the
single-photon stream generated by the molecule to a national
radiometric standard for optical fluxes via an analog Si-detector,
calibrated through an unbroken traceability chain and able to
read optical radiant fluxes down to a few tens of fW. The source
presented here shows significant advances with respect to
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Figure 5. Detailed sketch of the optical setup: dashed squares mark flip-
pable elements. PM, polarization maintaining fiber; BP, bandpass filter;
LWF, lens for wide-field imaging; BS, beam sampler; L1, lenses for tele-
centric system; HWP, half wave plate; LP, longpass filter; LT, tube lens;
LBFP, lens for back focal plane imaging; MM, multi-mode fiber; SPAD, sin-
gle photon countingmodule; aPD, analog Si photodiode; HBT, fiber-based
Hanbury-Brown and Twiss interferometer.

previous demonstrations in the field of radiometry in terms
of flux (1.32 Mphoton/s), linewidth (<0.2 nm) and purity
(g(2)(0) < 0.1 ) of the emission.
The traceablymeasured optical radiant flux adjustable between

37 and 334 fW at a wavelength of (785.6 ± 0.1) nm is unprece-
dented and allows the direct calibration of a single-photon detec-
tor (SPAD) through comparison with calibrated high-sensitivity
analog Si detector for the first time.
The reported SPS can in principle be operated in pulsed con-

ditions, with an estimated photon flux of around 5 Mphoton/s at
first lens (NA = 0.67) for 50 MHz pump repetition rate. Under
these conditions the device can work as a predictable true SPS,
whose photon flux is directly tuned by acting on the pump repe-
tition rate, with high reliability and precision also at power levels
below the detection limit of conventional photodetectors. The de-
veloped device may hence realize a standard source for quantum
radiometry, complementing the blackbody radiator and the syn-
chrotron radiation source in the low-photon-flux regime.
Thanks to the long coherence time and the efficient molecular

emission into the Fourier-limited 00-ZPL, the presented device
might find immediate applications also for quantum communi-
cation, simulation and computing, or in quantum imaging.

6. Experimental Section
Optical Setup: The epifluorescence microscope setup used in the ex-

periment is shown schematically in Figure 5. For CW excitation of the
DBT molecules, an external cavity diode laser operating at a wavelength
of 767 nm (Toptica DLX110) was employed. The laser beam was first spa-
tially filtered (through coupling into a PM fiber, Thorlabs P3-780PM-FC) in
order to fit a Gaussian profile; then it was spectrally filtered (with the band-
pass filter BP1, Semrock Brightline FF01-769/41) in order to avoid resid-
ual emission at the detection wavelength leaking into the detection path;
finally it was mode matched with the objective lens back entrance (Sig-
maKoki PAL-50-NIR-HR-LC07, NA = 0.67, transmission at 785 nm = 0.7)

Table 3. Photon loss budget table.

Element Efficiency Symbol

Cryostat windows 0.85

Objective transmission 0.7

Beam splitter 0.9

Spectral filtersa) 0.85

Mirrors and lensesb) 0.54

Fiber couplingc) 0.75

Overall optical setup 0.18 𝛽opt

Photon flux detector 0.6 𝛽det

HBT detectors 0.65

Collection (NA = 0.67)d) 0.35 𝛽col

a)Residual losses due to close proximity of filters’ edges; b)9× metallic mirrors;
5× spherical lenses; c)Objective lens transmission @785 nm = 0.8; coupling to
fiber ≈0.94; d)Collection obtained with NA = 0.67 objective lens according to
simulations.[20]

through the appropriate two-lens telescope, in order to exploit the avail-
able numerical aperture and minimize the size of the confocal spot (eval-
uated around 1 µm in diameter). A beam sampler BS (Thorlabs BSF20-B)
with ≈0.1/0.9 reflection/transmission coefficients was used to reflect the
light toward the objective lens and conversely transmit the incoming sig-
nal. In the common path, a telecentric lens system linking a mirror with
motorized tilt and the objective back entrance allowed for exploration of
the sample without the need for a translational stage. Another converg-
ing lens can be added before the BS if wide-field illumination was required
(LWF). The sample was fixed in thermal contact with the cold finger of a
closed-loop liquid-helium cryostat (Montana Instrument) and kept at 3 K,
and was optically addressable though a double window for a total glass
thickness of 0.7 mm. The objective lens in use was designed to compen-
sate for that.

The signal transmitted by the BS was directed toward the detection box,
which was equipped at its entrance with a longpass filter (LP, Semrock Ra-
zorEdge LP02-785RE-25) to filter out the laser light back reflected by the
sample. A second bandpass filter (BP2, Semrock TBP01-790/12), whose
transmission window can be shifted to the blue by tilting, was added in the
detection path if selection of the 00-ZPL line was required. The photon flux
was hence redirected to a fiber coupling system consisting in a lowmagni-
fication objective lens (OlympusUPlanFLN, 10×, NA= 0.30, transmission
at 785 nm = 0.8) focusing light into a cleaved multi-mode fiber (Thorlabs
M42L02, core diameter: 50 µm, NA = 0.22). The fiber can deliver the pho-
ton stream to either a low-noise analog Si detector (Femto FWPR-20-s),
or to a calibrated Si SPAD (Perkin Elmer SPCM-AQR-13-FC), or to a cou-
ple of SPAD in HBT configuration (Excelitas 800-14-FC) through a fibered
beam splitter (Thorlabs FCMM625-50A-FC). The latter arrangement, with
the help of a time-correlated single-photon counting system (PicoQuant
PicoHarp 300), gave access to the second-order autocorrelation function
of the photon stream g(2)(t) in the form of time delay histogram of the
detection events between the two detectors.

Finally, a flippable mirror set before the fiber coupling system can de-
viate the signal beam toward an EM-CCD-equipped spectrometer (Andor
Shamrock SR-303i-A, camera iXon3), which can work also as simple wide-
field imaging camera (tube lens LT focal length 20 cm). By adding a second
converging lens LBFP at the appropriate position between the tube lens and
the camera, imaging of the back focal plane of the objective lens was ob-
tained.

The photon loss budget is shown in Table 3, which reports the efficiency
of each element in the setup.

Emitter Brightness and Coherence Properties: The brightness of the SPS
can be evaluated by comparing the count rate CR read by the SPAD with
the ideal maximal rate of the source SR (corresponding to the inverse
of the excited state lifetime in case of CW excitation). The two rates are
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related through the expression CR / SR= 𝛽det 𝛽opt 𝛽col 𝛽mol P, where 𝛽det is
the quantum efficiency of the detector, 𝛽opt is the overall optical setup effi-
ciency, 𝛽col the collection efficiency of the first lens (objective) considering
all radiative and non-radiative losses, 𝛽mol the probability for the molecule
to emit a stored excitation as a photon in the ZPL, and P accounts for the
efficacy of the pumping illumination. Consequently, the brightness at first
lens was determined as B = 𝛽col 𝛽mol P = CR / SR / 𝛽det / 𝛽opt.

According to the photon flux characterization presented in Section 3,
the detector efficiency determined in Section 4, and the overall optical
setup efficiency (𝛽opt ≈0.18), the brightness of the source at first lens (for
NA = 0.67) amounts approximately to B ≈3.5%.

Concerning the coherence of the emission, a ZPL linewidth of (65± 20)
MHz, measured by excitation spectroscopy on a statistical ensemble of
molecules in samples like the one under investigation was reported. This
value is quite close to the natural Fourier-limited value of (36 ± 3) MHz,
corresponding to the average lifetime of the excited state 𝜏 = (4.4 ± 0.4)
ns, obtained from g(2)(𝜏)measurements at low pumping rate. The residual
dephasing contribution was attributed to the operating temperature (3 K),
which is close to the activation temperature for DBT:Ac system.[16]

In order to evaluate the potentiality of the device, the attainable bright-
ness and photon flux in case of optimal operation is considered.

1) From semi-analytic simulations,[20] the collection efficiency was esti-
mated with our objective to be around 𝛽col ≈0.35, which leads to a
source quantum efficiency 𝛽mol P≈10%. This value ismuch lower than
the 40%expected from the literature, and thismismatchwas attributed
to the anomalous behavior presented in Section 3. In other words, it
was believed that with the current pumping scheme we were not able
to achieve maximum efficiency either because of a non-unitary pop-
ulation of the electronic excited state, and/or because the branching
ratio into the narrow ZPL was reduced by a power-induced heating of
the system. Depending on the origin of the photon flux dimming at
high power, different strategies can be applied to mitigate the effect.
In case the consequences of a local heating of the host matrix were
faced, a bath cryostat would help in terms of cooling power. Alterna-
tively, off-resonance pulsed operation is expected to avoid completely
the issue provided that the average impinging power was smaller than
20 µW. In case of multi-photon dynamics, resonant excitation com-
bined with cross-polarized detection should allow efficient pumping
for power well below the level of activation of the detrimental effect;

2) 𝛽col can be increased exploiting higher NA objective lenses (e.g., 𝛽col
≈0.45 for NA = 0.8 was estimated);

3) In a dedicated optical setup with optimized AR coatings, filters, and
optical path length, the overall optical setup efficiency can easily be
pushed to 𝛽opt = 0.6;

4) Finally, it was demonstrated in ref. [20] that with the addition of a sec-
ond metallic layer on top of the Ac nanocrystals, for the appropriate
thickness and distance from the bottom mirror, the emission of the
molecule can be further redirected toward the polar axis, resulting in
𝛽col ≈0.55 for the considered NA

According to the considerations reported above, B ≈13% and a photon
flux at first lens (detector) of ≈7 Mphoton/s (4 Mphoton/s) for 50 MHz
pump repetition rate is expected with the present device. A factor 1.5 en-
hancement for both quantities is envisioned for the next generation of de-
vices, based on the argument introduced above (point 4).

Traceability Chain for the Calibration of the Reference Si-Detector: The ref-
erence detector used for the photon flux measurement of the source was
an analog ultra-low-noise Si-detector (Femto FWPR-20-s). It consisted of
a fiber-coupled Si photodiode of 1.1 × 1.1 mm2 active area and a trans-
impedance amplifier with gain of 1 × 1012 V A−1. The minimum noise
equivalent power (NEP) of the detector was 0.7 fW Hz−1/2. Its spectral
responsivity sSi(𝜆) was determined by calibrating it against a working
standard traceable to PTB’s primary standard for optical power, that is,
the cryogenic radiometer.[26] The complete traceability chain is shown in
Figure 6, where 𝜆i is the wavelength, Φ is the optical radiant flux, and
u is the standard measurement uncertainty. In a first step, a Si trap de-
tector was calibrated against the cryogenic radiometer at specific wave-

Figure 6. Traceability chain for the calibration of the low-noise analog Si-
detector, and the additional link reported in this paper, which opens to the
traceability of optical power flux down to few hundreds of aW.

lengths and optical powers (µW). Then, a spectrally flat detector, that is,
a thermopile detector, was used to determine the responsivity of a Si
photodiode, which acts as working standard at the specific wavelength
of the photons emitted by the SPS, that is, 785.6 nm. Finally, the spec-
tral responsivity of the low-noise Si-detector used for the calibration of
the Si-SPAD detector was obtained by means of the double attenuation
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calibration technique described in ref. [8] and the Si photodiode working
standard. The spectral responsivity obtained at 785.6 nm is

sSi = (57.52 ± 0.58) × 10(−2)AW−1 (2)

The uncertainty of the spectral responsivity here reported corresponds
to a standard uncertainty (k = 1).
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